1
|
Zheng S, Chen C. Auditory processing deficits in autism spectrum disorder: mechanisms, animal models, and therapeutic directions. J Neural Transm (Vienna) 2025; 132:781-791. [PMID: 40353881 DOI: 10.1007/s00702-025-02919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025]
Abstract
Auditory processing abnormalities are a prominent feature of Autism Spectrum Disorder (ASD), significantly affecting sensory integration, communication, and social interaction. This review delves into the neurobiological mechanisms underlying these deficits, including structural and functional disruptions in the auditory cortex, imbalances in excitatory and inhibitory signaling, and synaptic dysfunction. Genetic contributions from mutations in CNTNAP2, SHANK3, FMR1, and FOXP2 are explored, highlighting their roles in auditory abnormalities. Animal models, such as BTBRT+tf/J mice (BTBR) and valproic acid (VPA)-exposed rodents, provide critical insights into the sensory abnormalities observed in ASD. In addition, the review discusses current pharmacological strategies and emerging interventions targeting neurotransmitter systems and synaptic plasticity. Notably, future directions are emphasized, highlighting the need for integrated pharmacological and auditory-specific therapies to enhance sensory processing and communication outcomes in ASD. Overall, this review aims to bridge the gap between basic neurobiological research and clinical application, guiding future studies and therapeutic developments in ASD-related auditory processing deficits.
Collapse
Affiliation(s)
- Shuyu Zheng
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
- Department of Traditional Chinese Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Chen Chen
- Department of Traditional Chinese Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Arbabi K, Newton DF, Oh H, Davie MC, Lewis DA, Wainberg M, Tripathy SJ, Sibille E. Transcriptomic pathology of neocortical microcircuit cell types across psychiatric disorders. Mol Psychiatry 2025; 30:1057-1068. [PMID: 39237723 DOI: 10.1038/s41380-024-02707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Psychiatric disorders such as major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ) are characterized by altered cognition and mood, brain functions that depend on information processing by cortical microcircuits. We hypothesized that psychiatric disorders would display cell type-specific transcriptional alterations in neuronal subpopulations that make up cortical microcircuits: excitatory pyramidal (PYR) neurons and vasoactive intestinal peptide- (VIP), somatostatin- (SST), and parvalbumin- (PVALB) expressing inhibitory interneurons. Using laser capture microdissection followed by RNA sequencing (LCM-seq), we performed cell type-specific molecular profiling of subgenual anterior cingulate cortex, a region implicated in mood and cognitive control. We sequenced libraries from 130 whole cells pooled per neuronal subtype (VIP, SST, PVALB, superficial and deep PYR) in 76 subjects from the University of Pittsburgh Brain Tissue Donation Program, evenly split between MDD, BD and SCZ subjects and healthy controls (totaling 380 bulk transcriptomes from ~50,000 neurons). We identified hundreds of differentially expressed (DE) genes and biological pathways across disorders and neuronal subtypes, with the vast majority in interneurons, particularly PVALB. While DE genes were unique to each cell type, there was a partial overlap across disorders for genes involved in the formation and maintenance of neuronal circuits. We observed coordinated alterations in biological pathways between select pairs of microcircuit cell types, also partially shared across disorders. Finally, DE genes coincided with known risk variants from psychiatric genome-wide association studies, suggesting cell type-specific convergence between genetic and transcriptomic risk for psychiatric disorders. Our study suggests transdiagnostic cortical microcircuit pathology in SCZ, BD, and MDD and sets the stage for larger-scale studies investigating how cell circuit-based changes contribute to shared psychiatric risk.
