1
|
Cardona-Acosta AM, Parise LF, Bolaños-Guzmán CA, Parise EM. PROPHYLACTIC KETAMINE: CURRENT KNOWLEDGE AND FUTURE DIRECTIONS. Biol Psychiatry 2025:S0006-3223(25)01103-5. [PMID: 40158609 DOI: 10.1016/j.biopsych.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/21/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
The prevalence of stress-induced disorders, including depression, anxiety, PTSD, and postpartum depression, has been increasing, while current treatment approaches are limited. As a result, researchers are exploring alternative treatments that include ketamine as a prophylactic against these disorders. This review provides an overview of the current knowledge on the use of ketamine as a prophylactic for stress-induced disorders, including preclinical and clinical findings on R,S-ketamine, as well as (2R,6R)- and (2S,6S)-hydroxynorketamine. We also explore the potential underlying mechanisms involved in preventing these disorders, including the brain regions/circuits, as well as glutamatergic, dopaminergic, serotonergic, and inflammatory processes known to be involved, as evidenced by studies with ketamine and its metabolites. Additionally, we highlight the limitations and risks associated with ketamine use, such as age- and sex-specific efficacy, potential long-term and adverse effects, and legal and ethical considerations. Finally, we discuss future research directions, including the implications for clinical practice, integrating ketamine into current treatment approaches, and potential advancements in ketamine-based therapies. Overall, the literature emphasizes the importance of continuing research to better understand the potential benefits and risks of ketamine as a prophylactic for stress-induced disorders.
Collapse
Affiliation(s)
- Astrid M Cardona-Acosta
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Lyonna F Parise
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2
|
Arias HR, Rudin D, Luethi D, Valenta J, Leśniak A, Czartoryska Z, Olejarz-Maciej A, Doroz-Płonka A, Manetti D, De Deurwaerdère P, Romanelli MN, Handzlik J, Liechti ME, Chagraoui A. The psychoplastogens ibogaminalog and ibogainalog induce antidepressant-like activity in naïve and depressed mice by mechanisms involving 5-HT 2A receptor activation and serotonergic transmission. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111217. [PMID: 39662723 DOI: 10.1016/j.pnpbp.2024.111217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
The antidepressant-like activity of two psychoplastogens, ibogainalog (IBG) and ibogaminalog (DM506), was studied in naïve mice using the forced swim test (FST) and tail suspension test (TST). The behavioral results showed that a single administration of 25 mg/kg DM506 or 10 mg/kg IBG induced antidepressant-like activity in naïve mice in a volinanserin-sensitive manner that persisted for 72 h. Similar results were observed using the chronic immobilization stress (CIS) test, in which depression symptoms were reduced for 48 h. To assess the contribution of serotonergic and/or norepinephrinergic neurotransmission, serotonin (5-HT) and norepinephrine (NE) levels were depleted. The reduction in 5-HT levels, but not NE levels, inhibited the antidepressant-like activity of ibogalogs, suggesting that serotonergic transmission may play a more significant role than norepinephrinergic transmission. Concurrently, DM506, IBG, and TBG (derived from tabernanthine) inhibited monoamine transporters with the following order of selectivity: SERT > NE transporter > dopamine transporter. The IBG exhibited the highest selectivity for SERT. Only TBG inhibited monoamine oxidase A activity, indicating its relatively minor role. Radioligand and functional assays showed that all ibogalogs bind to the 5-HT2 receptor subfamily (DM506 > IBG > TBG) and fully activate 5-HT2A/2C receptors with similar potency in the nM range. However, they act as competitive antagonists of the 5-HT2B receptor, with DM506 as an exception, exhibiting partial but potent agonist activity. In conclusion, ibogalogs induce acute and sustained antidepressant-like activity in naïve and depressed mice through mechanisms involving 5-HT2A receptor activation and serotonergic transmission.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| | - Deborah Rudin
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Dino Luethi
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Jan Valenta
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Anna Leśniak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Zofia Czartoryska
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Krakow, Poland
| | - Agata Doroz-Płonka
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Krakow, Poland
| | - Dina Manetti
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Krakow, Poland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Abdeslam Chagraoui
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, France; Différenciation et Communication Neuroendocrine, Endocrine et Germinale Laboratory, Institute for ResearchDr.nd Innovation in Biomedicine of Normandy (IRIB), University of Rouen, INSERM 1239, 76000 Rouen, France.
