1
|
Gonçalves FDT, Marques LM, Pessotto AV, Barbosa SP, Imamura M, Simis M, Fregni F, Battistella L. OPRM1 and BDNF polymorphisms associated with a compensatory neurophysiologic signature in knee osteoarthritis patients. Neurophysiol Clin 2023; 53:102917. [PMID: 37944291 DOI: 10.1016/j.neucli.2023.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE The present study investigated the relationship between three genetic polymorphisms of OPRM1 (rs1799971 - A118G and rs1799972 - C17T) and BDNF (rs6265 - C196T) and EEG-measured brain oscillations in Knee Osteoarthritis (KOA) patients. MATERIALS AND METHODS We performed a cross-sectional analysis of a cohort study (DEFINE cohort), KOA arm, with 66 patients, considering demographic (age, sex, and education), clinical (pain intensity and duration), OPRM1 (rs1799971 - A118G and rs1799972 - C17T) and BDNF (rs6265 - C196T) genotypes, and electrophysiological measures. Brain oscillations relative power from Delta, Theta, Alpha, Low Alpha, High Alpha, Beta, Low Beta and High Beta oscillations were measured during resting state EEG. Multivariate regression models were used to explore the main brain oscillation predictors of the three genetic polymorphisms. RESULTS Our findings demonstrate that Theta and Low Beta oscillations are associated with the variant allele of OPRM1-rs1799971 (A118G) on left frontal and left central regions, respectively, while Alpha brain oscillation is associated with variant genotypes (CT/TT) of BDNF-rs6265 on frontal (decrease of oscillation power) and left central (increase of oscillation power) regions. No significant model was found for OPRM1-rs1799972 (C17T) in addition to the inclusion of pain intensity as a significant predictor of this last model. CONCLUSION One potential interpretation for these findings is that polymorphisms of OPRM1 - that is involved with endogenous pain control - lead to increased compensatory oscillatory mechanisms, characterized by increased theta oscillations. Along the same line, polymorphisms of the BDNF lead to decreased alpha oscillations in the frontal area, likely also reflecting the disruption of resting states to also compensate for the increased injury associated with knee OA. It is possible that these polymorphisms require additional brain adaption to the knee OA related injury.
Collapse
Affiliation(s)
- Fernanda de Toledo Gonçalves
- Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Laboratório de Imunohematologia e Hematologia Forense (LIM40), Hospital das, Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC da FMUSP), São Paulo, Brazil; Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação do da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Lucas Murrins Marques
- Instituto de Medicina Física e Reabilitação, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Anne Victório Pessotto
- Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Laboratório de Imunohematologia e Hematologia Forense (LIM40), Hospital das, Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC da FMUSP), São Paulo, Brazil; Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação do da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Sara Pinto Barbosa
- Instituto de Medicina Física e Reabilitação, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marta Imamura
- Instituto de Medicina Física e Reabilitação, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil; Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação do da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Marcel Simis
- Instituto de Medicina Física e Reabilitação, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil; Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação do da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation, Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Linamara Battistella
- Instituto de Medicina Física e Reabilitação, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil; Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação do da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| |
Collapse
|
2
|
Pellegrino M, Ben-Soussan TD, Paoletti P. A Scoping Review on Movement, Neurobiology and Functional Deficits in Dyslexia: Suggestions for a Three-Fold Integrated Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3315. [PMID: 36834011 PMCID: PMC9966639 DOI: 10.3390/ijerph20043315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Developmental dyslexia is a common complex neurodevelopmental disorder. Many theories and models tried to explain its symptomatology and find ways to improve poor reading abilities. The aim of this scoping review is to summarize current findings and several approaches and theories, focusing on the interconnectedness between motion, emotion and cognition and their connection to dyslexia. Consequently, we present first a brief overview of the main theories and models regarding dyslexia and its proposed neural correlates, with a particular focus on cerebellar regions and their involvement in this disorder. After examining different types of intervention programs and remedial training, we highlight the effects of a specific structured sensorimotor intervention named Quadrato Motor Training (QMT). QMT utilizes several cognitive and motor functions known to be relevant in developmental dyslexia. We introduce its potential beneficial effects on reading skills, including working memory, coordination and attention. We sum its effects ranging from behavioral to functional, structural and neuroplastic, especially in relation to dyslexia. We report several recent studies that employed this training technique with dyslexic participants, discussing the specific features that distinguish it from other training within the specific framework of the Sphere Model of Consciousness. Finally, we advocate for a new perspective on developmental dyslexia integrating motion, emotion and cognition to fully encompass this complex disorder.
Collapse
Affiliation(s)
- Michele Pellegrino
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, 06081 Assisi, Italy
| | - Tal Dotan Ben-Soussan
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, 06081 Assisi, Italy
| | | |
Collapse
|
3
|
Franke LM, Gitchel GT, Perera RA, Hadimani RL, Holloway KL, Walker WC. Randomized trial of rTMS in traumatic brain injury: improved subjective neurobehavioral symptoms and increases in EEG delta activity. Brain Inj 2022; 36:683-692. [PMID: 35143365 DOI: 10.1080/02699052.2022.2033845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PRIMARY OBJECTIVE While repetitive transcranial magnetic stimulation (rTMS) has shown efficacy for cognitive difficulties accompanying depression, it is unknown if it can improve cognition in persons with traumatic brain injury. RESEARCH DESIGN Using a sham-controlled crossover design, we tested the capacity of high frequency rTMS of the prefrontal cortex to improve neuropsychological performance in attention, learning and memory, and executive function. METHODS Twenty-six participants with cognitive complaints and a history of mild-to-moderate traumatic brain injury were randomly assigned to receive first either active or sham 10 Hz stimulation for 20 minutes (1200 pulses) per session for five consecutive days. After a one-week washout, the other condition (active or sham) was applied. Pre- and post-treatment measures included neuropsychological tests, cognitive and emotional symptoms, and EEG. MAIN OUTCOMES AND RESULTS Results indicated no effect of treatment on cognitive function. Subjective measures of depression, sleep dysfunction, post-concussive symptoms (PCS), and executive function showed significant improvement with stimulation, retaining improved levels at two-week follow-up. EEG delta power exhibited elevation one week after stimulation cessation. CONCLUSIONS While there is no indication that rTMS is beneficial for neuropsychological performance, it may improve PCS and subjective cognitive dysfunction. Long-term alterations in cortical oscillations may underlie the therapeutic effects of rTMS.
Collapse
Affiliation(s)
- Laura M Franke
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA.,Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - George T Gitchel
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA.,Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Robert A Perera
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ravi L Hadimani
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kathryn L Holloway
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA.,Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - William C Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA.,Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| |
Collapse
|
4
|
Electrophysiological correlates of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism. Sci Rep 2020; 10:17915. [PMID: 33087740 PMCID: PMC7578797 DOI: 10.1038/s41598-020-74780-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) protein is essential for neuronal development. Val66Met (rs6265) is a functional polymorphism at codon 66 of the BDNF gene that affects neuroplasticity and has been associated with cognition, brain structure and function. The aim of this study was to clarify the relationship between BDNF Val66Met polymorphism and neuronal oscillatory activity, using the electroencephalogram (EEG), in a normative cohort. Neurotypical (N = 92) young adults were genotyped for the BDNF Val66Met polymorphism and had eyes open resting-state EEG recorded for four minutes. Focal increases in right fronto-parietal delta, and decreases in alpha-1 and right hemispheric alpha-2 amplitudes were observed for the Met/Met genotype group compared to Val/Val and Val/Met groups. Stronger frontal topographies were demonstrated for beta-1 and beta-2 in the Val/Met group versus the Val/Val group. Findings highlight BDNF Val66Met genotypic differences in EEG spectral amplitudes, with increased cortical excitability implications for Met allele carriers.
