1
|
Ko Y, Kim HE, Kim BH, Ham K, Lee S, Park B, Kim JJ. Neural dynamics of social anxiety during and after anxiety-provoking and relaxation-inducing: A task and resting-state fMRI study. J Affect Disord 2025; 380:655-665. [PMID: 40122256 DOI: 10.1016/j.jad.2025.03.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Social anxiety disorder (SAD) is marked by intense fear of social situations and negative evaluation. This study investigated neural effects of SAD-specific imagery scripts and their relationships with Brief Fear of Negative Evaluation (BFNE). METHODS Thirty-six SAD and 32 healthy controls underwent four five-minute fMRI runs: anxiety-provoking imagery, rest, relaxing imagery, and rest. The order of imageries was counterbalanced. Functional connectivity analysis and connectome-based predictive modeling with respect to BFNE were performed using six seed regions, including the bilateral amygdala, left hypothalamus, bilateral dorsomedial prefrontal cortex (DMPFC), left ventromedial PFC (VMPFC), and left posterior cingulate cortex (PCC). RESULTS Group × task interaction effects were found in connectivity of left amygdala-right cerebellum, left PCC-bilateral superior frontal gyrus, and left PCC-right posterior middle temporal gyrus, and group × engagement effects were discovered in left hypothalamus-bilateral DMPFC and left VMPFC-right DMPFC couplings. Group × task × engagement interactions highlighted aberrant functional connections of right amygdala-left VMPFC, DMPFC-left DLPFC, and left VMPFC-bilateral supplementary motor area in SAD. Patterns of connectivity predicted the BFNE scores in various segments of imagery conditions. LIMITATIONS Patient's medication, physiological measures were not considered. Noisy nature of fMRI could have interfered participants from focusing. CONCLUSIONS Our results revealed disrupted functional connections associated with emotion dysregulation and overly self-referent thinking in SAD. Markedly, patients showed maladaptive responses related to relaxation-inducing blocks, challenging the expected relaxation response. Overall findings emphasized inappropriate engagements of various processes in relaxing circumstances that do not overtly involve social anxiety to be associated with symptomatology.
Collapse
Affiliation(s)
- Yujin Ko
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Psychiatry, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Hesun Erin Kim
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Byung-Hoon Kim
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Kyunghee Ham
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seungmin Lee
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Bohyun Park
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jae-Jin Kim
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| |
Collapse
|
2
|
Zhang Y, Li F, Wu H, Du W, Shu J, Wang A, Xu C, Li C, Wang Y, Hu S. Genetic neurocognitive profile of autism unveiled with gene transcription. Neurobiol Dis 2025; 210:106925. [PMID: 40288424 DOI: 10.1016/j.nbd.2025.106925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
How neurocognitive processes elaborate phenotypic heterogeneity within autism spectrum disorder (ASD) remains unknown. Applying the principal component analysis to the Neurosynth database, we established neurocognitive profiles to characterize the phenotypic heterogeneity of ASD, revealing a cortical hierarchical axis that separates the temporal cortex from other networks. By integrating neurocognitive profiles with transcriptomic data, we found that gene sets shaping the patterns of neurocognitive profiles are enriched in ASD-related biological processes and ASD pathogenic risk. Using a data-driven approach, we identified a topographic network for ASD, comprising the temporal, frontal, somatosensory, and visual cortices, with its transcriptomic signatures differentiating between regions over neurodevelopment. Additionally, functional reorganization in ASD within the topographic network has occurred with the temporal cortex as the central node. Collectively, our results reveal spatially covarying transcriptomic and neurocognitive profiles, emphasizing the influence of functional reorganization and its underlying genetic mechanism on phenotypic heterogeneity in ASD.
Collapse
Affiliation(s)
- Yingxing Zhang
- Child Healthcare Department, Anhui Provincial Children's Hospital, Hefei, Anhui 230022, PR China
| | - Fangfang Li
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Hongli Wu
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Wei Du
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Jianhua Shu
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Anqing Wang
- Medical Imaging Center, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230601, PR China
| | - Chunsheng Xu
- Medical Imaging Center, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230601, PR China
| | - Chuanfu Li
- Medical Imaging Center, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230601, PR China
| | - Ya Wang
- Child Healthcare Department, Anhui Provincial Children's Hospital, Hefei, Anhui 230022, PR China.
| | - Sheng Hu
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China; Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China; Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui 230000, PR China.
| |
Collapse
|
3
|
Itahashi T, Yamashita A, Takahara Y, Yahata N, Aoki YY, Fujino J, Yoshihara Y, Nakamura M, Aoki R, Okimura T, Ohta H, Sakai Y, Takamura M, Ichikawa N, Okada G, Okada N, Kasai K, Tanaka SC, Imamizu H, Kato N, Okamoto Y, Takahashi H, Kawato M, Yamashita O, Hashimoto RI. Generalizable and transportable resting-state neural signatures characterized by functional networks, neurotransmitters, and clinical symptoms in autism. Mol Psychiatry 2025; 30:1466-1478. [PMID: 39342041 PMCID: PMC11919695 DOI: 10.1038/s41380-024-02759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Autism spectrum disorder (ASD) is a lifelong condition with elusive biological mechanisms. The complexity of factors, including inter-site and developmental differences, hinders the development of a generalizable neuroimaging classifier for ASD. Here, we developed a classifier for ASD using a large-scale, multisite resting-state fMRI dataset of 730 Japanese adults, aiming to capture neural signatures that reflect pathophysiology at the functional network level, neurotransmitters, and clinical symptoms of the autistic brain. Our adult ASD classifier was successfully generalized to adults in the United States, Belgium, and Japan. The classifier further demonstrated its successful transportability to children and adolescents. The classifier contained 141 functional connections (FCs) that were important for discriminating individuals with ASD from typically developing controls. These FCs and their terminal brain regions were associated with difficulties in social interaction and dopamine and serotonin, respectively. Finally, we mapped attention-deficit/hyperactivity disorder (ADHD), schizophrenia (SCZ), and major depressive disorder (MDD) onto the biological axis defined by the ASD classifier. ADHD and SCZ, but not MDD, were located proximate to ASD on the biological dimensions. Our results revealed functional signatures of the ASD brain, grounded in molecular characteristics and clinical symptoms, achieving generalizability and transportability applicable to the evaluation of the biological continuity of related diseases.