| |
Collapse
|
3
|
Bulthuis NE, McGowan JC, Ladner LR, LaGamma CT, Lim SC, Shubeck CX, Brachman RA, Sydnor E, Pavlova IP, Seo DO, Drew MR, Denny CA. GluN2B on Adult-Born Granule Cells Modulates (R,S)-Ketamine's Rapid-Acting Effects in Mice. Int J Neuropsychopharmacol 2024; 27:pyae036. [PMID: 39240140 PMCID: PMC11461768 DOI: 10.1093/ijnp/pyae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Standard antidepressant treatments often take weeks to reach efficacy and are ineffective for many patients. (R,S)-ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has been shown to be a rapid-acting antidepressant and to decrease depressive symptoms within hours of administration. While previous studies have shown the importance of the GluN2B subunit of the NMDA receptor on interneurons in the medial prefrontal cortex, no study to our knowledge has investigated the influence of GluN2B-expressing adult-born granule cells. METHODS Here, we examined whether (R,S)-ketamine's efficacy depends on adult-born hippocampal neurons using a genetic strategy to selectively ablate the GluN2B subunit of the NMDA receptor from Nestin+ cells in male and female mice, tested across an array of standard behavioral assays. RESULTS We report that in male mice, GluN2B expression on 6-week-old adult-born neurons is necessary for (R,S)-ketamine's effects on behavioral despair in the forced swim test and on hyponeophagia in the novelty suppressed feeding paradigm, as well on fear behavior following contextual fear conditioning. In female mice, GluN2B expression is necessary for effects on hyponeophagia in novelty suppressed feeding. These effects were not replicated when ablating GluN2B from 2-week-old adult-born neurons. We also find that ablating neurogenesis increases fear expression in contextual fear conditioning, which is buffered by (R,S)-ketamine administration. CONCLUSIONS In line with previous studies, these results suggest that 6-week-old adult-born hippocampal neurons expressing GluN2B partially modulate (R,S)-ketamine's rapid-acting effects. Future work targeting these 6-week-old adult-born neurons may prove beneficial for increasing the efficacy of (R,S)-ketamine.
Collapse
Affiliation(s)
- Nicholas E Bulthuis
- Doctoral Program in Neurobiology and Behavior (NB&B), Columbia University, New York, New York, USA
| | - Josephine C McGowan
- Doctoral Program in Neurobiology and Behavior (NB&B), Columbia University, New York, New York, USA
| | - Liliana R Ladner
- Department of Neuroscience, Barnard College, New York, New York, USA
| | - Christina T LaGamma
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York, USA
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
| | - Sean C Lim
- Medical Science Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, New York, USA
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York, USA
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
- Doctoral Program in Neurobiology and Behavior (NB&B), Columbia University, New York, New York, USA
| | | | - Rebecca A Brachman
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York, USA
| | - Ezra Sydnor
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
| | - Ina P Pavlova
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
| | - Dong-oh Seo
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | - Michael R Drew
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | - Christine A Denny
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York, USA
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
| |
Collapse
|
4
|
Beaurain M, Salabert AS, Payoux P, Gras E, Talmont F. NMDA Receptors: Distribution, Role, and Insights into Neuropsychiatric Disorders. Pharmaceuticals (Basel) 2024; 17:1265. [PMID: 39458906 PMCID: PMC11509972 DOI: 10.3390/ph17101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND N-methyl-D-aspartate receptors (NMDARs) are members of the ionotropic glutamate receptor family. These ligand-gated channels are entwined with numerous fundamental neurological functions within the central nervous system (CNS), and numerous neuropsychiatric disorders may arise from their malfunction. METHODS The purpose of the present review is to provide a