Collapse
|
5
|
EEG Resting Asymmetries and Frequency Oscillations in Approach/Avoidance Personality Traits: A Systematic Review. Symmetry (Basel) 2020. [DOI: 10.3390/sym12101712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Brain cortical activity in resting electroencephalogram (EEG) recordings can be considered as measures of latent individual disposition to approach/avoidance behavior. This systematic review aims to provide an updated overview of the relationship between resting EEG cortical activity and approach/avoidance motivation personality traits. Methods: The review process was conducted according to the PRISMA-Statement, using PsycArticles, MEDLINE, Scopus, Science Citation Index, and Research Gate database. Restrictions were made by selecting EEG studies conducted in resting idling conditions, which included approach/avoidance personality traits or parallel measures, and an index of EEG brain activity. In the review 50 studies were selected, wherein 7120 healthy adult individuals participated. Results: The study of the relationship between resting EEG cortical activity and approach/avoidance personality traits provides controversial and unclear results. Therefore, the validity of resting asymmetry or frequency oscillations as a potential marker for approach/avoidance personality traits is not supported. Conclusions: There are important contextual and interactional factors not taken into account by researchers that could mediate or moderate this relationship or prove it scarcely replicable. Further, it would be necessary to conduct more sessions of EEG recordings in different seasons of the year to test the validity and the reliability of the neurobiological measures.
Collapse
|
6
|
Genetics of Circadian and Sleep Measures in Adults: Implications for Sleep Medicine. CURRENT SLEEP MEDICINE REPORTS 2020. [DOI: 10.1007/s40675-020-00165-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Lavoie S, Polari AR, Goldstone S, Nelson B, McGorry PD. Staging model in psychiatry: Review of the evolution of electroencephalography abnormalities in major psychiatric disorders. Early Interv Psychiatry 2019; 13:1319-1328. [PMID: 30688016 DOI: 10.1111/eip.12792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/03/2018] [Accepted: 12/29/2018] [Indexed: 12/29/2022]
Abstract
AIM Clinical staging in psychiatry aims to classify patients according to the severity of their symptoms, from stage 0 (increased risk, asymptomatic) to stage 4 (severe illness), enabling adapted treatment at each stage of the illness. The staging model would gain specificity if one or more quantifiable biological markers could be identified. Several biomarkers reflecting possible causal mechanisms and/or consequences of the pathophysiology are candidates for integration into the clinical staging model of psychiatric illnesses. METHODS This review covers the evolution (from stage 0 to stage 4) of the most important brain functioning impairments as measured with electroencephalography (EEG), in psychosis spectrum and in severe mood disorders. RESULTS The present review of the literature demonstrates that it is currently not possible to draw any conclusion with regard to the state or trait character of any of the EEG impairments in both major depressive disorder and bipolar disorder. As for schizophrenia, the most promising markers of the stage of the illness are the pitch mismatch negativity as well as the p300 event-related potentials, as these components seem to deteriorate with increasing severity of the illness. CONCLUSIONS Given the complexity of major psychiatric disorders, and that not a single impairment can be observed in all patients, future research should most likely consider combinations of markers in the quest for a better identification of the stages of the psychiatric illnesses.
Collapse
Affiliation(s)
- Suzie Lavoie
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrea R Polari
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Orygen Youth Health, Melbourne Health, Melbourne, Victoria, Australia
| | - Sherilyn Goldstone
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Barnaby Nelson
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick D McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Chang HA, Fang WH, Wan FJ, Tzeng NS, Liu YP, Shyu JF, Huang SY, Chang TC, Chang CC. Age-specific associations among functional COMT Val 158Met polymorphism, resting parasympathetic nervous control and generalized anxiety disorder. Psychoneuroendocrinology 2019; 106:57-64. [PMID: 30954919 DOI: 10.1016/j.psyneuen.2019.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 01/06/2023]
Abstract
The functional Val158Met polymorphism (rs4680) of the Catechol-O-Methyltransferase (COMT) gene has been implicated in generalized anxiety disorder (GAD); however, the underlying neural mechanisms remain unexamined. Recent evidence reveals that low resting parasympathetic (vagal) control is an endophenotypic predictor of anxiety, while the effect of COMT rs4680 differs at different ages. Thus, we examined whether the COMT Val158Met variant could increase the risk of GAD through decreased resting parasympathetic nervous control in an age-specific manner. COMT rs4680 polymorphism was genotyped in 1,655 Han Chinese adults (1,142 healthy subjects and 513 patients with GAD; age: 20-65). High-frequency power (HF) of heart rate variability (HRV) was used to measure resting state parasympathetic nervous regulation. Non-genetic factors, such as gender, smoking status, medication use and comorbidity conditions, were treated as covariates. After adjusting for relevant covariates, there was a significant age x COMT genotype interaction on resting HF of HRV. In younger adults, Met allele carriers had a significantly lower HF index; however, older adults exhibited the opposite pattern, with Val/Val homozygotes exhibiting decreased HF values. Moreover, reduced HF-HRV is associated with increased risk of GAD. Finally, pathway analysis revealed a significant indirect effect of COMT on the risk of GAD via reduced resting HF-HRV, in the aforementioned age-dependent manner. Our findings are the first to demonstrate that COMT Val158Met polymorphism is associated with risk of GAD via reduced resting parasympathetic nervous control, an age-specific risk pathway.
Collapse
Affiliation(s)
- Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Hui Fang
- Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fang-Jung Wan
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yia-Ping Liu
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan; Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Jia-Fwu Shyu
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - San-Yuan Huang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tieh-Ching Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
9
|
Abstract
OBJECTIVE Electroconvulsive therapy (ECT) is the most effective treatment for major depression but also carries risk of cognitive side effects. The ability to predict whether treatment will be effective before initiation of treatment could significantly improve quality of care, reduce suffering, and diminish costs. We sought to carry out a comprehensive and definitive study of the relationship between the background electroencephalography (EEG) and therapeutic response to ECT. METHODS Twenty-one channel resting EEG was collected pre-ECT and 2 to 3 days after ECT course from 2 separate data sets, one to develop an EEG model of therapeutic response (n = 30) and a second to test this model (n = 40). A 3-way principal components analysis was applied and coherence and spectral amplitude across 6 frequency bands were examined. The primary outcome measure was the Montgomery-Asberg Rating Scale (MADRS). RESULTS Four patterns of amplitude and coherence along with baseline MADRS score accounted for 85% of the variance in posttreatment course MADRS score in study 1 (R = 0.85, F = 11.7, P < 0.0002) and 53% of the variance in MADRS score in study 2 (R = 0.53, F = 5.5, P < 0.003). Greater pre-ECT course anterior delta coherence accounted for the majority of variance in therapeutic response (study 1: R = 0.44, P = 0.01; study 2: R = 0.16, P = 0.008). CONCLUSIONS These results suggest a putative electrophysiological biomarker that can predict therapeutic response before a course of ECT. Greater baseline anterior delta coherence is significantly associated with a better subsequent therapeutic response and could be indicative of intact circuitry allowing for improved seizure propagation.