Collapse
Affiliation(s)
- Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ayumu Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuji Takahara
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Drug Discovery Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Noriaki Yahata
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Quantum Life Science, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Yuta Y Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry, Aoki Clinic, Tokyo, Japan
| | - Junya Fujino
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yujiro Yoshihara
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoaki Nakamura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ryuta Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Tsukasa Okimura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Haruhisa Ohta
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yuki Sakai
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- XNef, Inc., Kyoto, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
- Department of Neurology, Shimane University, Shimane, Japan
| | - Naho Ichikawa
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
- UTokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Tokyo, Japan
| | - Saori C Tanaka
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroshi Imamizu
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuo Kawato
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- XNef, Inc., Kyoto, Japan
| | - Okito Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Ryu-Ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan.
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan.
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan.
| |
Collapse
|
4
|
Duan X, Shan X, Uddin LQ, Chen H. The Future of Disentangling the Heterogeneity of Autism With Neuroimaging Studies. Biol Psychiatry 2025; 97:428-438. [PMID: 39181387 DOI: 10.1016/j.biopsych.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Autism spectrum disorder (ASD) is a lifelong neurodevelopmental condition. Over the past decade, a considerable number of approaches have been developed to identify potential neuroimaging-based biomarkers of ASD that have uncovered specific neural mechanisms that underlie behaviors associated with ASD. However, the substantial heterogeneity among individuals who are diagnosed with ASD hinders the development of biomarkers. Disentangling the heterogeneity of ASD is pivotal to improving the quality of life for individuals with ASD by facilitating early diagnosis and individualized interventions for those who need support. In this review, we discuss recent advances in neuroimaging that have facilitated the characterization of the heterogeneity of this condition using 3 frameworks: neurosubtyping, dimensional models, and normative models. We also discuss the challenges, possible solutions, and clinical utility of these 3 frameworks. We argue that several factors need to be considered when parsing heterogeneity using neuroimaging, including co-occurring conditions, neurodevelopment, heredity and environment, and multisite and multimodal data. We close with a discussion of future directions for achieving a better understanding of the neural mechanisms that underlie neurodevelopmental heterogeneity and the future of precision medicine in ASD.
Collapse
Affiliation(s)
- Xujun Duan
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xiaolong Shan
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California; Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Huafu Chen
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
5
|
Horien C, Mandino F, Greene AS, Shen X, Powell K, Vernetti A, O’Connor D, McPartland JC, Volkmar FR, Chun M, Chawarska K, Lake EM, Rosenberg MD, Satterthwaite T, Scheinost D, Finn E, Constable RT. What is the best brain state to predict autistic traits? MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.14.24319457. [PMID: 39867399 PMCID: PMC11759253 DOI: 10.1101/2025.01.14.24319457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Autism is a heterogeneous condition, and functional magnetic resonance imaging-based studies have advanced understanding of neurobiological correlates of autistic features. Nevertheless, little work has focused on the optimal brain states to reveal brain-phenotype relationships. In addition, there is a need to better understand the relevance of attentional abilities in mediating autistic features. Using connectome-based predictive modelling, we interrogate three datasets to determine scanning conditions that can boost prediction of clinically relevant phenotypes and assess generalizability. In dataset one, a sample of youth with autism and neurotypical participants, we find that a sustained attention task (the gradual onset continuous performance task) results in high prediction performance of autistic traits compared to a free-viewing social attention task and a resting-state condition. In dataset two, we observe the predictive network model of autistic traits generated from the sustained attention task generalizes to predict measures of attention in neurotypical adults. In dataset three, we show the same predictive network model of autistic traits from dataset one further generalizes to predict measures of social responsiveness in data from the Autism Brain Imaging Data Exchange. In sum, our data suggest that an in-scanner sustained attention challenge can help delineate robust markers of autistic traits and support the continued investigation of the optimal brain states under which to predict phenotypes in psychiatric conditions.
Collapse
Affiliation(s)
- Corey Horien
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), University of Pennsylvania, Philadelphia, PA, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Abigail S. Greene
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Kelly Powell
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | | | - David O’Connor
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James C. McPartland
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Fred R. Volkmar
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Marvin Chun
- Department of Psychology, Yale University, New Haven, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Katarzyna Chawarska
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Evelyn M.R. Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Monica D. Rosenberg
- Department of Psychology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Theodore Satterthwaite
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Emily Finn
- Department of Psychological and Brain Sciences, Dartmouth College, Dartmouth, NH, USA
| | - R. Todd Constable
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Anbarasi J, Kumari R, Ganesh M, Agrawal R. Translational Connectomics: overview of machine learning in macroscale Connectomics for clinical insights. BMC Neurol 2024; 24:364. [PMID: 39342171 PMCID: PMC11438080 DOI: 10.1186/s12883-024-03864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Connectomics is a neuroscience paradigm focused on noninvasively mapping highly intricate and organized networks of neurons. The advent of neuroimaging has led to extensive mapping of the brain functional and structural connectome on a macroscale level through modalities such as functional and diffusion MRI. In parallel, the healthcare field has witnessed a surge in the application of machine learning and artificial intelligence for diagnostics, especially in imaging. While reviews covering machine learn ing and macroscale connectomics exist for specific disorders, none provide an overview that captures their evolving role, especially through the lens of clinical application and translation. The applications include understanding disorders, classification, identifying neuroimaging biomarkers, assessing severity, predicting outcomes and intervention response, identifying potential targets for brain stimulation, and evaluating the effects of stimulation intervention on the brain and connectome mapping in patients before neurosurgery. The covered studies span neurodegenerative, neurodevelopmental, neuropsychiatric, and neurological disorders. Along with applications, the review provides a brief of common ML methods to set context. Conjointly, limitations in ML studies within connectomics and strategies to mitigate them have been covered.