detailed description of NMDARs by addressing their molecular structures, activation mechanisms, and physiological roles in the mammalian brain. In the second part, their role in various neuropsychiatric disorders including stroke, epilepsy, anti-NMDA encephalitis, Alzheimer's and Huntington's diseases, schizophrenia, depression, neuropathic pain, opioid-induced tolerance, and hyperalgesia will be covered. RESULTS Finally, through a careful exploration of the main non-competitive NMDARs antagonists (channel-blockers). CONCLUSION We discuss the strengths and limitations of the various molecular structures developed for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Marie Beaurain
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Emmanuel Gras
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, UPS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France;
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
5
|
Egunlusi AO, Joubert J. NMDA Receptor Antagonists: Emerging Insights into Molecular Mechanisms and Clinical Applications in Neurological Disorders. Pharmaceuticals (Basel) 2024; 17:639. [PMID: 38794209 PMCID: PMC11124131 DOI: 10.3390/ph17050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Neurodegenerative disorders (NDs) include a range of chronic conditions characterized by progressive neuronal loss, leading to cognitive, motor, and behavioral impairments. Common examples include Alzheimer's disease (AD) and Parkinson's disease (PD). The global prevalence of NDs is on the rise, imposing significant economic and social burdens. Despite extensive research, the mechanisms underlying NDs remain incompletely understood, hampering the development of effective treatments. Excitotoxicity, particularly glutamate-mediated excitotoxicity, is a key pathological process implicated in NDs. Targeting the N-methyl-D-aspartate (NMDA) receptor, which plays a central role in excitotoxicity, holds therapeutic promise. However, challenges, such as blood-brain barrier penetration and adverse effects, such as extrapyramidal effects, have hindered the success of many NMDA receptor antagonists in clinical trials. This review explores the molecular mechanisms of NMDA receptor antagonists, emphasizing their structure, function, types, challenges, and future prospects in treating NDs. Despite extensive research on competitive and noncompetitive NMDA receptor antagonists, the quest for effective treatments still faces significant hurdles. This is partly because the same NMDA receptor that necessitates blockage under pathological conditions is also responsible for the normal physiological function of NMDA receptors. Allosteric modulation of NMDA receptors presents a potential alternative, with the GluN2B subunit emerging as a particularly attractive target due to its enrichment in presynaptic and extrasynaptic NMDA receptors, which are major contributors to excitotoxic-induced neuronal cell death. Despite their low side-effect profiles, selective GluN2B antagonists like ifenprodil and radiprodil have encountered obstacles such as poor bioavailability in clinical trials. Moreover, the selectivity of these antagonists is often relative, as they have been shown to bind to other GluN2 subunits, albeit minimally. Recent advancements in developing phenanthroic and naphthoic acid derivatives offer promise for enhanced GluN2B, GluN2A or GluN2C/GluN2D selectivity and improved pharmacodynamic properties. Additional challenges in NMDA receptor antagonist development include conflicting preclinical and clinical results, as well as the complexity of neurodegenerative disorders and poorly defined NMDA receptor subtypes. Although multifunctional agents targeting multiple degenerative processes are also being explored, clinical data are limited. Designing and developing selective GluN2B antagonists/modulators with polycyclic moieties and multitarget properties would be significant in addressing neurodegenerative disorders. However, advancements in understanding NMDA receptor structure and function, coupled with collaborative efforts in drug design, are imperative for realizing the therapeutic potential of these NMDA receptor antagonists/modulators.