Collapse
|
10
|
Patron E, Mennella R, Messerotti Benvenuti S, Thayer JF. The frontal cortex is a heart-brake: Reduction in delta oscillations is associated with heart rate deceleration. Neuroimage 2019; 188:403-410. [DOI: 10.1016/j.neuroimage.2018.12.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/01/2018] [Accepted: 12/16/2018] [Indexed: 12/30/2022] Open
|
11
|
Acute effects of methadone on EEG power spectrum and event-related potentials among heroin dependents. Psychopharmacology (Berl) 2018; 235:3273-3288. [PMID: 30310960 DOI: 10.1007/s00213-018-5035-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
Methadone as the most prevalent opioid substitution medication has been shown to influence the neurophysiological functions among heroin addicts. However, there is no firm conclusion on acute neuroelectrophysiological changes among methadone-treated subjects as well as the effectiveness of methadone in restoring brain electrical abnormalities among heroin addicts. This study aims to investigate the acute and short-term effects of methadone administration on the brain's electrophysiological properties before and after daily methadone intake over 10 weeks of treatment among heroin addicts. EEG spectral analysis and single-trial event-related potential (ERP) measurements were used to investigate possible alterations in the brain's electrical activities, as well as the cognitive attributes associated with MMN and P3. The results confirmed abnormal brain activities predominantly in the beta band and diminished information processing ability including lower amplitude and prolonged latency of cognitive responses among heroin addicts compared to healthy controls. In addition, the alteration of EEG activities in the frontal and central regions was found to be associated with the withdrawal symptoms of drug users. Certain brain regions were found to be influenced significantly by methadone intake; acute effects of methadone induction appeared to be associative to its dosage. The findings suggest that methadone administration affects cognitive performance and activates the cortical neuronal networks, resulting in cognitive responses enhancement which may be influential in reorganizing cognitive dysfunctions among heroin addicts. This study also supports the notion that the brain's oscillation powers and ERPs can be utilized as neurophysiological indices for assessing the addiction treatment traits.
Collapse
|
12
|
Keshmiri S, Sumioka H, Nakanishi J, Ishiguro H. Bodily-Contact Communication Medium Induces Relaxed Mode of Brain Activity While Increasing Its Dynamical Complexity: A Pilot Study. Front Psychol 2018; 9:1192. [PMID: 30050488 PMCID: PMC6052895 DOI: 10.3389/fpsyg.2018.01192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/20/2018] [Indexed: 11/13/2022] Open
Abstract
We present the results of the analysis of the effect of a bodily-contact communication medium on the brain activity of the individuals during verbal communication. Our results suggest that the communicated content that is mediated through such a device induces a significant effect on electroencephalogram (EEG) time series of human subjects. Precisely, we find a significant reduction of overall power of the EEG signals of the individuals. This observation that is supported by the analysis of the permutation entropy (PE) of the EEG time series of brain activity of the participants suggests the positive effect of such a medium on the stress relief and the induced sense of relaxation. Additionally, multiscale entropy (MSE) analysis of our data implies that such a medium increases the level of complexity that is exhibited by EEG time series of our participants, thereby suggesting their sustained sense of involvement in their course of communication. These findings that are in accord with the results reported by cognitive neuroscience research suggests that the use of such a medium can be beneficial as a complementary step in treatment of developmental disorders, attentiveness of schoolchildren and early child development, as well as scenarios where intimate physical interaction over distance is desirable (e.g., distance-parenting).
Collapse
Affiliation(s)
- Soheil Keshmiri
- Hiroshi Ishiguro Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Hidenobu Sumioka
- Hiroshi Ishiguro Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Junya Nakanishi
- Graduate School of Engineering Science, Osaka University, Suita, Japan
| | - Hiroshi Ishiguro
- Hiroshi Ishiguro Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Graduate School of Engineering Science, Osaka University, Suita, Japan
| |
Collapse
|
13
|
Kim KM, Choi SW, Lee J, Kim JW. EEG correlates associated with the severity of gambling disorder and serum BDNF levels in patients with gambling disorder. J Behav Addict 2018; 7:331-338. [PMID: 29865867 PMCID: PMC6174577 DOI: 10.1556/2006.7.2018.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background and aims This study aimed to evaluate the association between the severity of pathological gambling, serum brain-derived neurotrophic factor (BDNF) level, and the characteristics of quantitative electroencephalography (EEG) in patients with gambling disorder. Methods A total of 55 male patients aged 18-65 with gambling disorder participated. The severity of pathological gambling was assessed with the nine-item Problem Gambling Severity Index from the Canadian Problem Gambling Index (CPGI-PGSI). The Beck Depression Inventory and Lubben Social Network Scale were also assessed. Serum BDNF levels were assessed from blood samples. The resting-state EEG was recorded while the eyes were closed, and the absolute power of five frequency bands was analyzed: delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (30-50 Hz). Results Serum BDNF level was positively correlated with theta power in the right parietal region (P4, r = .403, p = .011), beta power in the right parietal region (P4, r = .456, p = .010), and beta power in the right temporal region (T8, r = .421, p = .008). Gambling severity (CPGI-PGSI) was positively correlated with absolute beta power in the left frontal region (F7, r = .284, p = .043) and central region [(C3, r = .292, p = .038), (C4, r = .304, p = .030)]. Conclusions These findings support the hypothesis that right-dominant lateralized correlations between BDNF and beta and theta power reflect right-dominant brain activation in addiction. The positive correlations between beta power and the severity of gambling disorder may be associated with hyperexcitability and increased cravings. These findings contribute to a better understanding of brain-based electrophysiological changes and BDNF levels in patients with pathological gambling.
Collapse
Affiliation(s)
- Kyoung Min Kim
- Department of Psychiatry, Dankook University Hospital, Cheonan, Republic of Korea
| | - Sam-Wook Choi
- Department of Psychiatry, Korea Institute on Behavioral Addictions, True Mind Mental Health Clinic, Seoul, Republic of Korea
| | - Jaewon Lee
- Department of Psychiatry, Korea Institute on Neuromodulation, Easybrain Center, Seoul, Republic of Korea,Corresponding authors: Jaewon Lee, MD, PhD; Department of Psychiatry, Korea Institute on Neuromodulation, EasyBrain Center, 1330-9 Seocho-dong, Seocho-gu, Seoul, Republic of Korea; Phone: +82 2 583 9081; Fax: +82 2 583 9082; E-mail: ; Jun Won Kim, MD, PhD; Department of Psychiatry, Catholic University of Daegu School of Medicine, 33 Duryugongwon-ro 17-gil, Nam-Gu, Daegu 42472, Republic of Korea; Phone: +82 53 650 4332; Fax: +82 53 623 1694; E-mail:
| | - Jun Won Kim
- Department of Psychiatry, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea,Corresponding authors: Jaewon Lee, MD, PhD; Department of Psychiatry, Korea Institute on Neuromodulation, EasyBrain Center, 1330-9 Seocho-dong, Seocho-gu, Seoul, Republic of Korea; Phone: +82 2 583 9081; Fax: +82 2 583 9082; E-mail: ; Jun Won Kim, MD, PhD; Department of Psychiatry, Catholic University of Daegu School of Medicine, 33 Duryugongwon-ro 17-gil, Nam-Gu, Daegu 42472, Republic of Korea; Phone: +82 53 650 4332; Fax: +82 53 623 1694; E-mail:
| |
Collapse
|
14
|
Whole body vibration added to treatment as usual is effective in adolescents with depression: a partly randomized, three-armed clinical trial in inpatients. Eur Child Adolesc Psychiatry 2018; 27:645-662. [PMID: 29119301 DOI: 10.1007/s00787-017-1071-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022]
Abstract
There is growing evidence for the effectiveness of exercise in the treatment of adult major depression. With regard to adolescents, clinical trials are scarce. Due to the inherent symptoms of depression (lack of energy, low motivation to exercise), endurance training forms could be too demanding especially in the first weeks of treatment. We hypothesized that an easy-to-perform passive muscular training on a whole body vibration (WBV) device has equal anti-depressive effects compared to a cardiovascular training, both administered as add-ons to treatment as usual (TAU). Secondly, we presumed that both exercise interventions would be superior in their response, compared to TAU. In 2 years 64 medication-naïve depressed inpatients aged 13-18, were included. Both exercise groups fulfilled a supervised vigorous training for 6 weeks. Depressive symptoms were assessed by self-report ("Depressions Inventar für Kinder und Jugendliche"-DIKJ) before intervention and after weeks 6, 14 and 26. Compared to TAU, both groups responded earlier and more strongly measured by DIKJ scores, showing a trend for the WBV group after week 6 (p = 0.082). The decrease became statistically significant for both intervention groups after week 26 (p = 0.037 for ergometer and p = 0.042 for WBV). Remission rates amounted to 39.7% after week 6 and 66% after week 26, compared to 25% after week 26 in TAU. These results provide qualified support for the effectiveness of exercise as add-on treatment for medication-naïve depressed adolescents. The present results are limited by the not randomized control group.