Collapse
Affiliation(s)
- Janova Anbarasi
- BrainSightAI, No. 677, 1st Floor, 27th Main, 13th Cross, HSR Layout, Sector 1, Adugodi, Bengaluru, Karnataka, 560102, India
| | - Radha Kumari
- BrainSightAI, No. 677, 1st Floor, 27th Main, 13th Cross, HSR Layout, Sector 1, Adugodi, Bengaluru, Karnataka, 560102, India
| | - Malvika Ganesh
- BrainSightAI, No. 677, 1st Floor, 27th Main, 13th Cross, HSR Layout, Sector 1, Adugodi, Bengaluru, Karnataka, 560102, India
| | - Rimjhim Agrawal
- BrainSightAI, No. 677, 1st Floor, 27th Main, 13th Cross, HSR Layout, Sector 1, Adugodi, Bengaluru, Karnataka, 560102, India.
| |
Collapse
|
7
|
Liu X, Liu Z, Wang F, Cheng P, Yang J, Tan W, Cheng Y, Huang D, Xiang Z, Zhang J, Li J, Xie Y, Zhong M, Yang J. A connectome-based model of delusion in schizophrenia using functional connectivity under working memory task. J Psychiatr Res 2024; 177:75-81. [PMID: 38981411 DOI: 10.1016/j.jpsychires.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Delusion is an important feature of schizophrenia, which may stem from cognitive biases. Working memory (WM) is the core foundation of cognition, closely related to delusion. However, the knowledge of neural mechanisms underlying the relationship between WM and delusion in schizophrenia is poorly investigated. Two hundred and thirty patients with schizophrenia (dataset 1: n = 130; dataset 2: n = 100) were enrolled and scanned for an N-back WM task. We constructed the WM-related whole-brain functional connectome and conducted Connectome-based Predictive Modelling (CPM) to detect the delusion-related networks and built the correlation model in dataset 1. The correlation between identified networks and delusion severity was tested in a separate, heterogeneous sample of dataset 2 that mainly includes early-onset schizophrenia. The identified delusion-related network has a strong correlation with delusion severity measured by the NO.20 item of SAPS in dataset 1 (r = 0.433, p = 2.7 × 10-7, permutation-p = 0.035), and can be validated in the same dataset by using another delusion measurement, that is, the P1 item of PANSS (r = 0.362, p = 0.0005). It can be validated in another independent dataset 2 (NO.20 item of SAPS for r = 0.31, p = 0.0024, P1 item of PANSS for r = 0.27, p = 0.0074). The delusion-related network comprises the connections between the default mode network (DMN), cingulo-opercular network (CON), salience network (SN), subcortical, sensory-somatomotor network (SMN), and visual networks. We successfully established correlation models of individualized delusion based on the WM-related functional connectome and showed a strong correlation between delusion severity and connections within the DMN, CON, SMN, and subcortical network.
Collapse
Affiliation(s)
- Xiawei Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhening Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Feiwen Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Peng Cheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jun Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Wenjian Tan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yixin Cheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Danqing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhibiao Xiang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiamei Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jinyue Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yuxin Xie
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Maoxing Zhong
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jie Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
8
|
Dan R, Whitton AE, Treadway MT, Rutherford AV, Kumar P, Ironside ML, Kaiser RH, Ren B, Pizzagalli DA. Brain-based graph-theoretical predictive modeling to map the trajectory of anhedonia, impulsivity, and hypomania from the human functional connectome. Neuropsychopharmacology 2024; 49:1162-1170. [PMID: 38480910 PMCID: PMC11109096 DOI: 10.1038/s41386-024-01842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/27/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Clinical assessments often fail to discriminate between unipolar and bipolar depression and identify individuals who will develop future (hypo)manic episodes. To address this challenge, we developed a brain-based graph-theoretical predictive model (GPM) to prospectively map symptoms of anhedonia, impulsivity, and (hypo)mania. Individuals seeking treatment for mood disorders (n = 80) underwent an fMRI scan, including (i) resting-state and (ii) a reinforcement-learning (RL) task. Symptoms were assessed at baseline as well as at 3- and 6-month follow-ups. A whole-brain functional connectome was computed for each fMRI task, and the GPM was applied for symptom prediction using cross-validation. Prediction performance was evaluated by comparing the GPM to a corresponding null model. In addition, the GPM was compared to the connectome-based predictive modeling (CPM). Cross-sectionally, the GPM predicted anhedonia from the global efficiency (a graph theory metric that quantifies information transfer across the connectome) during the RL task, and impulsivity from the centrality (a metric that captures the importance of a region) of the left anterior cingulate cortex during resting-state. At 6-month follow-up, the GPM predicted (hypo)manic symptoms from the local efficiency of the left nucleus accumbens during the RL task and anhedonia from the centrality of the left caudate during resting-state. Notably, the GPM outperformed the CPM, and GPM derived from individuals with unipolar disorders predicted anhedonia and impulsivity symptoms for individuals with bipolar disorders. Importantly, the generalizability of cross-sectional models was demonstrated in an external validation sample. Taken together, across DSM mood diagnoses, efficiency and centrality of the reward circuit predicted symptoms of anhedonia, impulsivity, and (hypo)mania, cross-sectionally and prospectively. The GPM is an innovative modeling approach that may ultimately inform clinical prediction at the individual level.
