1
|
Luo PX, Serna Godoy A, Zakharenkov HC, Vang N, Wright EC, Balantac TA, Archdeacon SC, Black AM, Lake AA, Ramirez AV, Lozier LE, Perez MD, Bhangal I, Desta NM, Trainor BC. Hypocretin in the nucleus accumbens shell modulates social approach in female but not male California mice. Neuropsychopharmacology 2024; 49:2000-2010. [PMID: 39117901 PMCID: PMC11480414 DOI: 10.1038/s41386-024-01937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
The hypocretin (Hcrt) system modulates arousal and anxiety-related behaviors and has been considered as a novel treatment target for stress-related affective disorders. We examined the effects of Hcrt acting in the nucleus accumbens shell (NAcSh) and anterodorsal bed nucleus of the stria terminalis (adBNST) on social behavior in male and female California mice (Peromyscus californicus). In female but not male California mice, infusion of Hcrt1 into NAcSh decreased social approach. Weak effects of Hcrt1 on social vigilance were observed in both females and males. No behavioral effects of Hcrt1 infused into the adBNST were observed. Analyses of sequencing data from California mice and Mus musculus NAc showed that Hcrtr2 was more abundant than Hcrtr1, so we infused the selective Hcrt receptor 2 antagonist into the NAcSh, which increased social approach in females previously exposed to social defeat. A calcium imaging study in the NAcSh of females before and after stress exposure showed that neural activity increased immediately following the expression of social avoidance but not during freezing behavior. This observation is consistent with previous studies that identified populations of neurons in the NAc that drive avoidance. Intriguingly, calcium transients were not affected by stress. These data suggest that hypocretin acting in the NAcSh plays a key role in modulating stress-induced social avoidance.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California, Davis, CA, USA
| | | | | | - Nou Vang
- Department of Psychology, University of California, Davis, CA, USA
| | - Emily C Wright
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | | | - Alexis M Black
- Department of Psychology, University of California, Davis, CA, USA
| | - Alyssa A Lake
- Department of Psychology, University of California, Davis, CA, USA
| | - Alison V Ramirez
- Department of Psychology, University of California, Davis, CA, USA
| | - Lauren E Lozier
- Department of Psychology, University of California, Davis, CA, USA
| | - Melvin D Perez
- Department of Psychology, University of California, Davis, CA, USA
| | - Irvin Bhangal
- Department of Psychology, University of California, Davis, CA, USA
| | - Nile M Desta
- Department of Psychology, University of California, Davis, CA, USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Zhong X, Chen Y, Chen W, Liu Y, Gui S, Pu J, Wang D, He Y, Chen X, Chen X, Qiao R, Xie P. Identification of Potential Biomarkers for Major Depressive Disorder: Based on Integrated Bioinformatics and Clinical Validation. Mol Neurobiol 2024; 61:10355-10364. [PMID: 38722514 DOI: 10.1007/s12035-024-04217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/06/2024] [Indexed: 11/24/2024]
Abstract
Major depressive disorder (MDD) is a severe mental illness characterized by a lack of objective biomarkers. Mounting evidence suggests there are extensive transcriptional molecular changes in the prefrontal cortex (PFC) of individuals with MDD. However, it remains unclear whether there are specific genes that are consistently altered and possess diagnostic power. In this study, we conducted a systematic search of PFC datasets of MDD patients from the Gene Expression Omnibus database. We calculated the differential expression of genes (DEGs) and identified robust DEGs using the RRA and MetaDE methods. Furthermore, we validated the consistently altered genes and assessed their diagnostic power through enzyme-linked immunosorbent assay experiments in our clinical blood cohort. Additionally, we evaluated the diagnostic power of hub DEGs in independent public blood datasets. We obtained eight PFC datasets, comprising 158 MDD patients and 263 healthy controls, and identified a total of 1468 unique DEGs. Through integrated analysis, we identified 290 robustly altered DEGs. Among these, seven hub DEGs (SLC1A3, PON2, AQP1, EFEMP1, GJA1, CENPD, HSD11B1) were significantly down-regulated at the protein level in our clinical blood cohort. Moreover, these hub DEGs exhibited a negative correlation with the Hamilton Depression Scale score (P < 0.05). Furthermore, these hub DEGs formed a panel with promising diagnostic power in three independent public blood datasets (average AUCs of 0.85) and our clinical blood cohort (AUC of 0.92). The biomarker panel composed of these genes demonstrated promising diagnostic efficacy for MDD and serves as a useful tool for its diagnosis.