Collapse
Affiliation(s)
- Keon Arbabi
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Dwight F Newton
- Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - Hyunjung Oh
- Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - Melanie C Davie
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Wainberg
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Shreejoy J Tripathy
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Chalkiadaki K, Statoulla E, Zafeiri M, Voudouri G, Amvrosiadis T, Typou A, Theodoridou N, Moschovas D, Avgeropoulos A, Samiotaki M, Mason JO, Gkogkas CG. GABA/Glutamate Neuron Differentiation Imbalance and Increased AKT/mTOR Signaling in CNTNAP2 -/- Cerebral Organoids. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100413. [PMID: 39758604 PMCID: PMC11699409 DOI: 10.1016/j.bpsgos.2024.100413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 01/07/2025] Open
Abstract
Background The polygenic nature of autism spectrum disorder (ASD) requires the identification of converging genetic pathways during early development to elucidate its complexity and varied manifestations. Methods We developed a human cerebral organoid model from induced pluripotent stem cells with targeted genome editing to abolish protein expression of the CNTNAP2 ASD risk gene. Results CNTNAP2-/- cerebral organoids displayed accelerated cell cycle, ventricular zone disorganization, and increased cortical folding. Proteomic analysis revealed disruptions in glutamatergic/GABAergic (gamma-aminobutyric acidergic) synaptic pathways and neurodevelopment, and transcriptomic analysis revealed differentially expressed genes belonging to inhibitory neuron-related gene networks. Interestingly, there was a weak correlation between the 2 datasets, suggesting nuanced translational control mechanisms. Along these lines, we found upregulated AKT/mTOR (mechanistic target of rapamycin) signaling in CNTNAP2-/- organoids. Spatial transcriptomic analysis of CNTNAP2-/- ventricular-like zones demonstrated pervasive changes in gene expression, implicating upregulation of cell cycle regulation, synaptic, and glutamatergic/GABAergic pathways. We noted significant overlap of all day-30 organoid omics datasets differentially expressed genes from idiopathic ASD (macrocephaly) induced pluripotent stem cell-derived telencephalic organoids, where FOXG1 was upregulated. Moreover, we detected increased GAD1-expressing and decreased TBR1-expressing cells, suggesting altered GABAergic/glutamatergic neuron development. Conclusions These findings potentially highlight a shared mechanism in the early cortical development of various forms of ASD, further elucidate the role of CNTNAP2 in ASD pathophysiology and cortical development, and pave the way for targeted therapies that use cerebral organoids as preclinical models.
Collapse
Affiliation(s)
- Kleanthi Chalkiadaki
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, Ioannina, Greece
| | - Elpida Statoulla
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, Ioannina, Greece
| | - Maria Zafeiri
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, Ioannina, Greece
| | - Georgia Voudouri
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, Ioannina, Greece
| | | | - Alexandra Typou
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, Ioannina, Greece
| | - Niki Theodoridou
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, Ioannina, Greece
| | - Dimitrios Moschovas
- Department of Materials Science Engineering, University of Ioannina, Ioannina, Greece
| | | | - Martina Samiotaki
- Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| | - John O. Mason
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Christos G. Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, Ioannina, Greece
| |
Collapse
|
4
|
Kopić J, Haldipur P, Millen KJ, Kostović I, Krasić J, Krsnik Ž. Initial regional cytoarchitectonic differences in dorsal and orbitobasal human developing frontal cortex revealed by spatial transcriptomics. Brain Struct Funct 2024; 230:13. [PMID: 39692769 DOI: 10.1007/s00429-024-02865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
Early development of the human fetal cerebral cortex involves a set of precisely coordinated molecular processes that remains rather underexplored. Previous studies indicate that the laminar identity and the molecular specification of cortical neurons driven by genetic programming, as well as associated histogenetic events begin during early fetal development. Our recent study discovered unique regional cytoarchitectonic features in the developing human frontal lobe, including migratory waves of postmitotic neurons in the dorsal frontal cortex and the "double plate" feature in orbitobasal cortex (Kopić et al. in Cells 12:231, 2023). Notably, neurons of these two cytoarchitectonic features typically express deep projection neuron (DPN) markers (TBR1, TLE4, SOX5). This paper aims to conduct an in-depth investigation of these cytoarchitectonic features at the transcriptomic level, whilst preserving spatial information. Here, we employed NanoString GeoMx™ Digital Spatial Profiler (DSP) technology to examine gene expression differences in the transient cortical compartments of the dorsal and ventral regions of the developing frontal lobe, focusing specifically on 15 post-conceptional weeks (PCW), that is a critical period for subplate formation. We identified multiple differentially expressed genes between the transient cellular compartments of the dorsal and orbitobasal regions of the developing human frontal cortex. These new findings additionally confirm that regional patterning and specification of the prospective higher-order association prefrontal cortex emerges early in fetal development, contributing to the highly organized cortical architecture of the human brain.