Collapse
Affiliation(s)
- Rotem Dan
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Alexis E Whitton
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Michael T Treadway
- Department of Psychology, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Ashleigh V Rutherford
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Poornima Kumar
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Manon L Ironside
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Roselinde H Kaiser
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Boyu Ren
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory for Psychiatric Biostatistics, McLean Hospital, Belmont, MA, USA
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Qian S, Yang Q, Cai C, Dong J, Cai S. Spatial-Temporal Characteristics of Brain Activity in Autism Spectrum Disorder Based on Hidden Markov Model and Dynamic Graph Theory: A Resting-State fMRI Study. Brain Sci 2024; 14:507. [PMID: 38790485 PMCID: PMC11118919 DOI: 10.3390/brainsci14050507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder. Functional magnetic resonance imaging (fMRI) can be used to measure the temporal correlation of blood-oxygen-level-dependent (BOLD) signals in the brain to assess the brain's intrinsic connectivity and capture dynamic changes in the brain. In this study, the hidden Markov model (HMM) and dynamic graph (DG) theory are used to study the spatial-temporal characteristics and dynamics of brain networks based on dynamic functional connectivity (DFC). By using HMM, we identified three typical brain states for ASD and healthy control (HC). Furthermore, we explored the correlation between HMM time-varying properties and clinical autism scale scores. Differences in brain topological characteristics and dynamics between ASD and HC were compared by DG analysis. The experimental results indicate that ASD is more inclined to enter a strongly connected HMM brain state, leading to the isolation of brain networks and alterations in the topological characteristics of brain networks, such as default mode network (DMN), ventral attention network (VAN), and visual network (VN). This work suggests that using different data-driven methods based on DFC to study brain network dynamics would have better information complementarity, which can provide a new direction for the extraction of neuro-biomarkers in the early diagnosis of ASD.
Collapse
Affiliation(s)
| | | | | | | | - Shuhui Cai
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China; (S.Q.); (Q.Y.); (C.C.); (J.D.)
| |
Collapse
|
10
|
Bandyopadhyay S, Peddi S, Sarma M, Samanta D. Decoding Autism: Uncovering patterns in brain connectivity through sparsity analysis with rs-fMRI data. J Neurosci Methods 2024; 405:110100. [PMID: 38431227 DOI: 10.1016/j.jneumeth.2024.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND In the realm of neuro-disorders, precise diagnosis and treatment rely heavily on objective imaging-based biomarker identification. This study employs a sparsity approach on resting-state fMRI to discern relevant brain region connectivity for predicting Autism. NEW METHOD The proposed methodology involves four key steps: (1) Utilizing three probabilistic brain atlases to extract functionally homogeneous brain regions from fMRI data. (2) Employing a hybrid approach of Graphical Lasso and Akaike Information Criteria to optimize sparse inverse covariance matrices for representing the brain functional connectivity. (3) Employing statistical techniques to scrutinize functional brain structures in Autism and Control subjects. (4) Implementing both autoencoder-based feature extraction and entire feature-based approach coupled with AI-based learning classifiers to predict Autism. RESULTS The ensemble classifier with the extracted feature set achieves a classification accuracy of 84.7% ± 0.3% using the MSDL atlas. Meanwhile, the 1D-CNN model, employing all features, exhibits superior classification accuracy of 88.6% ± 1.7% with the Smith 2009 (rsn70) atlas. COMPARISON WITH EXISTING METHOD (S) The proposed methodology outperforms the conventional correlation-based functional connectivity approach with a notably high prediction accuracy of more than 88%, whereas considering all direct and noisy indirect region-based functional connectivity, the traditional methods bound the prediction accuracy within 70% to 79%. CONCLUSIONS This study underscores the potential of sparsity-based FC analysis using rs-fMRI data as a prognostic biomarker for detecting Autism.
Collapse
Affiliation(s)
- Soham Bandyopadhyay
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, India.
| | - Santhoshkumar Peddi
- Computer Science and Engineering, Indian Institute of Technology Kharagpur, India
| | - Monalisa Sarma
- Subir Chowdhury School of Quality and Reliability, Indian Institute of Technology Kharagpur, India
| | - Debasis Samanta
- Computer Science and Engineering, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
11
|
Shan X, Uddin LQ, Ma R, Xu P, Xiao J, Li L, Huang X, Feng Y, He C, Chen H, Duan X. Disentangling the Individual-Shared and Individual-Specific Subspace of Altered Brain Functional Connectivity in Autism Spectrum Disorder. Biol Psychiatry 2024; 95:870-880. [PMID: 37741308 DOI: 10.1016/j.biopsych.2023.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Despite considerable effort toward understanding the neural basis of autism spectrum disorder (ASD) using case-control analyses of resting-state functional magnetic resonance imaging data, findings are often not reproducible, largely due to biological and clinical heterogeneity among individuals with ASD. Thus, exploring the individual-shared and individual-specific altered functional connectivity (AFC) in ASD is important to understand this complex, heterogeneous disorder. METHODS We considered 254 individuals with ASD and 295 typically developing individuals from the Autism Brain Imaging Data Exchange to explore the individual-shared and individual-specific subspaces of AFC. First, we computed AFC matrices of individuals with ASD compared with typically developing individuals. Then, common orthogonal basis extraction was used to project AFC of ASD onto 2 subspaces: an individual-shared subspace, which represents altered connectivity patterns shared across ASD, and an individual-specific subspace, which represents the remaining individual characteristics after eliminating the individual-shared altered connectivity patterns. RESULTS Analysis yielded 3 common components spanning the individual-shared subspace. Common components were associated with differences of functional connectivity at the group level. AFC in the individual-specific subspace improved the prediction of clinical symptoms. The default mode network-related and cingulo-opercular network-related magnitudes of AFC in the individual-specific subspace were significantly correlated with symptom severity in social communication deficits and restricted, repetitive behaviors in ASD. CONCLUSIONS Our study decomposed AFC of ASD into individual-shared and individual-specific subspaces, highlighting the importance of capturing and capitalizing on individual-specific brain connectivity features for dissecting heterogeneity. Our analysis framework provides a blueprint for parsing heterogeneity in other prevalent neurodevelopmental conditions.