Collapse
Affiliation(s)
- Ayodeji Olatunde Egunlusi
- Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa
| | - Jacques Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| |
Collapse
|
6
|
Carles A, Freyssin A, Perin-Dureau F, Rubinstenn G, Maurice T. Targeting N-Methyl-d-Aspartate Receptors in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:3733. [PMID: 38612544 PMCID: PMC11011887 DOI: 10.3390/ijms25073733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are the main class of ionotropic receptors for the excitatory neurotransmitter glutamate. They play a crucial role in the permeability of Ca2+ ions and excitatory neurotransmission in the brain. Being heteromeric receptors, they are composed of several subunits, including two obligatory GluN1 subunits (eight splice variants) and regulatory GluN2 (GluN2A~D) or GluN3 (GluN3A~B) subunits. Widely distributed in the brain, they regulate other neurotransmission systems and are therefore involved in essential functions such as synaptic transmission, learning and memory, plasticity, and excitotoxicity. The present review will detail the structure, composition, and localization of NMDARs, their role and regulation at the glutamatergic synapse, and their impact on cognitive processes and in neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's disease). The pharmacology of different NMDAR antagonists and their therapeutic potentialities will be presented. In particular, a focus will be given on fluoroethylnormemantine (FENM), an investigational drug with very promising development as a neuroprotective agent in Alzheimer's disease, in complement to its reported efficacy as a tomography radiotracer for NMDARs and an anxiolytic drug in post-traumatic stress disorder.
Collapse
Affiliation(s)
- Allison Carles
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
| | - Aline Freyssin
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
- ReST Therapeutics, 34095 Montpellier, France; (F.P.-D.); (G.R.)
| | | | | | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
| |
Collapse
|
7
|
Freyssin A, Carles A, Guehairia S, Rubinstenn G, Maurice T. Fluoroethylnormemantine (FENM) shows synergistic protection in combination with a sigma-1 receptor agonist in a mouse model of Alzheimer's disease. Neuropharmacology 2024; 242:109733. [PMID: 37844867 DOI: 10.1016/j.neuropharm.2023.109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
Fluoroethylnormemantine (FENM) is a Memantine derivative with anti-amnesic and neuroprotective activities showed in the Aβ25-35 pharmacological mouse model of Alzheimer's disease (AD). As AD is a complex multi-factorial neurodegenerative pathology, combination therapies relying on drugs acting through different pathways, have been suggested to more adequately address neuroprotection. As several agonists of the sigma-1 receptor (S1R), an intracellular chaperone, are presently in phase 2 or 3 clinical trials in neurodegenetrative diseases including AD, we examined the potentialities of S1R drug-based combinations with FENM, or Memantine. Aβ25-35-treated mice were treated with S1R agonists (PRE-084, Igmesine, Cutamesine) and/or FENM, or Memantine, during 7 days after intracerebroventricular administration of oligomerized Aβ25-35. Mice were then tested for spatial short-term memory on day 8 and non-spatial long-term memory on days 9-10, using the spontaneous alternation or passive avoidance tests, respectively. The FENM or Memantine combination with Donepezil, that non-selectively inhibits acetylcholinesterase and activates S1R, was also tested. The efficacy of combinations using maximal non-active or minimal active doses of S1R agonist or FENM was analyzed using calculations of the combination index, based on simple isobologram representation. Data showed that most of the FENM-based combinations led to synergistic protection against Aβ25-35-induced learning deficits, for both long- and short-term memory responses, with a higher efficiency on the latter. Memantine led to synergistic combination in short-term memory but poorly in long-term memory responses, with either PRE-084 or Donepezil. These study showed that drug combinations based on FENM and S1R agonists may lead to highly effective and synergistic protection in AD, particularly on short-term memory.