Collapse
Affiliation(s)
- Janja Kopić
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
| | - Ivica Kostović
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Jure Krasić
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia.
| | - Željka Krsnik
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
5
|
Alayadhi LY, Halepoto DM, Alhowikan AM, Elamin NE, Halepota AT. Low Plasma Levels of Contactin-Associated Protein-Like 2 in Children with Autism Spectrum Disorder: Links to Neural Development. Neuropsychiatr Dis Treat 2024; 20:2423-2431. [PMID: 39677509 PMCID: PMC11646403 DOI: 10.2147/ndt.s490582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
Background Autism spectrum disorder (ASD) is a condition of atypical neurodevelopment and is characterized by social communication problems and repetitive patterns of behavior. Early diagnosis and intervention are decisive for managing symptoms and improving outcomes. Contactin-associated protein-like 2 (CNTNAP2) protein is implicated in neural development and plays a role in brain connectivity and synapse formation. Genetic research has shown a possible link between CNTNAP2 and ASD. Aim We aimed to discover the blood plasma levels of CNTNAP2 in children with ASD and explore the potential association between CNTNAP2 concentrations and ASD severity. Methodology This case-control study included children with ASD (n=40) and aged-matched healthy controls (n=40). Blood plasma levels of CNTNAP2 were measured using enzyme-linked immunosorbent assay (ELISA). The Children Autism Rating Scale (CARS) and Social Responsiveness Scale (SRS) were used to assess the severity of the ASD. Spearman correlation coefficient (r) was used to correlate the variables. Results Children with severe ASD had significantly lower CNTNAP2 levels (0.31 (0.14) ng/mL, p=0.003) compared to normal controls (0.47 (0.24) ng/mL). However, CNTNAP2 levels of children with mild autism (0.44(0.22), ng/mL, p=0.77) were not significantly different as compared to normal controls (0.47 (0.24) ng/mL). Furthermore, a significant difference was found between CNTNAP2 levels, by comparing the mild and severe groups based on the CARS (p= 0.05). Furthermore, no significant correlation between CNTNAP2 levels, and severity scores (CARS and SRS), was obtained. However, a significant correlation between CNTNAP2 and age was observed. Conclusion The low CNTNAP2 plasma level in children with ASD indicated that it might be involved in the pathophysiology of ASD. Nevertheless, these results should be interpreted with care till more studies are achieved using a larger population to decide whether the reduction in CNTNAP2 plasma level is a mere outcome of ASD or it plays a pathogenic role in the disease.
Collapse
Affiliation(s)
- Laila Yosif Alayadhi
- Autism Research and Treatment Center, Al-Amodi Autism Research Chair, Riyadh, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Dost Muhammad Halepoto
- Autism Research and Treatment Center, Al-Amodi Autism Research Chair, Riyadh, Saudi Arabia
| | - Abdulrahman Mohammed Alhowikan
- Autism Research and Treatment Center, Al-Amodi Autism Research Chair, Riyadh, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Nadra Elyass Elamin
- Autism Research and Treatment Center, Al-Amodi Autism Research Chair, Riyadh, Saudi Arabia
| | - Aurangzeb Taj Halepota
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| |
Collapse
|
6
|
Barcia G, Scorrano G, Rio M, Gitiaux C, Hully M, Poirier K, Besmond C, Munnich A, Boddaert N, Chemaly N, Nabbout R. Exploring the clinical spectrum of CNTNAP2-related neurodevelopmental disorders: A case series and a literature appraisal. Eur J Med Genet 2024; 72:104979. [PMID: 39423951 DOI: 10.1016/j.ejmg.2024.104979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Biallelic pathogenic variants in CNTNAP2, a gene encoding the contactin-associated protein-like 2, have been reported in patients with various clinical presentations including intellectual disability (ID), autistic spectrum disorders (ASD), psychiatric disorders, and focal epilepsy rarely associated to focal cortical dysplasia. We report four children carrying novel biallelic CNTNAP2 pathogenic variants. They present global developmental delay, psychiatric disorders, and focal epilepsy. All patients displayed brain MRI abnormalities consistent with focal temporal dysplasia. One patient had a temporal resection before the availability of genetic testing. Focal cortical dysplasia represents a frequent finding related to focal refractory epilepsy in CNTNAP2 affected patients, and surgery seems to be ineffective in this setting. The genetic testing could therefore be impactful on treatment choices in refractory focal epilepsies.