Collapse
Affiliation(s)
- Xiaolong Shan
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Rui Ma
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Pengfei Xu
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinming Xiao
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Li
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyue Huang
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Feng
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Changchun He
- College of Blockchain Industry, Chengdu University of Information Technology, Chengdu, China
| | - Huafu Chen
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xujun Duan
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
12
|
Liu Y, Cui M, Gao X, Yang H, Chen H, Guan B, Ma X. Structural connectome combining DTI features predicts postoperative language decline and its recovery in glioma patients. Eur Radiol 2024; 34:2759-2771. [PMID: 37736802 DOI: 10.1007/s00330-023-10212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVES A decline in language function is a common complication after glioma surgery, affecting patients' quality of life and survival. This study predicts the postoperative decline in language function and whether it can be recovered based on the preoperative white matter structural network. MATERIALS AND METHODS Eighty-one right-handed patients with glioma involving the left hemisphere were retrospectively included. Their language function was assessed using the Western Aphasia Battery before and 1 week and 3 months after surgery. Structural connectome combining DTI features was selected to predict postoperative language decline and recovery. Nested cross-validation was used to optimize the models, evaluate the prediction performance of the models, and identify the most predictive features. RESULTS Five, seven, and seven features were finally selected as the predictive features in each model and used to establish predictive models for postoperative language decline (1 week after surgery), long-term language decline (3 months after surgery), and language recovery, respectively. The overall accuracy of the three models in nested cross-validation and overall area under the receiver operating characteristic curve were 0.840, 0.790, and 0.867, and 0.841, 0.778, and 0.901, respectively. CONCLUSION We used machine learning algorithms to establish models to predict whether the language function of glioma patients will decline after surgery and whether postoperative language deficit can recover, which may help improve the development of treatment strategies. The difference in features in the non-language decline or the language recovery group may reflect the structural basis for the protection and compensation of language function in gliomas. CLINICAL RELEVANCE STATEMENT Models can predict the postoperative language decline and whether it can recover in glioma patients, possibly improving the development of treatment strategies. The difference in selected features may reflect the structural basis for the protection and compensation of language function. KEY POINTS • Structural connectome combining diffusion tensor imaging features predicted glioma patients' language decline after surgery. • Structural connectome combining diffusion tensor imaging features predicted language recovery of glioma patients with postoperative language disorder. • Diffusion tensor imaging and connectome features related to language function changes imply plastic brain regions and connections.
Collapse
Affiliation(s)
- Yukun Liu
- Department of Neurosurgery, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Meng Cui
- Department of Emergency Medicine, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
| | - Xin Gao
- Department of Neurosurgery, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, China
| | - Hui Yang
- Department of Neurosurgery, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, China
| | - Hewen Chen
- Department of Neurosurgery, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, China
| | - Bing Guan
- Health Economics Department, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Xiaodong Ma
- Department of Neurosurgery, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
13
|
Feng Q, Ren Z, Wei D, Liu C, Wang X, Li X, Tie B, Tang S, Qiu J. Connectome-based predictive modeling of Internet addiction symptomatology. Soc Cogn Affect Neurosci 2024; 19:nsae007. [PMID: 38334691 PMCID: PMC10878364 DOI: 10.1093/scan/nsae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/14/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Internet addiction symptomatology (IAS) is characterized by persistent and involuntary patterns of compulsive Internet use, leading to significant impairments in both physical and mental well-being. Here, a connectome-based predictive modeling approach was applied to decode IAS from whole-brain resting-state functional connectivity in healthy population. The findings showed that IAS could be predicted by the functional connectivity between prefrontal cortex with the cerebellum and limbic lobe and connections of the occipital lobe with the limbic lobe and insula lobe. The identified edges associated with IAS exhibit generalizability in predicting IAS within an independent sample. Furthermore, we found that the unique contributing network, which predicted IAS in contrast to the prediction networks of alcohol use disorder symptomatology (the range of symptoms and behaviors associated with alcohol use disorder), prominently comprised connections involving the occipital lobe and other lobes. The current data-driven approach provides the first evidence of the predictive brain features of IAS based on the organization of intrinsic brain networks, thus advancing our understanding of the neurobiological basis of Internet addiction disorder (IAD) susceptibility, and may have implications for the timely intervention of people potentially at risk of IAD.
Collapse
Affiliation(s)
- Qiuyang Feng
- Center for Studies of Education and Psychology of Ethnic Minorities in Southwest China, Southwest University (SWU), Chongqing 400715, China
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
| | - Zhiting Ren
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Cheng Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Xueyang Wang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Xianrui Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Bijie Tie
- Center for Studies of Education and Psychology of Ethnic Minorities in Southwest China, Southwest University (SWU), Chongqing 400715, China
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
| | - Shuang Tang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality, Beijing Normal University, Beijing 100000, China
| |
Collapse
|
14
|
Badrulhisham F, Pogatzki-Zahn E, Segelcke D, Spisak T, Vollert J. Machine learning and artificial intelligence in neuroscience: A primer for researchers. Brain Behav Immun 2024; 115:470-479. [PMID: 37972877 DOI: 10.1016/j.bbi.2023.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Artificial intelligence (AI) is often used to describe the automation of complex tasks that we would attribute intelligence to. Machine learning (ML) is commonly understood as a set of methods used to develop an AI. Both have seen a recent boom in usage, both in scientific and commercial fields. For the scientific community, ML can solve bottle necks created by complex, multi-dimensional data generated, for example, by functional brain imaging or *omics approaches. ML can here identify patterns that could not have been found using traditional statistic approaches. However, ML comes with serious limitations that need to be kept in mind: their tendency to optimise solutions for the input data means it is of crucial importance to externally validate any findings before considering them more than a hypothesis. Their black-box nature implies that their decisions usually cannot be understood, which renders their use in medical decision making problematic and can lead to ethical issues. Here, we present an introduction for the curious to the field of ML/AI. We explain the principles as commonly used methods as well as recent methodological advancements before we discuss risks and what we see as future directions of the field. Finally, we show practical examples of neuroscience to illustrate the use and limitations of ML.