Collapse
Affiliation(s)
- Aline Freyssin
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France; ReST Therapeutics, Montpellier, France
| | - Allison Carles
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
| | | | | | - Tangui Maurice
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France.
| |
Collapse
|
8
|
Chen BK, Luna VM, Jin M, Shah A, Shannon ME, Pauers M, Williams BL, Pham V, Hunsberger HC, Gardier AM, Mendez-David I, David DJ, Denny CA. A tale of two receptors: simultaneous targeting of NMDARs and 5-HT 4 Rs exerts additive effects against stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559065. [PMID: 37808799 PMCID: PMC10557654 DOI: 10.1101/2023.09.27.559065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Serotonin (5-HT) receptors and N -methyl-D-aspartate receptors (NMDARs) have both been implicated in the pathophysiology of depression and anxiety disorders. Here, we evaluated whether targeting both receptors through combined dosing of ( R , S )-ketamine, an NMDAR antagonist, and prucalopride, a serotonin type IV receptor (5-HT 4 R) agonist, would have additive effects, resulting in reductions in stress-induced fear, behavioral despair, and hyponeophagia. METHODS A single injection of saline (Sal), ( R , S )-ketamine (K), prucalopride (P), or a combined dose of ( R , S )-ketamine and prucalopride (K+P) was administered before or after contextual fear conditioning (CFC) stress in both sexes. Drug efficacy was assayed using the forced swim test (FST), elevated plus maze (EPM), open field (OF), marble burying (MB), and novelty-suppressed feeding (NSF). Patch clamp electrophysiology was used to measure the effects of combined drug on neural activity in hippocampal CA3. c-fos and parvalbumin (PV) expression in the hippocampus (HPC) and medial prefrontal cortex (mPFC) was examined using immunohistochemistry and network analysis. RESULTS We found that a combination of K+P, given before or after stress, exerted additive effects, compared to either drug alone, in reducing a variety of stress-induced behaviors in both sexes. Combined K+P administration significantly altered c-fos and PV expression and network activity in the HPC and mPFC. CONCLUSIONS Our results indicate that combined K+P has additive benefits for combating stress-induced pathophysiology, both at the behavioral and neural level. Our findings provide preliminary evidence that future clinical studies using this combined treatment strategy may prove advantageous in protecting against a broader range of stress-induced psychiatric disorders.
Collapse
|
9
|
Yu SP, Jiang MQ, Shim SS, Pourkhodadad S, Wei L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer's disease. Mol Neurodegener 2023; 18:43. [PMID: 37400870 DOI: 10.1186/s13024-023-00636-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Stroke and late-onset Alzheimer's disease (AD) are risk factors for each other; the comorbidity of these brain disorders in aging individuals represents a significant challenge in basic research and clinical practice. The similarities and differences between stroke and AD in terms of pathogenesis and pathophysiology, however, have rarely been comparably reviewed. Here, we discuss the research background and recent progresses that are important and informative for the comorbidity of stroke and late-onset AD and related dementia (ADRD). Glutamatergic NMDA receptor (NMDAR) activity and NMDAR-mediated Ca2+ influx are essential for neuronal function and cell survival. An ischemic insult, however, can cause rapid increases in glutamate concentration and excessive activation of NMDARs, leading to swift Ca2+ overload in neuronal cells and acute excitotoxicity within hours and days. On the other hand, mild upregulation of NMDAR activity, commonly seen in AD animal models and patients, is not immediately cytotoxic. Sustained NMDAR hyperactivity and Ca2+ dysregulation lasting from months to years, nevertheless, can be pathogenic for slowly evolving events, i.e. degenerative excitotoxicity, in the development of AD/ADRD. Specifically, Ca2+ influx mediated by extrasynaptic NMDARs (eNMDARs) and a downstream pathway mediated by transient receptor potential cation channel subfamily M member (TRPM) are primarily responsible for excitotoxicity. On the other hand, the NMDAR subunit GluN3A plays a "gatekeeper" role in NMDAR activity and a neuroprotective role against both acute and chronic excitotoxicity. Thus, ischemic stroke and AD share an NMDAR- and Ca2+-mediated pathogenic mechanism that provides a common receptor target for preventive and possibly disease-modifying therapies. Memantine (MEM) preferentially blocks eNMDARs and was approved by the Federal Drug Administration (FDA) for symptomatic treatment of moderate-to-severe AD with variable efficacy. According to the pathogenic role of eNMDARs, it is conceivable that MEM and other eNMDAR antagonists should be administered much earlier, preferably during the presymptomatic phases of AD/ADRD. This anti-AD treatment could simultaneously serve as a preconditioning strategy against stroke that attacks ≥ 50% of AD patients. Future research on the regulation of NMDARs, enduring control of eNMDARs, Ca2+ homeostasis, and downstream events will provide a promising opportunity to understand and treat the comorbidity of AD/ADRD and stroke.