Collapse
|
15
|
Zhao Q, Jiang H, Hu B, Li Y, Zhong N, Li M, Lin W, Liu Q. Nonlinear Dynamic Complexity and Sources of Resting-state EEG in Abstinent Heroin Addicts. IEEE Trans Nanobioscience 2018; 16:349-355. [PMID: 28809667 DOI: 10.1109/tnb.2017.2705689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been reported that chronic heroin intake induces both structural and functional changes in human brain; however, few studies have investigated the carry-over adverse effects on brain after heroin withdrawal. In this paper, we examined the neurophysiological differences between the abstinent heroin addicts (AHAs) and healthy controls (HCs) using nonlinear dynamic analysis and source localization analysis in resting-state electroencephalogram (EEG) data; 5 min resting EEG data from 20 AHAs and twenty age-, education-, and gender-matched HCs were recorded using 64 electrodes. The results of nonlinear characteristics (e.g., the correlation dimension, Kolmogorov entropy, and Lempel-Ziv complexity) showed that the EEG signals in alpha band from AHAs were significantly more irregular. Moreover, the source localization results confirmed the neuronal activities in alpha band in AHAs were significantly weaker in parietal lobe (BA3 and BA7), frontal lobe (BA4 and BA6), and limbic lobe (BA24). Together, our analysis at both the sensor level and source level suggested the functional abnormalities in the brain during heroin abstinence, in particular for the neuronal oscillations in alpha band.
Collapse
|
16
|
Grisanzio KA, Goldstein-Piekarski AN, Wang MY, Rashed Ahmed AP, Samara Z, Williams LM. Transdiagnostic Symptom Clusters and Associations With Brain, Behavior, and Daily Function in Mood, Anxiety, and Trauma Disorders. JAMA Psychiatry 2018; 75:201-209. [PMID: 29197929 PMCID: PMC5838569 DOI: 10.1001/jamapsychiatry.2017.3951] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE The symptoms that define mood, anxiety, and trauma disorders are highly overlapping across disorders and heterogeneous within disorders. It is unknown whether coherent subtypes exist that span multiple diagnoses and are expressed functionally (in underlying cognition and brain function) and clinically (in daily function). The identification of cohesive subtypes would help disentangle the symptom overlap in our current diagnoses and serve as a tool for tailoring treatment choices. OBJECTIVE To propose and demonstrate 1 approach for identifying subtypes within a transdiagnostic sample. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study analyzed data from the Brain Research and Integrative Neuroscience Network Foundation Database that had been collected at the University of Sydney and University of Adelaide between 2006 and 2010 and replicated at Stanford University between 2013 and 2017. The study included 420 individuals with a primary diagnosis of major depressive disorder (n = 100), panic disorder (n = 53), posttraumatic stress disorder (n = 47), or no disorder (healthy control participants) (n = 220). Data were analyzed between October 2016 and October 2017. MAIN OUTCOMES AND MEASURES We followed a data-driven approach to achieve the primary study outcome of identifying transdiagnostic subtypes. First, machine learning with a hierarchical clustering algorithm was implemented to classify participants based on self-reported negative mood, anxiety, and stress symptoms. Second, the robustness and generalizability of the subtypes were tested in an independent sample. Third, we assessed whether symptom subtypes were expressed at behavioral and physiological levels of functioning. Fourth, we evaluated the clinically meaningful differences in functional capacity of the subtypes. Findings were interpreted relative to a complementary diagnostic frame of reference. RESULTS Four hundred twenty participants with a mean (SD) age of 39.8 (14.1) years were included in the final analysis; 256 (61.0%) were female. We identified 6 distinct subtypes characterized by tension (n=81; 19%), anxious arousal (n=55; 13%), general anxiety (n=38; 9%), anhedonia (n=29; 7%), melancholia (n=37; 9%), and normative mood (n=180; 43%), and these subtypes were replicated in an independent sample. Subtypes were expressed through differences in cognitive control (F5,383 = 5.13, P < .001, ηp2 = 0.063), working memory (F5,401 = 3.29, P = .006, ηp2 = 0.039), electroencephalography-recorded β power in a resting paradigm (F5,357 = 3.84, P = .002, ηp2 = 0.051), electroencephalography-recorded β power in an emotional paradigm (F5,365 = 3.56, P = .004, ηp2 = 0.047), social functional capacity (F5,414 = 21.33, P < .001, ηp2 = 0.205), and emotional resilience (F5,376 = 15.10, P < .001, ηp2 = 0.171). CONCLUSIONS AND RELEVANCE These findings offer a data-driven framework for identifying robust subtypes that signify specific, coherent, meaningful associations between symptoms, behavior, brain function, and observable real-world function, and that cut across DSM-IV-defined diagnoses of major depressive disorder, panic disorder, and posttraumatic stress disorder.
Collapse
Affiliation(s)
- Katherine A. Grisanzio
- Department of Psychiatry and Behavioral Sciences,
Stanford University, Stanford, California,Sierra-Pacific Mental Illness Research, Education, and
Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Andrea N. Goldstein-Piekarski
- Department of Psychiatry and Behavioral Sciences,
Stanford University, Stanford, California,Sierra-Pacific Mental Illness Research, Education, and
Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Michelle Yuyun Wang
- Brain Resource International Database, Brain Resource
Ltd, Woolloomooloo, Sydney, Australia
| | | | - Zoe Samara
- Department of Psychiatry and Behavioral Sciences,
Stanford University, Stanford, California,Sierra-Pacific Mental Illness Research, Education, and
Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Leanne M. Williams
- Department of Psychiatry and Behavioral Sciences,
Stanford University, Stanford, California,Sierra-Pacific Mental Illness Research, Education, and
Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
17
|
Lee PF, Kan DPX, Croarkin P, Phang CK, Doruk D. Neurophysiological correlates of depressive symptoms in young adults: A quantitative EEG study. J Clin Neurosci 2018; 47:315-322. [DOI: 10.1016/j.jocn.2017.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
|
18
|
Geist PA, Dulka BN, Barnes A, Totty M, Datta S. RETRACTED: BNDF heterozygosity is associated with memory deficits and alterations in cortical and hippocampal EEG power. Behav Brain Res 2017; 332:154-163. [PMID: 28576309 PMCID: PMC5534188 DOI: 10.1016/j.bbr.2017.05.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/02/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief, the Corresponding Author and the Institutional Research Integrity office at the University of Tennessee due to data mis-management of the project, including inappropriate removal of animals from analyses and use of unapproved euthanasia.