Collapse
Affiliation(s)
| | - Esther Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Daniel Segelcke
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Tamas Spisak
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, Germany; Center for Translational Neuro- and Behavioral Sciences, Department of Neurology, University Medicine Essen, Essen, Germany
| | - Jan Vollert
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom; Pain Research, Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
| |
Collapse
|
15
|
Park S, Thomson P, Kiar G, Castellanos FX, Milham MP, Bernhardt B, Di Martino A. Delineating a Pathway for the Discovery of Functional Connectome Biomarkers of Autism. ADVANCES IN NEUROBIOLOGY 2024; 40:511-544. [PMID: 39562456 DOI: 10.1007/978-3-031-69491-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The promise of individually tailored care for autism has driven efforts to establish biomarkers. This chapter appraises the state of precision-medicine research focused on biomarkers based on the functional brain connectome. This work is grounded on abundant evidence supporting the brain dysconnection model of autism and the advantages of resting-state functional MRI (R-fMRI) for studying the brain in vivo. After considering biomarker requirements of consistency and clinical relevance, we provide a scoping review of R-fMRI studies of individual prediction in autism. In the past 10 years, responding to the availability of open data through the Autism Brain Imaging Data Exchange, machine learning studies have surged. Nearly all have focused on diagnostic label classification. These efforts have shown that autism prediction is feasible using functional connectome markers, with accuracy reported well above chance. In parallel, emerging approaches more directly addressing autism heterogeneity are paving the way for much-needed biomarkers of longitudinal outcome and treatment response. We conclude with key challenges to be addressed by the next generation of studies.
Collapse
Affiliation(s)
- Shinwon Park
- Child Mind Institute, Autism Center, New York, NY, USA
| | | | - Gregory Kiar
- Child Mind Institute, Center for Data Analytics, Innovation, and Rigor, New York, NY, USA
| | - F Xavier Castellanos
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Michael P Milham
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Child Mind Institute, Center for the Developing Brain, New York, NY, USA
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
16
|
Ma X, Zhou W, Zheng H, Ye S, Yang B, Wang L, Wang M, Dong GH. Connectome-based prediction of the severity of autism spectrum disorder. PSYCHORADIOLOGY 2023; 3:kkad027. [PMID: 38666105 PMCID: PMC10917386 DOI: 10.1093/psyrad/kkad027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 04/28/2024]
Abstract
Background Autism spectrum disorder (ASD) is characterized by social and behavioural deficits. Current diagnosis relies on behavioural criteria, but machine learning, particularly connectome-based predictive modelling (CPM), offers the potential to uncover neural biomarkers for ASD. Objective This study aims to predict the severity of ASD traits using CPM and explores differences among ASD subtypes, seeking to enhance diagnosis and understanding of ASD. Methods Resting-state functional magnetic resonance imaging data from 151 ASD patients were used in the model. CPM with leave-one-out cross-validation was conducted to identify intrinsic neural networks that predict Autism Diagnostic Observation Schedule (ADOS) scores. After the model was constructed, it was applied to independent samples to test its replicability (172 ASD patients) and specificity (36 healthy control participants). Furthermore, we examined the predictive model across different aspects of ASD and in subtypes of ASD to understand the potential mechanisms underlying the results. Results The CPM successfully identified negative networks that significantly predicted ADOS total scores [r (df = 150) = 0.19, P = 0.008 in all patients; r (df = 104) = 0.20, P = 0.040 in classic autism] and communication scores [r (df = 150) = 0.22, P = 0.010 in all patients; r (df = 104) = 0.21, P = 0.020 in classic autism]. These results were reproducible across independent databases. The networks were characterized by enhanced inter- and intranetwork connectivity associated with the occipital network (OCC), and the sensorimotor network (SMN) also played important roles. Conclusions A CPM based on whole-brain resting-state functional connectivity can predicted the severity of ASD. Large-scale networks, including the OCC and SMN, played important roles in the predictive model. These findings may provide new directions for the diagnosis and intervention of ASD, and maybe could be the targets in novel interventions.
Collapse
Affiliation(s)
- Xuefeng Ma
- Department of Psychology, Yunnan Normal University, Kunming, Yunnan Province 650500, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China
| | - Weiran Zhou
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Shuer Ye
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Bo Yang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China
| | - Lingxiao Wang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China
| | - Min Wang
- Department of Psychology, Yunnan Normal University, Kunming, Yunnan Province 650500, China
| | - Guang-Heng Dong
- Department of Psychology, Yunnan Normal University, Kunming, Yunnan Province 650500, China
| |
Collapse
|
17
|
Lei D, Zhang T, Wu Y, Li W, Li X. Autism spectrum disorder diagnosis based on deep unrolling-based spatial constraint representation. Med Biol Eng Comput 2023; 61:2829-2842. [PMID: 37486440 DOI: 10.1007/s11517-023-02859-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/25/2023] [Indexed: 07/25/2023]
Abstract
Accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective treatment and prognosis. Functional brain networks (FBNs) constructed from functional magnetic resonance imaging (fMRI) have become a popular tool for ASD diagnosis. However, existing model-driven approaches used to construct FBNs lack the ability to capture potential non-linear relationships between data and labels. Moreover, most existing studies treat the FBNs construction and disease classification as separate steps, leading to large inter-subject variability in the estimated FBNs and reducing the statistical power of subsequent group comparison. To address these limitations, we propose a new approach to FBNs construction called the deep unrolling-based spatial constraint representation (DUSCR) model and integrate it with a convolutional classifier to create an end-to-end framework for ASD recognition. Specifically, the model spatial constraint representation (SCR) is solved using a proximal gradient descent algorithm, and we unroll it into deep networks using the deep unrolling algorithm. Classification is then performed using a convolutional prototype learning model. We evaluated the effectiveness of the proposed method on the ABIDE I dataset and observed a significant improvement in model performance and classification accuracy. The resting state fMRI images are preprocessed into time series data and 3D coordinates of each region of interest. The data are fed into the DUSCR model, a model for building functional brain networks using deep learning instead of traditional models, that we propose, and then the outputs are fed into the convolutional classifier with prototype learning to determine whether the patient has ASD disease.