Collapse
Affiliation(s)
- Shan P Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA.
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Seong S Shim
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Soheila Pourkhodadad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
10
|
Beaurain M, Talmont F, Pierre D, Péran P, Boucher S, Hitzel A, Rols MP, Cuvillier O, Payoux P, Salabert AS. Pharmacological Characterization of [ 18F]-FNM and Evaluation of NMDA Receptors Activation in a Rat Brain Injury Model. Mol Imaging Biol 2023:10.1007/s11307-023-01811-y. [PMID: 36944798 DOI: 10.1007/s11307-023-01811-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE NMDA receptors (NMDARs) dysfunction plays a central role in the physiopathology of psychiatric and neurodegenerative disorders whose mechanisms are still poorly understood. The development of a PET (positron emission tomography) tracer able to selectively bind to the NMDARs intra-channel PCP site may make it possible to visualize NMDARs in an open and active state. We describe the in vitro pharmacological characterization of [18F]-fluoroethylnormemantine ([18F]-FNM) and evaluate its ability to localize activated NMDA receptors in a rat preclinical model of excitotoxicity. PROCEDURES The affinity of the non-radioactive analog for the intra-channel PCP site was determined in a radioligand competition assay using [3H]TCP ([3H]N-(1-[thienyl]cyclohexyl)piperidine) on rat brain homogenates. Selectivity was also investigated by the displacement of specific radioligands targeting various cerebral receptors. In vivo brain lesions were performed using stereotaxic quinolinic acid (QA) injections in the left motor area (M1) of seven Sprague Dawley rats. Each rat was imaged with a microPET/CT camera, 40 min after receiving a dose of 30 MBq + / - 20 of [18F]-FNM, 24 and 72 h after injury. Nine non-injured rats were also imaged using the same protocol. RESULTS FNM displayed IC50 value of 13.0 ± 8.9 µM in rat forebrain homogenates but also showed significant bindings on opioid receptors. In the frontal and left somatosensory areas, [18F]FNM PET detected a mean of 37% and 41% increase in [18F]FNM uptake (p < 0,0001) 24 and 72 h after QA stereotaxic injection, respectively, compared to the control group. CONCLUSIONS In spite of FNM's poor affinity for NMDAR PCP site, this study supports the ability of this tracer to track massive activation of NMDARs in neurological diseases.
Collapse
Affiliation(s)
- Marie Beaurain
- Toulouse NeuroImaging Center, ToNIC, UMR1214 Inserm, Toulouse, France.
- Nuclear Medicine Department, Toulouse Purpan University Hospital, Toulouse, France.