Collapse
Affiliation(s)
- Phillip A Geist
- Department of Anesthesiology, Graduate School of Medicine, The University of Tennessee, 1924 Alcoa Highway, Knoxville, TN 37920, United States
| | - Brooke N Dulka
- Department of Psychology, College of Arts and Sciences, 1404 Circle Drive, United States
| | - Abigail Barnes
- Department of Anesthesiology, Graduate School of Medicine, The University of Tennessee, 1924 Alcoa Highway, Knoxville, TN 37920, United States; Department of Psychology, College of Arts and Sciences, 1404 Circle Drive, United States
| | - Michael Totty
- Department of Anesthesiology, Graduate School of Medicine, The University of Tennessee, 1924 Alcoa Highway, Knoxville, TN 37920, United States
| | - Subimal Datta
- Department of Anesthesiology, Graduate School of Medicine, The University of Tennessee, 1924 Alcoa Highway, Knoxville, TN 37920, United States; Department of Psychology, College of Arts and Sciences, 1404 Circle Drive, United States; Program in Comparative and Experimental Medicine, 2407 River Drive, RM A102, The University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
19
|
Leikauf JE, Griffiths KR, Saggar M, Hong DS, Clarke S, Efron D, Tsang TW, Hermens DF, Kohn MR, Williams LM. Identification of biotypes in Attention-Deficit/Hyperactivity Disorder, a report from a randomized, controlled trial. PERSONALIZED MEDICINE IN PSYCHIATRY 2017; 3:8-17. [PMID: 35637915 PMCID: PMC9148272 DOI: 10.1016/j.pmip.2017.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is a heterogeneous disorder. Current subtypes lack longitudinal stability or prognostic utility. We aimed to identify data-driven biotypes using multiple cognitive measures, then to validate these biotypes using EEG, ECG, and clinical response to atomoxetine as external validators. Study design was a double-blind, randomized, placebo-controlled crossover trial of atomoxetine including 116 subjects ages 6 through 17 with diagnosis of ADHD and 56 typically developing controls. Initial features for unsupervised machine learning included a cognitive battery with 20 measures affected in ADHD. External validators included baseline mechanistic validators (using electroencephalogram/EEG and electrocardiogram/ECG) and clinical response (ADHD Rating Scale and correlation with cognitive change). One biotype, labeled impulsive cognition, was characterized by increased errors of commission and shorter reaction time, had greater EEG slow wave (theta/delta) power and greater resting heart rate. The second biotype, labeled inattentive cognition, was characterized by longer/more variable reaction time and errors of omission, had lower EEG fast wave (beta) power, resting heart rate that did not differ from controls, and a strong correlation (r = -0.447, p < 0.001) between clinical response to atomoxetine and improvement in verbal memory immediate recall. ADHD comprises at least two biotypes that cut across current subtype criteria and that may reflect distinct arousal mechanisms. The findings provide evidence that further investigation of cognitive subtypes may be at least as fruitful as symptom checklist-based subtypes for development of biologically-based diagnostics and interventions for ADHD.
Collapse
Affiliation(s)
- John E. Leikauf
- Department of Psychiatry and Behavioral Sciences, 401 Quarry Rd, Stanford University, Stanford, CA 94305, USA
| | - Kristi R. Griffiths
- Brain Dynamics Center, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, 401 Quarry Rd, Stanford University, Stanford, CA 94305, USA
| | - David S. Hong
- Department of Psychiatry and Behavioral Sciences, 401 Quarry Rd, Stanford University, Stanford, CA 94305, USA
| | - Simon Clarke
- Westmead Hospital & The Children’s Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - Daryl Efron
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Tracey W. Tsang
- Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Daniel F. Hermens
- Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Michael R. Kohn
- Westmead Hospital & The Children’s Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - Leanne M. Williams
- Department of Psychiatry and Behavioral Sciences, 401 Quarry Rd, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Motlagh F, Ibrahim F, Rashid R, Seghatoleslam T, Habil H. Investigation of brain electrophysiological properties among heroin addicts: Quantitative EEG and event-related potentials. J Neurosci Res 2016; 95:1633-1646. [DOI: 10.1002/jnr.23988] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Farid Motlagh
- Department of Biomedical Engineering, Faculty of Engineering; University of Malaya; Kuala Lumpur Malaysia
- Centre for Innovation in Medical Engineering, Faculty of Engineering; University of Malaya; Kuala Lumpur Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering; University of Malaya; Kuala Lumpur Malaysia
- Centre for Innovation in Medical Engineering, Faculty of Engineering; University of Malaya; Kuala Lumpur Malaysia
| | - Rusdi Rashid
- University of Malaya, Centre of Addiction Sciences; Kuala Lumpur Malaysia
| | - Tahereh Seghatoleslam
- University of Malaya, Centre of Addiction Sciences; Kuala Lumpur Malaysia
- Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Hussain Habil
- University of Malaya, Centre of Addiction Sciences; Kuala Lumpur Malaysia
- Department of Psychiatry; Mahsa University; Kuala Lumpur Malaysia
| |
Collapse
|
21
|
Wang GY, Kydd RR, Russell BR. Quantitative EEG and Low-Resolution Electromagnetic Tomography (LORETA) Imaging of Patients Undergoing Methadone Treatment for Opiate Addiction. Clin EEG Neurosci 2016; 47:180-7. [PMID: 26002855 DOI: 10.1177/1550059415586705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/20/2015] [Indexed: 11/16/2022]
Abstract
Methadone maintenance treatment (MMT) has been used as a treatment for opiate dependence since the mid-1960s. Evidence suggests that methadone binds to mu opiate receptors as do other opiates and induces changes in neurophysiological function. However, little is known, about how neural activity within the higher frequency gamma band (>30 Hz) while at rest changes in those stabilized on MMT despite its association with the excitation-inhibition balance within pyramidal-interneuron networks. Our study investigated differences in resting gamma power (37-41 Hz) between patients undergoing MMT for opiate dependence, illicit opiate users, and healthy controls subjects. Electroencephalographic data were recorded from 26 sites according to the international 10-20 system. Compared with the healthy controls subjects, people either undergoing MMT (mean difference [MD] = 0.32, 95% CI = 0.09-0.55, P < .01) or currently using illicit opiates (MD = 0.31, 95% CI = 0.06-0.56, P = .01) exhibited significant increased gamma power. The sLORETA (standardized low-resolution electromagnetic tomography) between-group comparison revealed dysfunctional neuronal activity in the occipital, parietal, and frontal lobes in the patients undergoing MMT. A more severe profile of dysfunction was observed in those using illicit opiates. Our findings suggest that long-term exposure to opioids is associated with disrupted resting state network, which may be reduced after MMT.
Collapse
Affiliation(s)
- Grace Y Wang
- Department of Psychology, Auckland University of Technology, Auckland, New Zealand
| | - Robert R Kydd
- Centre for Brain Research, University of Auckland, Auckland, New Zealand Department of Psychological Medicine, University of Auckland, Auckland, New Zealand
| | - Bruce R Russell
- Centre for Brain Research, University of Auckland, Auckland, New Zealand School of Pharmacy, University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Ben-Soussan TD, Glicksohn J, Berkovich-Ohana A. From Cerebellar Activation and Connectivity to Cognition: A Review of the Quadrato Motor Training. BIOMED RESEARCH INTERNATIONAL 2015; 2015:954901. [PMID: 26539545 PMCID: PMC4619922 DOI: 10.1155/2015/954901] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/06/2015] [Indexed: 11/18/2022]
Abstract
The importance of the cerebellum is increasingly recognized, not only in motor control but also in cognitive learning and function. Nevertheless, the relationship between training-induced cerebellar activation and electrophysiological and structural changes in humans has yet to be established. In the current paper, we suggest a general model tying cerebellar function to cognitive improvement, via neuronal synchronization, as well as biochemical and anatomical changes. We then suggest that sensorimotor training provides an optimal paradigm to test the proposed model and review supporting evidence of Quadrato Motor Training (QMT), a sensorimotor training aimed at increasing attention and coordination. Subsequently, we discuss the possible mechanisms through which QMT may exert its beneficial effects on cognition (e.g., increased creativity, reflectivity, and reading), focusing on cerebellar alpha activity as a possible mediating mechanism allowing cognitive improvement, molecular and anatomical changes. Using the example of QMT research, this paper emphasizes the importance of investigating whole-body sensorimotor training paradigms utilizing a multidisciplinary approach and its implications to healthy brain development.