Collapse
Affiliation(s)
- Xiaogang Zhong
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Yue Chen
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weiyi Chen
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Yong He
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Xiang Chen
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaopeng Chen
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Renjie Qiao
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Peng Xie
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China.
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- The Jin Feng Laboratory, Chongqing, 401329, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Hong Y, Hu J, Zhang S, Liu J, Yan F, Yang H, Hu H. Integrative analysis identifies region- and sex-specific gene networks and Mef2c as a mediator of anxiety-like behavior. Cell Rep 2024; 43:114455. [PMID: 38990717 DOI: 10.1016/j.celrep.2024.114455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/20/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
The molecular mechanisms underlying multi-brain region origins and sexual dimorphism of anxiety remain unclear. Here, we leverage large-scale transcriptomics from seven brain regions in mouse models of anxiety and extensive experiments to dissect brain-region- and sex-specific gene networks. We identify 4,840 genes with sex-specific expression alterations across seven brain regions, organized into ten network modules with sex-biased expression patterns. Modular analysis prioritizes 86 sex-specific mediators of anxiety susceptibility, including myocyte-specific enhancer factor 2c (Mef2c) in the CA3 region of male mice. Mef2c expression is decreased in the pyramidal neurons (PyNs) of susceptible male mice. Up-regulating Mef2c in CA3 PyNs significantly alleviates anxiety-like behavior, whereas down-regulating Mef2c induces anxiety-like behavior in male mice. The anxiolytic effect of Mef2c up-regulation is associated with enhanced neuronal excitability and synaptic transmission. In summary, this study uncovers brain-region- and sex-specific networks and identifies Mef2c in CA3 PyNs as a critical mediator of anxiety in male mice.
Collapse
Affiliation(s)
- Yizhou Hong
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiameng Hu
- School of Life Science and Technology, Chongqing Innovation Institute of China Pharmaceutical University, China Pharmaceutical University, Nanjing, China
| | - Shiya Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiaxin Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Haiyang Hu
- School of Life Science and Technology, Chongqing Innovation Institute of China Pharmaceutical University, China Pharmaceutical University, Nanjing, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Zhang N, Zhao S, Ma Y, Xiao Z, Xue B, Dong Y, Wang Q, Xu H, Zhang X, Wang Y. Hyperexcitation of ovBNST CRF neurons during stress contributes to female-biased expression of anxiety-like avoidance behaviors. SCIENCE ADVANCES 2024; 10:eadk7636. [PMID: 38728397 PMCID: PMC11086623 DOI: 10.1126/sciadv.adk7636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Corticotropin releasing factor (CRF) network in the oval nucleus of bed nuclei of the stria terminalis (ovBNST) is generally indicated in stress, but its role in female-biased susceptibility to anxiety is unknown. Here, we established a female-biased stress paradigm. We found that the CRF release in ovBNST during stress showed female-biased pattern, and ovBNST CRF neurons were more prone to be hyperexcited in female mice during stress in both in vitro and in vivo studies. Moreover, optogenetic modulation to exchange the activation pattern of ovBNST CRF neurons during stress between female and male mice could reverse their susceptibility to anxiety. Last, CRF receptor type 1 (CRFR1) mediated the CRF-induced excitation of ovBNST CRF neurons and showed female-biased expression. Specific knockdown of the CRFR1 level in ovBNST CRF neurons in female or overexpression that in male could reverse their susceptibility to anxiety. Therefore, we identify that CRFR1-mediated hyperexcitation of ovBNST CRF neurons in female mice encode the female-biased susceptibility to anxiety.