Collapse
Affiliation(s)
- Dajiang Lei
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Tao Zhang
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yue Wu
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Weisheng Li
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xinwei Li
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China.
| |
Collapse
|
18
|
Pizzagalli D, Whitton A, Treadway M, Rutherford A, Kumar P, Ironside M, Kaiser R, Ren B, Dan R. Brain-based graph-theoretical predictive modeling to map the trajectory of transdiagnostic symptoms of anhedonia, impulsivity, and hypomania from the human functional connectome. RESEARCH SQUARE 2023:rs.3.rs-3168186. [PMID: 37841877 PMCID: PMC10571608 DOI: 10.21203/rs.3.rs-3168186/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Clinical assessments often fail to discriminate between unipolar and bipolar depression and identify individuals who will develop future (hypo)manic episodes. To address this challenge, we developed a brain-based graph-theoretical predictive model (GPM) to prospectively map symptoms of anhedonia, impulsivity, and (hypo)mania. Individuals seeking treatment for mood disorders (n = 80) underwent an fMRI scan, including (i) resting-state and (ii) a reinforcement-learning (RL) task. Symptoms were assessed at baseline as well as at 3- and 6-month follow-ups. A whole-brain functional connectome was computed for each fMRI task, and the GPM was applied for symptom prediction using cross-validation. Prediction performance was evaluated by comparing the GPM's mean square error (MSE) to that of a corresponding null model. In addition, the GPM was compared to the connectome-based predictive modeling (CPM). Cross-sectionally, the GPM predicted anhedonia from the global efficiency (a graph theory metric that quantifies information transfer across the connectome) during the RL task, and impulsivity from the centrality (a metric that captures the importance of a region for information spread) of the left anterior cingulate cortex during resting-state. At 6-month follow-up, the GPM predicted (hypo)manic symptoms from the local efficiency of the left nucleus accumbens during the RL task and anhedonia from the centrality of the left caudate during resting-state. Notably, the GPM outperformed the CPM, and GPM derived from individuals with unipolar disorders predicted anhedonia and impulsivity symptoms for individuals with bipolar disorders, highlighting transdiagnostic generalization. Taken together, across DSM mood diagnoses, efficiency and centrality of the reward circuit predicted symptoms of anhedonia, impulsivity, and (hypo)mania, cross-sectionally and prospectively. The GPM is an innovative modeling approach that may ultimately inform clinical prediction at the individual level. ClinicalTrials.gov identifier: NCT01976975.
Collapse
Affiliation(s)
| | - Alexis Whitton
- Black Dog Institute, University of New South Wales, Sydney
| | | | | | | | | | | | - Boyu Ren
- McLean Hospital / Harvard Medical School
| | - Rotem Dan
- McLean Hospital / Harvard Medical School
| |
Collapse
|
19
|
Horien C, Greene AS, Shen X, Fortes D, Brennan-Wydra E, Banarjee C, Foster R, Donthireddy V, Butler M, Powell K, Vernetti A, Mandino F, O’Connor D, Lake EMR, McPartland JC, Volkmar FR, Chun M, Chawarska K, Rosenberg MD, Scheinost D, Constable RT. A generalizable connectome-based marker of in-scan sustained attention in neurodiverse youth. Cereb Cortex 2023; 33:6320-6334. [PMID: 36573438 PMCID: PMC10183743 DOI: 10.1093/cercor/bhac506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 12/29/2022] Open
Abstract
Difficulty with attention is an important symptom in many conditions in psychiatry, including neurodiverse conditions such as autism. There is a need to better understand the neurobiological correlates of attention and leverage these findings in healthcare settings. Nevertheless, it remains unclear if it is possible to build dimensional predictive models of attentional state in a sample that includes participants with neurodiverse conditions. Here, we use 5 datasets to identify and validate functional connectome-based markers of attention. In dataset 1, we use connectome-based predictive modeling and observe successful prediction of performance on an in-scan sustained attention task in a sample of youth, including participants with a neurodiverse condition. The predictions are not driven by confounds, such as head motion. In dataset 2, we find that the attention network model defined in dataset 1 generalizes to predict in-scan attention in a separate sample of neurotypical participants performing the same attention task. In datasets 3-5, we use connectome-based identification and longitudinal scans to probe the stability of the attention network across months to years in individual participants. Our results help elucidate the brain correlates of attentional state in youth and support the further development of predictive dimensional models of other clinically relevant phenotypes.
Collapse
Affiliation(s)
- Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
- MD-PhD Program, Yale School of Medicine, New Haven, CT, United States
| | - Abigail S Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
- MD-PhD Program, Yale School of Medicine, New Haven, CT, United States
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Diogo Fortes
- Yale Child Study Center, New Haven, CT, United States
| | | | | | - Rachel Foster
- Yale Child Study Center, New Haven, CT, United States
| | | | | | - Kelly Powell
- Yale Child Study Center, New Haven, CT, United States
| | | | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - David O’Connor
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - James C McPartland
- Yale Child Study Center, New Haven, CT, United States
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Fred R Volkmar
- Yale Child Study Center, New Haven, CT, United States
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Marvin Chun
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Katarzyna Chawarska
- Yale Child Study Center, New Haven, CT, United States
- Department of Statistics and Data Science, Yale University, New Haven, CT, United States
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, United States
| | - Monica D Rosenberg
- Department of Psychology, University of Chicago, Chicago, IL, United States
- Neuroscience Institute, University of Chicago, Chicago, IL, United States
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
- Yale Child Study Center, New Haven, CT, United States
- Department of Statistics and Data Science, Yale University, New Haven, CT, United States
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
20
|
Itahashi T, Yamashita A, Takahara Y, Yahata N, Aoki YY, Fujino J, Yoshihara Y, Nakamura M, Aoki R, Ohta H, Sakai Y, Takamura M, Ichikawa N, Okada G, Okada N, Kasai K, Tanaka SC, Imamizu H, Kato N, Okamoto Y, Takahashi H, Kawato M, Yamashita O, Hashimoto RI. Generalizable neuromarker for autism spectrum disorder across imaging sites and developmental stages: A multi-site study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.26.534053. [PMID: 37034620 PMCID: PMC10081283 DOI: 10.1101/2023.03.26.534053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Autism spectrum disorder (ASD) is a lifelong condition, and its underlying biological mechanisms remain elusive. The complexity of various factors, including inter-site and development-related differences, makes it challenging to develop generalizable neuroimaging-based biomarkers for ASD. This study used a large-scale, multi-site dataset of 730 Japanese adults to develop a generalizable neuromarker for ASD across independent sites (U.S., Belgium, and Japan) and different developmental stages (children and adolescents). Our adult ASD neuromarker achieved successful generalization for the US and Belgium adults (area under the curve [AUC] = 0.70) and Japanese adults (AUC = 0.81). The neuromarker demonstrated significant generalization for children (AUC = 0.66) and adolescents (AUC = 0.71; all P < 0.05 , family-wise-error corrected). We identified 141 functional connections (FCs) important for discriminating individuals with ASD from TDCs. These FCs largely centered on social brain regions such as the amygdala, hippocampus, dorsomedial and ventromedial prefrontal cortices, and temporal cortices. Finally, we mapped schizophrenia (SCZ) and major depressive disorder (MDD) onto the biological axis defined by the neuromarker and explored the biological continuity of ASD with SCZ and MDD. We observed that SCZ, but not MDD, was located proximate to ASD on the biological dimension defined by the ASD neuromarker. The successful generalization in multifarious datasets and the observed relations of ASD with SCZ on the biological dimensions provide new insights for a deeper understanding of ASD.