Collapse
Affiliation(s)
- Tal Dotan Ben-Soussan
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation, Rome, Italy
| | - Joseph Glicksohn
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- Department of Criminology, Bar-Ilan University, Ramat Gan, Israel
| | - Aviva Berkovich-Ohana
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- Department of Physiology and Pharmacology, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
23
|
Alfimova MV, Melnikova TS, Golimbet VE. [Molecular-genetic and electroencephalographic markers of neurocognitive processes in depressive disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:103-109. [PMID: 26438903 DOI: 10.17116/jnevro201511551103-109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Perspectives of molecular-genetic approaches to the establishment of mechanisms of development and causes of heterogeneity of neurocognitive impairment are discussed. The current results indicate that candidate genes for depression can contribute to the variance of memory and regulatory functions in patients. At the same time, these genes are closely related to affective information processing and .cortisol level. By that fact, it can't be excluded that affective processes moderate the association between cognition and genes. EEG parameters could be useful phenotypes in the search for and understanding of genetic mechanisms of cognitive deficit in depression. Parameters of resting EEG and its reactive changes are known to reflect the certain cognitive processes. They are influenced by genetic factors and are sensitive indicators of mechanisms that might underlie cognitive impairment in depressive patients. Accumulating data on molecular-genetic correlates of normal electric brain activity may be a source of choosing new candidate genes for cognitive impairment in depression.
Collapse
Affiliation(s)
- M V Alfimova
- Mental Health Research Centre, Russian Academy of Sciences, Moscow; Moscow Research Institute of Psychiatry, Ministry of Health of the Russian Federation, Moscow
| | - T S Melnikova
- Moscow Research Institute of Psychiatry, Ministry of Health of the Russian Federation, Moscow
| | - V E Golimbet
- Mental Health Research Centre, Russian Academy of Sciences, Moscow
| |
Collapse
|
24
|
Feng P, Akladious AA, Hu Y, Raslan Y, Feng J, Smith PJ. 7,8-Dihydroxyflavone reduces sleep during dark phase and suppresses orexin A but not orexin B in mice. J Psychiatr Res 2015; 69:110-9. [PMID: 26343602 DOI: 10.1016/j.jpsychires.2015.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/22/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) binds to Tropomyosin-receptor-kinase B (TrkB) receptors that regulate synaptic strength and plasticity in the mammalian nervous system. 7,8-Dihydroxyflavone (DHF) is a recently identified small molecule Trk B agonist that has been reported to ameliorate depression, attenuate the fear response, improve memory consolidation, and exert neuroprotective effects. Poor and disturbed sleep remains a symptom of major depressive disorder and most current antidepressants affect sleep. Therefore, we conducted sleep/wake recordings and concomitant measurement of brain orexins, endogenous peptides that suppress sleep, in mice for this study. Baseline polysomnograph recording was performed for 24 h followed by treatment with either 5 mg/kg of DHF or vehicle at the beginning of the dark phase. Animals were sacrificed the following day, one hour after the final treatment with DHF. Orexin A and B were quantified using ELISA and radioimmunoassay, respectively. Total sleep was significantly decreased in the DHF group, 4 h after drug administration in the dark phase, when compared with vehicle-treated animals. This difference was due to a significant decrease of non-rapid eye movement sleep, but not rapid eye movement sleep. DHF increased power of alpha and sigma bands but suppressed power of gamma band during sleep in dark phase. Interestingly, hypothalamic levels of orexin A were also significantly decreased in the DHF group (97 pg/mg) when compared with the vehicle-treated group (132 pg/mg). However, no significant differences of orexin B were observed between groups. Additionally, no change was found in immobility tests.
Collapse
Affiliation(s)
- Pingfu Feng
- Louis Stokes Cleveland DVA Medical Center, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | | | - Yufen Hu
- Louis Stokes Cleveland DVA Medical Center, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yousef Raslan
- Louis Stokes Cleveland DVA Medical Center, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - James Feng
- Louis Stokes Cleveland DVA Medical Center, USA
| | - Phillip J Smith
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
25
|
Fingelkurts AA, Fingelkurts AA. Altered structure of dynamic electroencephalogram oscillatory pattern in major depression. Biol Psychiatry 2015; 77:1050-60. [PMID: 25662102 DOI: 10.1016/j.biopsych.2014.12.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 11/17/2022]
Abstract
Research on electroencephalogram (EEG) characteristics associated with major depressive disorder (MDD) has accumulated diverse neurophysiologic findings related to the content, topography, neurochemistry, and functions of EEG oscillations. Significant progress has been made since the first landmark EEG study on affective disorders by Davidson 35 years ago. A systematic account of these data is important and necessary for building a consistent neuropsychophysiologic model of MDD and other affective disorders. Given the extensive data on frequency-dependent functional significance of EEG oscillations, a frequency domain approach may reveal the types of brain functions involved and disturbed in MDD. In this review, we systematize and integrate diverse and often unconnected observations on the content, topography, neurochemistry, and functions of EEG oscillations involved in MDD within the general concept of an EEG oscillatory pattern.
Collapse
|
26
|
Abstract
In the last decade, the brain's oscillatory responses have invaded the literature. The studies on delta (0.5-3.5Hz) oscillatory responses in humans upon application of cognitive paradigms showed that delta oscillations are related to cognitive processes, mainly in decision making and attentional processes. The present manuscript comprehensively reviews the studies on delta oscillatory responses upon cognitive stimulation in healthy subjects and in different pathologies, namely Alzheimer's disease, Mild Cognitive Impairment (MCI), bipolar disorder, schizophrenia and alcoholism. Further delta oscillatory response upon presentation of faces, facial expressions, and affective pictures are reviewed. The relationship between pre-stimulus delta activity and post-stimulus evoked and event-related responses and/or oscillations is discussed. Cross-frequency couplings of delta oscillations with higher frequency windows are also included in the review. The conclusion of this review includes several important remarks, including that delta oscillatory responses are involved in cognitive and emotional processes. A decrease of delta oscillatory responses could be a general electrophysiological marker for cognitive dysfunction (Alzheimer's disease, MCI, bipolar disorder, schizophrenia and alcoholism). The pre-stimulus activity (phase or amplitude changes in delta activity) has an effect on post-stimulus EEG responses.
Collapse
Affiliation(s)
- Bahar Güntekin
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kültür University, Istanbul 34156, Turkey.
| | - Erol Başar
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kültür University, Istanbul 34156, Turkey
| |
Collapse
|
27
|
Chumbley J, Späti J, Dörig N, Brakowski J, Grosse Holtforth M, Seifritz E, Spinelli S. BDNF Val66Met polymorphism influence on striatal blood-level-dependent response to monetary feedback depends on valence and agency. Neuroscience 2014; 280:130-41. [PMID: 25234319 DOI: 10.1016/j.neuroscience.2014.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Animal work implicates the brain-derived neurotrophic factor (BDNF) in function of the ventral striatum (VS), a region known for its role in processing valenced feedback. Recent evidence in humans shows that BDNF Val66Met polymorphism modulates VS activity in anticipation of monetary feedback. However, it remains unclear whether the polymorphism impacts the processing of self-attributed feedback differently from feedback attributed to an external agent. In this study, we emphasize the importance of the feedback attribution because agency is central to computational accounts of the striatum and cognitive accounts of valence processing. We used functional magnetic resonance imaging and a task, in which financial gains/losses are either attributable to performance (self-attributed, SA) or chance (externally-attributed, EA) to ask whether BDNF Val66Met polymorphism predicts VS activity. We found that BDNF Val66Met polymorphism influenced how feedback valence and agency information were combined in the VS and in the right inferior frontal junction (IFJ). Specifically, Met carriers' VS response to valenced feedback depended on agency information, while Val/Val carriers' VS response did not. This context-specific modulation of valence effectively amplified VS responses to SA losses in Met carriers. The IFJ response to SA losses also differentiated Val/Val from Met carriers. These results may point to a reduced allocation of attention and altered motivational salience to SA losses in Val/Val compared to Met carriers. Implications for major depressive disorder are discussed.