Collapse
Affiliation(s)
- Na Zhang
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, China
| | - Sha Zhao
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yanqiao Ma
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Zhixin Xiao
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Bao Xue
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yuan Dong
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Qingyu Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Huamin Xu
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Xia Zhang
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Ying Wang
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
5
|
Gumusoglu SB, Kiel MD, Gugel A, Schickling BM, Weaver KR, Lauffer MC, Sullivan HR, Coulter KJ, Blaine BM, Kamal M, Zhang Y, Devor EJ, Santillan DA, Gantz SC, Santillan MK. Anti-angiogenic mechanisms and serotonergic dysfunction in the Rgs2 knockout model for the study of psycho-obstetric risk. Neuropsychopharmacology 2024; 49:864-875. [PMID: 37848733 PMCID: PMC10948883 DOI: 10.1038/s41386-023-01749-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Psychiatric and obstetric diseases are growing threats to public health and share high rates of co-morbidity. G protein-coupled receptor signaling (e.g., vasopressin, serotonin) may be a convergent psycho-obstetric risk mechanism. Regulator of G Protein Signaling 2 (RGS2) mutations increase risk for both the gestational disease preeclampsia and for depression. We previously found preeclampsia-like, anti-angiogenic obstetric phenotypes with reduced placental Rgs2 expression in mice. Here, we extend this to test whether conserved cerebrovascular and serotonergic mechanisms are also associated with risk for neurobiological phenotypes in the Rgs2 KO mouse. Rgs2 KO exhibited anxiety-, depression-, and hedonic-like behaviors. Cortical vascular density and vessel length decreased in Rgs2 KO; cortical and white matter thickness and cell densities were unchanged. In Rgs2 KO, serotonergic gene expression was sex-specifically changed (e.g., cortical Htr2a, Maoa increased in females but all serotonin targets unchanged or decreased in males); redox-related expression increased in paraventricular nucleus and aorta; and angiogenic gene expression was changed in male but not female cortex. Whole-cell recordings from dorsal raphe serotonin neurons revealed altered 5-HT1A receptor-dependent inhibitory postsynaptic currents (5-HT1A-IPSCs) in female but not male KO neurons. Additionally, serotonin transporter blockade by the SSRI sertraline increased the amplitude and time-to-peak of 5-HT1A-IPSCs in KO neurons to a greater extent than in WT neurons in females only. These results demonstrate behavioral, cerebrovascular, and sertraline hypersensitivity phenotypes in Rgs2 KOs, some of which are sex-specific. Disruptions may be driven by vascular and cell stress mechanisms linking the shared pathogenesis of psychiatric and obstetric disease to reveal future targets.
Collapse
Affiliation(s)
- Serena B Gumusoglu
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
| | - Michaela D Kiel
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Aleigha Gugel
- Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Brandon M Schickling
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Kaylee R Weaver
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Marisol C Lauffer
- Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
- Neural Circuits and Behavior Core, Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
| | - Hannah R Sullivan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Kaylie J Coulter
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Brianna M Blaine
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Mushroor Kamal
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Yuping Zhang
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Eric J Devor
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Donna A Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Stephanie C Gantz
- Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Mark K Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA.
| |
Collapse
|
6
|
Lake AA, Trainor BC. Leveraging the unique social organization of California mice to study circuit-specific effects of oxytocin on behavior. Horm Behav 2024; 160:105487. [PMID: 38281444 PMCID: PMC11391860 DOI: 10.1016/j.yhbeh.2024.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Oxytocin is a versatile neuropeptide that modulates many different forms of social behavior. Recent hypotheses pose that oxytocin enhances the salience of rewarding and aversive social experiences, and the field has been working to identify mechanisms that allow oxytocin to have diverse effects on behavior. Here we review studies conducted on the California mouse (Peromyscus californicus) that shed light on how oxytocin modulates social behavior following stressful experiences. In this species, both males and females exhibit high levels of aggression, which has facilitated the study of how social stress impacts both sexes. We review findings of short- and long-term effects of social stress on the reactivity of oxytocin neurons. We also consider the results of pharmacological studies which show that oxytocin receptors in the bed nucleus of the stria terminalis and nucleus accumbens have distinct but overlapping effects on social approach behaviors. These findings help explain how social stress can have different behavioral effects in males and females, and how oxytocin can have such divergent effects on behavior. Finally, we consider how new technological developments and innovative research programs take advantage of the unique social organization of California mice to address questions that can be difficult to study in conventional rodent model species. These new methods and questions have opened new avenues for studying the neurobiology of social behavior.
Collapse
Affiliation(s)
- Alyssa A Lake
- Department of Psychology, University of California, Davis, CA 95616, United States of America
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, United States of America.
| |
Collapse
|
7
|
Koskinen MK, Hovatta I. Genetic insights into the neurobiology of anxiety. Trends Neurosci 2023; 46:318-331. [PMID: 36828693 DOI: 10.1016/j.tins.2023.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
Anxiety and fear are evolutionarily conserved emotions that increase the likelihood of an organism surviving threatening situations. Anxiety and vigilance states are regulated by neural networks involving multiple brain regions. In anxiety disorders, this intricate regulatory system is disturbed, leading to excessive or prolonged anxiety or fear. Anxiety disorders have both genetic and environmental risk factors. Genetic research has the potential to identify specific genetic variants causally associated with specific phenotypes. In recent decades, genome-wide association studies (GWASs) have revealed variants predisposing to neuropsychiatric disorders, suggesting novel neurobiological pathways in the etiology of these disorders. Here, we review recent human GWASs of anxiety disorders, and genetic studies of anxiety-like behavior in rodent models. These studies are paving the way for a better understanding of the neurobiological mechanisms underlying anxiety disorders.