Collapse
Affiliation(s)
- Giulia Barcia
- Department of Genetics, Necker Enfants Malades University Hospital, AP-HP, Université Paris Cité, Paris, France.
| | - Giovanna Scorrano
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Necker Enfants Malades University Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Marlène Rio
- Department of Genetics, Necker Enfants Malades University Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Cyril Gitiaux
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Necker Enfants Malades University Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Marie Hully
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Necker Enfants Malades University Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Karine Poirier
- Translational Genetics, National Institute of Health and Medical Research Mixed Unit of Research 1163, Imagine Institute, University of Paris, Paris, France
| | - Claude Besmond
- Translational Genetics, National Institute of Health and Medical Research Mixed Unit of Research 1163, Imagine Institute, University of Paris, Paris, France
| | - Arnold Munnich
- Department of Genetics, Necker Enfants Malades University Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Nathalie Boddaert
- Department of Pediatric Radiology, Necker Enfants Malades Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Nicole Chemaly
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Necker Enfants Malades University Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Rima Nabbout
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Necker Enfants Malades University Hospital, AP-HP, Université Paris Cité, Paris, France; Imagine Institute, Laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163, Paris, France
| |
Collapse
|
7
|
Jhanji M, York EM, Lizarraga SB. The power of human stem cell-based systems in the study of neurodevelopmental disorders. Curr Opin Neurobiol 2024; 89:102916. [PMID: 39293245 DOI: 10.1016/j.conb.2024.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
Neurodevelopmental disorders (NDDs) affect 15% of children and are usually associated with intellectual disability, seizures, and autistic behaviors, among other neurological presentations. Mutations in a wide spectrum of gene families alter key stages of human brain development, leading to defects in neural circuits or brain architecture. Studies in animal systems have provided important insights into the pathobiology of several NDDs. Human stem cell technologies provide a complementary system that allows functional manipulation of human brain cells during developmental stages that would otherwise be inaccessible during human fetal brain development. Therefore, stem cell-based models advance our understanding of human brain development by revealing human-specific mechanisms contributing to the broad pathogenesis of NDDs. We provide a comprehensive overview of the latest research on two and three-dimensional human stem cell-based models. First, we discuss convergent cellular and molecular phenotypes across different NDDs that have been revealed by human iPSC systems. Next, we examine the contribution of in vitro human neural systems to the development of promising therapeutic strategies. Finally, we explore the potential of stem cell systems to draw mechanistic insight for the study of sex dimorphism within NDDs.
Collapse
Affiliation(s)
- Megha Jhanji
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI 02906, USA; Center for Translational Neuroscience, Carney Brain Institute, Brown University, Providence RI 02906, USA
| | - Elisa M York
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI 02906, USA; Center for Translational Neuroscience, Carney Brain Institute, Brown University, Providence RI 02906, USA
| | - Sofia B Lizarraga
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI 02906, USA; Center for Translational Neuroscience, Carney Brain Institute, Brown University, Providence RI 02906, USA.
| |
Collapse
|
8
|
Joubert B. The neurobiology and immunology of CASPR2-associated neurological disorders. Rev Neurol (Paris) 2024; 180:950-956. [PMID: 39341757 DOI: 10.1016/j.neurol.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
CASPR2-associated neurological disorders encompass a wide clinical spectrum broadly divided into overlapping three autoimmune syndromes: CASPR2 limbic encephalitis, Morvan syndrome, and Isaacs syndrome. CASPR2 is a neuronal protein expressed at different sites in the central and peripheral nervous system and has a variety of roles and functions regarding neuronal excitability, synaptic plasticity, and homeostasis of inhibitory networks, most of which are only partially understood. CASPR2 antibodies have various pathogenic effects including internalization of CASPR2, disruption of protein-protein interactions, and, possibly, complement activation. Their pathogenic effect is well demonstrated in the limbic encephalitis phenotype, but the role of pathogenic antibodies in the development of other clinical manifestations is less clear. CASPR2 limbic encephalitis also differ from the other CASPR2-associated disorders in regard to HLA allele and paraneoplastic associations, suggesting it has immunological mechanisms distinct from the other clinical forms. Future studies are needed to better understand how the immunological alterations lead to the different phenotypes associated with CASPR2 antibodies.