Collapse
Affiliation(s)
- J Chumbley
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Switzerland
| | - J Späti
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - N Dörig
- Department of Psychology, University of Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Switzerland
| | - J Brakowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Switzerland
| | - M Grosse Holtforth
- Department of Psychology, University of Zurich, Switzerland; Department of Psychology, University of Bern, Switzerland
| | - E Seifritz
- Neuroscience Center, University and ETH Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - S Spinelli
- Neuroscience Center, University and ETH Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland; Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Switzerland.
| |
Collapse
|
28
|
Ben-Soussan TD, Piervincenzi C, Venditti S, Verdone L, Caserta M, Carducci F. Increased cerebellar volume and BDNF level following quadrato motor training. Synapse 2014; 69:1-6. [PMID: 25311848 DOI: 10.1002/syn.21787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/28/2014] [Accepted: 09/09/2014] [Indexed: 11/08/2022]
Abstract
Using whole-brain structural measures coupled to analysis of salivary brain-derived neurotrophic factor (BDNF), we demonstrate sensory motor training-induced plasticity, including cerebellar gray matter volume increment and increased BDNF level. The increase of cerebellar volume was positively correlated with the increase of BDNF level.
Collapse
Affiliation(s)
- Tal Dotan Ben-Soussan
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation, Assisi, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Wang GY, Kydd R, Wouldes TA, Jensen M, Russell BR. Changes in resting EEG following methadone treatment in opiate addicts. Clin Neurophysiol 2014; 126:943-50. [PMID: 25301768 DOI: 10.1016/j.clinph.2014.08.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 06/30/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE This study investigated the electrophysiological activity associated with methadone maintenance treatment (MMT). METHODS The resting EEG spectrum of beta (14.5-30 Hz), alpha (8-13 Hz), theta (4-7.5 Hz) and delta (1.5-3.5 Hz) rhythm were measured in 32 patients undertaking chronic MMT, 17 opiate users and 25 healthy volunteers. Differences in the EEG components of each group were evaluated using a repeated measures Analyses of Variance (ANOVA). Post-hoc comparisons were Bonferroni corrected. RESULTS Our results show that either patients undertaking MMT or active opiate users exhibited a significant increase in the power of beta and theta bands relative to healthy control subjects. However, the spectral power of patients undertaking MMT fell between that of current opiate users and healthy control subjects on many regional EEG measures. There was an inverse correlation between the power of beta or theta bands and cognitive performance. CONCLUSION The abnormal neural electrical activity present in those still using illicit opiates might be reduced following MMT. SIGNIFICANCE The present findings provide further support for MMT of opiate dependence and demonstrates potentially positive effects of substitution treatment on brain function.
Collapse
Affiliation(s)
- Grace Y Wang
- Department of Psychology, Auckland University of Technology, New Zealand.
| | - Rob Kydd
- Centre for Brain Research, University of Auckland, New Zealand; Department of Psychological Medicine, University of Auckland, New Zealand
| | - Trecia A Wouldes
- Department of Psychological Medicine, University of Auckland, New Zealand
| | - Maree Jensen
- School of Pharmacy, University of Auckland, New Zealand
| | - Bruce R Russell
- Centre for Brain Research, University of Auckland, New Zealand; School of Pharmacy, University of Auckland, New Zealand
| |
Collapse
|
30
|
Arns M, Cerquera A, Gutiérrez RM, Hasselman F, Freund JA. Non-linear EEG analyses predict non-response to rTMS treatment in major depressive disorder. Clin Neurophysiol 2014; 125:1392-9. [PMID: 24360132 DOI: 10.1016/j.clinph.2013.11.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/25/2013] [Indexed: 10/26/2022]
|
31
|
Soltész F, Suckling J, Lawrence P, Tait R, Ooi C, Bentley G, Dodds CM, Miller SR, Wille DR, Byrne M, McHugh SM, Bellgrove MA, Croft RJ, Lu B, Bullmore ET, Nathan PJ. Identification of BDNF sensitive electrophysiological markers of synaptic activity and their structural correlates in healthy subjects using a genetic approach utilizing the functional BDNF Val66Met polymorphism. PLoS One 2014; 9:e95558. [PMID: 24760076 PMCID: PMC3997566 DOI: 10.1371/journal.pone.0095558] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/28/2014] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence suggests that synaptic dysfunction is a core pathophysiological hallmark of neurodegenerative disorders. Brain-derived neurotropic factor (BDNF) is key synaptogenic molecule and targeting synaptic repair through modulation of BDNF signalling has been suggested as a potential drug discovery strategy. The development of such "synaptogenic" therapies depend on the availability of BDNF sensitive markers of synaptic function that could be utilized as biomarkers for examining target engagement or drug efficacy in humans. Here we have utilized the BDNF Val66Met genetic polymorphism to examine the effect of the polymorphism and genetic load (i.e. Met allele load) on electrophysiological (EEG) markers of synaptic activity and their structural (MRI) correlates. Sixty healthy adults were prospectively recruited into the three genetic groups (Val/Val, Val/Met, Met/Met). Subjects also underwent fMRI, tDCS/TMS, and cognitive assessments as part of a larger study. Overall, some of the EEG markers of synaptic activity and brain structure measured with MRI were the most sensitive markers of the polymorphism. Met carriers showed decreased oscillatory activity and synchrony in the neural network subserving error-processing, as measured during a flanker task (ERN); and showed increased slow-wave activity during resting. There was no evidence for a Met load effect on the EEG measures and the polymorphism had no effects on MMN and P300. Met carriers also showed reduced grey matter volume in the anterior cingulate and in the (left) prefrontal cortex. Furthermore, anterior cingulate grey matter volume, and oscillatory EEG power during the flanker task predicted subsequent behavioural adaptation, indicating a BDNF dependent link between brain structure, function and behaviour associated with error processing and monitoring. These findings suggest that EEG markers such as ERN and resting EEG could be used as BDNF sensitive functional markers in early clinical development to examine target engagement or drug related efficacy of synaptic repair therapies in humans.
Collapse
Affiliation(s)
- Fruzsina Soltész
- Clinical Unit Cambridge, GlaxoSmithKline, Cambridge, United Kingdom
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, United Kingdom
| | - Phil Lawrence
- Clinical Unit Cambridge, GlaxoSmithKline, Cambridge, United Kingdom
| | - Roger Tait
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, United Kingdom
| | - Cinly Ooi
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, United Kingdom
| | - Graham Bentley
- Clinical Unit Cambridge, GlaxoSmithKline, Cambridge, United Kingdom
| | - Chris M. Dodds
- Department of Psychology, University of Exeter, Exeter, United Kingdom
| | - Sam R. Miller
- Clinical Unit Cambridge, GlaxoSmithKline, Cambridge, United Kingdom
| | - David R. Wille
- Clinical Unit Cambridge, GlaxoSmithKline, Cambridge, United Kingdom
| | - Misha Byrne
- Queensland Brain Institute, University of Queensland, Queensland, Australia
| | - Simon M. McHugh
- Clinical Unit Cambridge, GlaxoSmithKline, Cambridge, United Kingdom
| | - Mark A. Bellgrove
- School of Psychology and Psychiatry, Monash University, Melbourne, Australia
| | - Rodney J. Croft
- Queensland Brain Institute, University of Queensland, Queensland, Australia
| | - Bai Lu
- Tsinghua University Medical School, Beijing, China
| | - Edward T. Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, United Kingdom
| | - Pradeep J. Nathan
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, United Kingdom
- School of Psychology and Psychiatry, Monash University, Melbourne, Australia
- New Medicines, UCB Pharma, Brussels, Belgium
| |
Collapse
|
32
|
Guindalini C, Mazzotti DR, Castro LS, D'Aurea CVR, Andersen ML, Poyares D, Bittencourt LRA, Tufik S. Brain-derived neurotrophic factor gene polymorphism predicts interindividual variation in the sleep electroencephalogram. J Neurosci Res 2014; 92:1018-23. [PMID: 24700661 DOI: 10.1002/jnr.23380] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/29/2014] [Accepted: 02/21/2014] [Indexed: 12/12/2022]
Abstract
Previous studies have suggested that brain-derived neurotrophic factor (BDNF) participates in the homeostatic regulation of sleep. The objective of this study was to investigate the influence of the Val66Met functional polymorphism of the BDNF gene on sleep and sleep EEG parameters in a large population-based sample. In total 337 individuals participating in the São Paulo Epidemiologic Sleep Study were selected for analysis. None of the participants had indications of a sleep disorder, as measured by full-night polysomnography and questionnaire. Spectral analysis of the EEG was carried out in all individuals using fast Fourier transformation of the oscillatory signals for each EEG electrode. Sleep and sleep EEG parameters in individuals with the Val/Val genotype were compared with those in Met carriers (Val/Met and Met/Met genotypes). After correction for multiple comparisons and for potential confounding factors, Met carriers showed decreased spectral power in the alpha band in stage one and decreased theta power in stages two and three of nonrapid-eye-movement sleep, at the central recording electrode. No significant influence on sleep macrostructure was observed among the genotype groups. Thus, the Val66Met polymorphism seems to modulate the electrical activity of the brain, predicting interindividual variation of sleep EEG parameters. Further studies of this and other polymorphic variants in potential candidate genes will help the characterization of the molecular basis of sleep.