Collapse
Affiliation(s)
- Maija-Kreetta Koskinen
- SleepWell Research Program and Department of Psychology and Logopedics, Faculty of Medicine, PO Box 21, 00014, University of Helsinki, Helsinki, Finland
| | - Iiris Hovatta
- SleepWell Research Program and Department of Psychology and Logopedics, Faculty of Medicine, PO Box 21, 00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Mahmud A, Avramescu RG, Niu Z, Flores C. Awakening the dormant: Role of axonal guidance cues in stress-induced reorganization of the adult prefrontal cortex leading to depression-like behavior. Front Neural Circuits 2023; 17:1113023. [PMID: 37035502 PMCID: PMC10079902 DOI: 10.3389/fncir.2023.1113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Major depressive disorder (MDD) is a chronic and disabling disorder affecting roughly 280 million people worldwide. While multiple brain areas have been implicated, dysfunction of prefrontal cortex (PFC) circuitry has been consistently documented in MDD, as well as in animal models for stress-induced depression-like behavioral states. During brain development, axonal guidance cues organize neuronal wiring by directing axonal pathfinding and arborization, dendritic growth, and synapse formation. Guidance cue systems continue to be expressed in the adult brain and are emerging as important mediators of synaptic plasticity and fine-tuning of mature neural networks. Dysregulation or interference of guidance cues has been linked to depression-like behavioral abnormalities in rodents and MDD in humans. In this review, we focus on the emerging role of guidance cues in stress-induced changes in adult prefrontal cortex circuitry and in precipitating depression-like behaviors. We discuss how modulating axonal guidance cue systems could be a novel approach for precision medicine and the treatment of depression.
Collapse
Affiliation(s)
- Ashraf Mahmud
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | | | - Zhipeng Niu
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Cecilia Flores
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Department of Psychiatry, Neurology, and Neurosurgery, McGill University, Montréal, QC, Canada
| |
Collapse
|
9
|
Lei H, Shu H, Xiong R, He T, Lv J, Liu J, Pi G, Ke D, Wang Q, Yang X, Wang JZ, Yang Y. Poststress social isolation exerts anxiolytic effects by activating the ventral dentate gyrus. Neurobiol Stress 2023; 24:100537. [PMID: 37081927 PMCID: PMC10112178 DOI: 10.1016/j.ynstr.2023.100537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
After aversive stress, people either choose to return to their previously familiar social environment or tend to adopt temporary social withdrawal to buffer negative emotions. However, which behavior intervention is more appropriate and when remain elusive. Here, we unexpectedly found that stressed mice experiencing social isolation exhibited less anxiety than those experiencing social contact. Within the first 24 h after returning to their previous social environment, mice experienced acute restraint stress (ARS) displayed low social interest but simultaneously received excessive social disturbance from their cage mates, indicating a critical time window for social isolation to balance the conflict. To screen brain regions that were differentially activated between the poststress social isolation and poststress social contact groups, we performed ΔFosB immunostaining and found that ΔFosB + signals were remarkably increased in the vDG of poststress social isolation group compared with poststress social contact group. There were no significant differences between the two groups in the other anxiety- and social-related brain regions, such as prelimbic cortex, infralimbic cortex, nucleus accumbens, etc. These data indicate that vDG is closely related to the differential phenotypes between the poststress social isolation and poststress social contact groups. Electrophysiological recording, further, revealed a higher activity of vDG in the poststress social isolation group than the poststress social contact group. Chemogenetically inhibiting vDG excitatory neurons within the first 24 h after ARS completely abolished the anxiolytic effects of poststress social isolation, while stimulating vDG excitatory neurons remarkably reduced anxiety-like behaviors in the poststress social contact group. Together, these data suggest that the activity of vDG excitatory neurons is essential and sufficient to govern the anxiolytic effect of poststress social isolation. To the best of our knowledge, this is the first report to uncover a beneficial role of temporal social isolation in acute stress-induced anxiety. In addition to the critical 24-h time window, activation of vDG is crucial for ameliorating anxiety through poststress social isolation.
Collapse
Affiliation(s)
- Huiyang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingru Lv
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiale Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guilin Pi
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
- Corresponding author. Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Corresponding author.
| |
Collapse
|