Collapse
Affiliation(s)
- B Joubert
- Service de neurologie clinique et fonctionnelle, groupe hospitalier Sud, hospices civils de Lyon, Lyon, France; Centre de référence pour les encéphalites auto-immunes et les syndromes neurologiques paranéoplasiques, hospices civils de Lyon, Lyon, France.
| |
Collapse
|
9
|
Nassiri I, Kwok AJ, Bhandari A, Bull KR, Garner LC, Klenerman P, Webber C, Parkkinen L, Lee AW, Wu Y, Fairfax B, Knight JC, Buck D, Piazza P. Demultiplexing of single-cell RNA-sequencing data using interindividual variation in gene expression. BIOINFORMATICS ADVANCES 2024; 4:vbae085. [PMID: 38911824 PMCID: PMC11193101 DOI: 10.1093/bioadv/vbae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
Motivation Pooled designs for single-cell RNA sequencing, where many cells from distinct samples are processed jointly, offer increased throughput and reduced batch variation. This study describes expression-aware demultiplexing (EAD), a computational method that employs differential co-expression patterns between individuals to demultiplex pooled samples without any extra experimental steps. Results We use synthetic sample pools and show that the top interindividual differentially co-expressed genes provide a distinct cluster of cells per individual, significantly enriching the regulation of metabolism. Our application of EAD to samples of six isogenic inbred mice demonstrated that controlling genetic and environmental effects can solve interindividual variations related to metabolic pathways. We utilized 30 samples from both sepsis and healthy individuals in six batches to assess the performance of classification approaches. The results indicate that combining genetic and EAD results can enhance the accuracy of assignments (Min. 0.94, Mean 0.98, Max. 1). The results were enhanced by an average of 1.4% when EAD and barcoding techniques were combined (Min. 1.25%, Median 1.33%, Max. 1.74%). Furthermore, we demonstrate that interindividual differential co-expression analysis within the same cell type can be used to identify cells from the same donor in different activation states. By analysing single-nuclei transcriptome profiles from the brain, we demonstrate that our method can be applied to nonimmune cells. Availability and implementation EAD workflow is available at https://isarnassiri.github.io/scDIV/ as an R package called scDIV (acronym for single-cell RNA-sequencing data demultiplexing using interindividual variations).
Collapse
Affiliation(s)
- Isar Nassiri
- Nuffield Department of Medicine, Centre for Human Genetics, Oxford-GSK Institute of Molecular and Computational Medicine (IMCM), University of Oxford, Oxford, OX3 7BN, United Kingdom
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
| | - Andrew J Kwok
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Aneesha Bhandari
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Katherine R Bull
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Caleb Webber
- Department of Physiology, Anatomy, Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, OX1 3PT, United Kingdom
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Laura Parkkinen
- Nuffield Department of Medicine, Centre for Human Genetics, Oxford-GSK Institute of Molecular and Computational Medicine (IMCM), University of Oxford, Oxford, OX3 7BN, United Kingdom
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Angela W Lee
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Yanxia Wu
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Benjamin Fairfax
- MRC–Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
- Department of Oncology, University of Oxford & Oxford Cancer Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7DQ, United Kingdom
| | - Julian C Knight
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - David Buck
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Paolo Piazza
- Nuffield Department of Medicine, Centre for Human Genetics, Oxford-GSK Institute of Molecular and Computational Medicine (IMCM), University of Oxford, Oxford, OX3 7BN, United Kingdom
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| |
Collapse
|
10
|