| | - Franck Talmont
- Institut de Pharmacologie Et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31059, Toulouse, France
| | - Damien Pierre
- Toulouse NeuroImaging Center, ToNIC, UMR1214 Inserm, Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center, ToNIC, UMR1214 Inserm, Toulouse, France
| | - Samuel Boucher
- Toulouse NeuroImaging Center, ToNIC, UMR1214 Inserm, Toulouse, France
| | - Anne Hitzel
- Nuclear Medicine Department, Toulouse Purpan University Hospital, Toulouse, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie Et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31059, Toulouse, France
| | - Olivier Cuvillier
- Institut de Pharmacologie Et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31059, Toulouse, France
| | - Pierre Payoux
- Toulouse NeuroImaging Center, ToNIC, UMR1214 Inserm, Toulouse, France
- Nuclear Medicine Department, Toulouse Purpan University Hospital, Toulouse, France
| | - Anne-Sophie Salabert
- Toulouse NeuroImaging Center, ToNIC, UMR1214 Inserm, Toulouse, France
- Nuclear Medicine Department, Toulouse Purpan University Hospital, Toulouse, France
| |
Collapse
|
11
|
Weapons of stress reduction: (R,S)-ketamine and its metabolites as prophylactics for the prevention of stress-induced psychiatric disorders. Neuropharmacology 2023; 224:109345. [PMID: 36427554 DOI: 10.1016/j.neuropharm.2022.109345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Exposure to stress is one of the greatest contributing factors to developing a psychiatric disorder, particularly in susceptible populations. Enhancing resilience to stress could be a powerful intervention to reduce the incidence of psychiatric disease and reveal insight into the pathophysiology of psychiatric disorders. (R,S)-ketamine and its metabolites have recently been shown to exert protective effects when administered before or after a variety of stressors and may be effective, tractable prophylactic compounds against psychiatric disease. Drug dosing, sex, age, and strain in preclinical rodent studies, significantly influence the prophylactic effects of (R,S)-ketamine and related compounds. Due to the broad neurobiological actions of (R,S)-ketamine, a variety of mechanisms have been proposed to contribute to the resilience-enhancing effects of this drug, including altering various transcription factors across the genome, enhancing inhibitory connections from the prefrontal cortex, and increasing synaptic plasticity in the hippocampus. Promisingly, select data have shown that (R,S)-ketamine may be an effective prophylactic against psychiatric disorders, such as postpartum depression (PPD). Overall, this review will highlight a brief history of the prophylactic effects of (R,S)-ketamine, the potential mechanisms underlying its protective actions, and possible future directions for translating prophylactic compounds to the clinic. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
|
12
|
Kholghi G, Arjmandi-Rad S, Zarrindast MR, Vaseghi S. St. John's wort (Hypericum perforatum) and depression: what happens to the neurotransmitter systems? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:629-642. [PMID: 35294606 DOI: 10.1007/s00210-022-02229-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
St. John's wort (Hypericum perforatum) is a herbaceous plant containing many bioactive molecules including naphthodianthrones, phloroglucinol derivatives, flavonoids, bioflavonoids, proanthocyanidins, and chlorogenic acid. Evidence has shown the therapeutic effects of St. John's wort and especially its two major active components, hyperforin and hypericin, on different psychiatric and mood disorders such as posttraumatic stress disorder (PTSD), attention-deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), and anxiety disorders. St. John's wort also induces antidepressant effects. In this review study, we aimed to discuss the role of St. John's wort in modulating depression, with respect to the role of different neurotransmitter systems in the brain. We discussed changes in the neurotransmitter levels in depression, and following use of St. John's wort. It was concluded that changes in the function and level of neurotransmitters in depression are complex. Also, St. John's wort can induce inconsistent effects on neurotransmitter levels. We also found that glutamate and acetylcholine may be the most important neurotransmitters to study in future works, because the function of both neurotransmitters in depression is unclear. In addition, St. John's wort induces a dualistic modulation on the activity of cholinergic signaling, which can be an interesting topic for future studies.
Collapse
Affiliation(s)
- Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Shirin Arjmandi-Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran.
| |
Collapse
|
13
|
Jiang L, Zhang H, He Y, Liu H, Li S, Chen R, Han S, Zhou Y, Zhang J, Wan X, Xu R, Wang S, Gu H, Wei Q, Qin F, Zhao Y, Chen Y, Li H, Wang L, Wang X, Wang Y, Dai Y, Li M, Chen Y, Zhang H, Hu Y, Bu Q, Zhao Y, Cen X. Synapse differentiation-induced gene 1 regulates stress-induced depression through interaction with the AMPA receptor GluA2 subunit of nucleus accumbens in male mice. Neuropharmacology 2022; 213:109076. [DOI: 10.1016/j.neuropharm.2022.109076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023]
|