Collapse
Affiliation(s)
- Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ayumu Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuji Takahara
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Laboratory for Drug Discovery and Disease Research, SHIONOGI & CO., LTD, Osaka, Japan
| | - Noriaki Yahata
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuta Y. Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry, Aoki Clinic, Tokyo, Japan
| | - Junya Fujino
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yujiro Yoshihara
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoaki Nakamura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ryuta Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Haruhisa Ohta
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yuki Sakai
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
- Department of Neurology, Shimane University, Shimane, Japan
| | - Naho Ichikawa
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
- UTokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Tokyo, Japan
| | - Saori C. Tanaka
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroshi Imamizu
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuo Kawato
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- XNef Incorporation, Kyoto, Japan
| | - Okito Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- RIKEN, Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ryu-ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Barik K, Watanabe K, Bhattacharya J, Saha G. Functional connectivity based machine learning approach for autism detection in young children using MEG signals. J Neural Eng 2023; 20. [PMID: 36812588 DOI: 10.1088/1741-2552/acbe1f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Objective.Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder, and identifying early autism biomarkers plays a vital role in improving detection and subsequent life outcomes. This study aims to reveal hidden biomarkers in the patterns of functional brain connectivity as recorded by the neuro-magnetic brain responses in children with ASD.Approach.We recorded resting-state magnetoencephalogram signals from thirty children with ASD (4-7 years) and thirty age and gender-matched typically developing (TD) children. We used a complex coherency-based functional connectivity analysis to understand the interactions between different brain regions of the neural system. The work characterizes the large-scale neural activity at different brain oscillations using functional connectivity analysis and assesses the classification performance of coherence-based (COH) measures for autism detection in young children. A comparative study has also been carried out on COH-based connectivity networks both region-wise and sensor-wise to understand frequency-band-specific connectivity patterns and their connections with autism symptomatology. We used artificial neural network (ANN) and support vector machine (SVM) classifiers in the machine learning framework with a five-fold CV technique.Main results.To classify ASD from TD children, the COH connectivity feature yields the highest classification accuracy of 91.66% in the high gamma (50-100 Hz) frequency band. In region-wise connectivity analysis, the second highest performance is in the delta band (1-4 Hz) after the gamma band. Combining the delta and gamma band features, we achieved a classification accuracy of 95.03% and 93.33% in the ANN and SVM classifiers, respectively. Using classification performance metrics and further statistical analysis, we show that ASD children demonstrate significant hyperconnectivity.Significance.Our findings support the weak central coherency theory in autism detection. Further, despite its lower complexity, we show that region-wise COH analysis outperforms the sensor-wise connectivity analysis. Altogether, these results demonstrate the functional brain connectivity patterns as an appropriate biomarker of autism in young children.
Collapse
Affiliation(s)
- Kasturi Barik
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Katsumi Watanabe
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Joydeep Bhattacharya
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | - Goutam Saha
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
22
|
Li Q, Weiland RF, Konvalinka I, Mansvelder HD, Andersen TS, Smit DJA, Begeer S, Linkenkaer-Hansen K. Intellectually able adults with autism spectrum disorder show typical resting-state EEG activity. Sci Rep 2022; 12:19016. [PMID: 36347938 PMCID: PMC9643446 DOI: 10.1038/s41598-022-22597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
There is broad interest in discovering quantifiable physiological biomarkers for psychiatric disorders to aid diagnostic assessment. However, finding biomarkers for autism spectrum disorder (ASD) has proven particularly difficult, partly due to high heterogeneity. Here, we recorded five minutes eyes-closed rest electroencephalography (EEG) from 186 adults (51% with ASD and 49% without ASD) and investigated the potential of EEG biomarkers to classify ASD using three conventional machine learning models with two-layer cross-validation. Comprehensive characterization of spectral, temporal and spatial dimensions of source-modelled EEG resulted in 3443 biomarkers per recording. We found no significant group-mean or group-variance differences for any of the EEG features. Interestingly, we obtained validation accuracies above 80%; however, the best machine learning model merely distinguished ASD from the non-autistic comparison group with a mean balanced test accuracy of 56% on the entirely unseen test set. The large drop in model performance between validation and testing, stress the importance of rigorous model evaluation, and further highlights the high heterogeneity in ASD. Overall, the lack of significant differences and weak classification indicates that, at the group level, intellectually able adults with ASD show remarkably typical resting-state EEG.
Collapse
Affiliation(s)
- Qianliang Li
- Section for Cognitive Systems, Department of Applied Mathematics and Computer Science (DTU Compute), Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Ricarda F Weiland
- Faculty of Behavioural and Movement Sciences, Department of Clinical- Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, 1081 HV, Amsterdam, The Netherlands
| | - Ivana Konvalinka
- Section for Cognitive Systems, Department of Applied Mathematics and Computer Science (DTU Compute), Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Tobias S Andersen
- Section for Cognitive Systems, Department of Applied Mathematics and Computer Science (DTU Compute), Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Dirk J A Smit
- Amsterdam Neuroscience, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, 1012 WX, Amsterdam, The Netherlands
| | - Sander Begeer
- Faculty of Behavioural and Movement Sciences, Department of Clinical- Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, 1081 HV, Amsterdam, The Netherlands
| | - Klaus Linkenkaer-Hansen
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|