Ul Mudassir B, Agha Z. Novel and known minor alleles of CNTNAP2 gene variants are associated with comorbidity of intellectual disability and epilepsy phenotypes: a case-control association study reveals potential biomarkers. Mol Biol Rep 2024; 51:276. [PMID: 38315301 DOI: 10.1007/s11033-023-09176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/18/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Neurodevelopmental disorders are heterogeneous due to underlying multiple shared genetic pathways and risk factors. Intellectual disability, epilepsy and autism spectrum disorder phenotypes overlap which indicates the diverse effects of common genes. Recent studies suggested the probable contribution of CNTNAP2 gene polymorphisms to the comorbidity of these neurological conditions. METHODS AND RESULTS This study was conducted to investigate the role of CNTNAP2 polymorphisms rs147815978 (G>T) and rs2710102 (A>G) as a risk factor for comorbidity of intellectual disability and epilepsy in a group of 345 individuals including 170 patients and 175 healthy controls recruited from various ethnic groups of Pakistani population. Our case-control study group was genotyped by tetra primer ARMS-PCR technique and results were analysed to know the effects of CNTNAP2 rs147815978 (G>T) and rs2710102 (A>G) polymorphisms in the group. The frequency of risk allele T (rs147815978) and risk allele G (rs2710102) for homozygous recessive genotypes (TT/GG) in our study group was 36.47% while odds ratios for risk allele T (rs147815978) was 5.45 (3.90-7.61: 95% CI, P = 0.000) and that for risk allele G (rs2710102) was 2.39 (1.76-3.24: 95% CI, P = 0.0001). Homozygous recessive genotypes (TT/GG) appeared only in cases and not in control group which indicated these as suspected risk genotypes and the significant association (p < 0.05%) of CNTNAP2 gene polymorphisms rs147815978 (G>T) and rs2710102 (A>G) with co-occurrence of intellectual disability and epilepsy phenotypes in our study group which is in HWE (χ2 = 174, P < 0.0001). Logistic regression analysis shows additive (p < 0.0001) and multiplicative (p < 0.001) models which confirms significant association of both the polymorphisms in our data, which are closely located on same haplotype (D' = - 0.168). CONCLUSIONS We propose that CNTNAP2 rs147815978 (G>T) and rs2710102 (A>G) polymorphisms are possible risk loci for overlapping neurodevelopmental disorders in Pakistani population. We propose the role of a previously reported common SNP rs2710102 (A>G) with a rarely reported novel SNP rs147815978 (G>T) for CNTNAP2 gene association with neurodevelopmental disorders in our data. Our study has expanded the knowledge of CNTNAP2 gene polymorphisms as probable biomarkers for susceptibility of co-occurrence of intellectual disability and epilepsy phenotypes in Pakistani population. We hope that our study will open new horizons of CNTNAP2 gene variants research to cure the neurological conditions in Pakistani population where consanguinity is a tradition and prevalence of neurodevelopmental disorders has increased from 1 to 2% during last 5 years.
Collapse
Affiliation(s)
- Behjat Ul Mudassir
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Zehra Agha
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan.
- Department of Psychiatry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
11
|
Griffin EN, Jucius T, Sim SE, Harris BS, Heinz S, Ackerman SL. RREB1 regulates neuronal proteostasis and the microtubule network. SCIENCE ADVANCES 2024; 10:eadh3929. [PMID: 38198538 PMCID: PMC10780896 DOI: 10.1126/sciadv.adh3929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Transcription factors play vital roles in neuron development; however, little is known about the role of these proteins in maintaining neuronal homeostasis. Here, we show that the transcription factor RREB1 (Ras-responsive element-binding protein 1) is essential for neuron survival in the mammalian brain. A spontaneous mouse mutation causing loss of a nervous system-enriched Rreb1 transcript is associated with progressive loss of cerebellar Purkinje cells and ataxia. Analysis of chromatin immunoprecipitation and sequencing, along with RNA sequencing data revealed dysregulation of RREB1 targets associated with the microtubule cytoskeleton. In agreement with the known role of microtubules in dendritic development, dendritic complexity was disrupted in Rreb1-deficient neurons. Analysis of sequencing data also suggested that RREB1 plays a role in the endomembrane system. Mutant Purkinje cells had fewer numbers of autophagosomes and lysosomes and contained P62- and ubiquitin-positive inclusions. Together, these studies demonstrate that RREB1 functions to maintain the microtubule network and proteostasis in mammalian neurons.
Collapse
Affiliation(s)
- Emily N. Griffin
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thomas Jucius
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Su-Eon Sim
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Sven Heinz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L. Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|