Collapse
Affiliation(s)
- Camila Guindalini
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Arns M, Olbrich S. Personalized Medicine in ADHD and Depression: Use of Pharmaco-EEG. Curr Top Behav Neurosci 2014; 21:345-370. [PMID: 24615541 DOI: 10.1007/7854_2014_295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This chapter summarises recent developments on personalised medicine in psychiatry with a focus on ADHD and depression and their associated biomarkers and phenotypes. Several neurophysiological subtypes in ADHD and depression and their relation to treatment outcome are reviewed. The first important subgroup consists of the 'impaired vigilance' subgroup with often-reported excess frontal theta or alpha activity. This EEG subtype explains ADHD symptoms well based on the EEG Vigilance model, and these ADHD patients responds well to stimulant medication. In depression this subtype might be unresponsive to antidepressant treatments, and some studies suggest these depressive patients might respond better to stimulant medication. Further research should investigate whether sleep problems underlie this impaired vigilance subgroup, thereby perhaps providing a route to more specific treatments for this subgroup. Finally, a slow individual alpha peak frequency is an endophenotype associated with treatment resistance in ADHD and depression. Future studies should incorporate this endophenotype in clinical trials to investigate further the efficacy of new treatments in this substantial subgroup of patients.
Collapse
Affiliation(s)
- Martijn Arns
- Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands,
| | | |
Collapse
|
34
|
Mulholland CV, Somogyi AA, Barratt DT, Coller JK, Hutchinson MR, Jacobson GM, Cursons RT, Sleigh JW. Association of innate immune single-nucleotide polymorphisms with the electroencephalogram during desflurane general anaesthesia. J Mol Neurosci 2013; 52:497-506. [PMID: 24352713 DOI: 10.1007/s12031-013-0201-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/01/2013] [Indexed: 11/24/2022]
Abstract
The electroencephalogram (EEG) records the electrical activity of the brain and enables effects of anaesthetic drugs on brain functioning to be monitored. Identification of genes contributing to EEG variability during anaesthesia is important to the clinical application of anaesthesia monitoring and may provide an avenue to identify molecular mechanisms underlying the generation and regulation of brain oscillations. Central immune signalling can impact neuronal activity in the brain and accumulating evidence suggests an important role for cytokines as neuronal modulators. We tested 21 single-nucleotide polymorphisms (SNPs) in immune-related genes for associations with three anaesthesia-induced EEG patterns; spindle amplitude, delta power and alpha power, during general anaesthesia with desflurane in 111 patients undergoing general, gynaecological or orthopaedic surgery. Wide inter-patient variability was observed for all EEG variables. MYD88 rs6853 (p = 6.7 × 10(-4)) and IL-1β rs1143627 in conjunction with rs6853 (p = 1.5 × 10(-3)) were associated with spindle amplitude, and IL-10 rs1800896 was associated with delta power (p = 1.3 × 10(-2)) suggesting involvement of cytokine signalling in modulation of EEG patterns during desflurane anaesthesia. BDNF rs6265 was associated with alpha power (p = 3.9 × 10(-3)), suggesting differences in neuronal plasticity might also influence EEG patterns during desflurane anaesthesia. This is the first study we are aware of that has investigated genetic polymorphisms that may influence the EEG during general anaesthesia.
Collapse
|
35
|
Olbrich S, Arns M. EEG biomarkers in major depressive disorder: discriminative power and prediction of treatment response. Int Rev Psychiatry 2013; 25:604-18. [PMID: 24151805 DOI: 10.3109/09540261.2013.816269] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Major depressive disorder (MDD) has high population prevalence and is associated with substantial impact on quality of life, not least due to an unsatisfactory time span of sometimes several weeks from initiation of treatment to clinical response. Therefore extensive research focused on the identification of cost-effective and widely available electroencephalogram (EEG)-based biomarkers that not only allow distinguishing between patients and healthy controls but also have predictive value for treatment response for a variety of treatments. In this comprehensive overview on EEG research on MDD, biomarkers that are either assessed at baseline or during the early course of treatment and are helpful in discriminating patients from healthy controls and assist in predicting treatment outcome are reviewed, covering recent decades up to now. Reviewed markers include quantitative EEG (QEEG) measures, connectivity measures, EEG vigilance-based measures, sleep-EEG-related measures and event-related potentials (ERPs). Further, the value and limitations of these different markers are discussed. Finally, the need for integrated models of brain function and the necessity for standardized procedures in EEG biomarker research are highlighted to enhance future research in this field.
Collapse
Affiliation(s)
- Sebastian Olbrich
- Clinic for Psychiatry and Psychotherapy, University Hospital Leipzig , Germany
| | | |
Collapse
|
36
|
Arns M, Olbrich S. Two EEG channels do not make a 'quantitative EEG (QEEG)': a response to Widge, Avery and Zarkowski (2013). Brain Stimul 2013; 7:146-8. [PMID: 24269203 DOI: 10.1016/j.brs.2013.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/20/2013] [Indexed: 11/18/2022] Open
Affiliation(s)
- Martijn Arns
- Research Institute Brainclinics, Nijmegen, The Netherlands; Utrecht University, Department of Experimental Psychology, The Netherlands.
| | - Sebastian Olbrich
- Clinic for Psychiatry and Psychotherapy, University Hospital Leipzig, Germany
| |
Collapse
|
37
|
Musil R, Zill P, Seemüller F, Bondy B, Obermeier M, Spellmann I, Bender W, Adli M, Heuser I, Zeiler J, Gaebel W, Maier W, Rietschel M, Rujescu D, Schennach R, Möller HJ, Riedel M. No influence of brain-derived neurotrophic factor (BDNF) polymorphisms on treatment response in a naturalistic sample of patients with major depression. Eur Arch Psychiatry Clin Neurosci 2013; 263:405-12. [PMID: 22965830 DOI: 10.1007/s00406-012-0364-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 08/23/2012] [Indexed: 02/03/2023]
Abstract
The role of the brain-derived neurotrophic factor (BDNF) in the pathophysiology of major depressive disorder (MDD) remains to be elucidated. Recent post hoc analyses indicated a potential association of three polymorphisms in the BDNF gene with worse treatment outcome in patients with the subtype of melancholic depression. We aimed at replicating these findings in a German naturalistic multicenter follow-up. Three polymorphisms in the BDNF gene (rs7103411, rs6265 (Val66Met) and rs7124442) were genotyped in 324 patients with MDD and 470 healthy controls. We applied univariate tests and logistic regression models stratifying for depression subtype and gender. The three polymorphisms were not associated with MDD as diagnosis. Further, no associations were found in univariate tests. With logistic regression, we only found a tendency towards an association of the rs6265 (Val66Met) polymorphism with overall response to treatment (response rates: GG (val/val) < GA (val/met) < AA (met/met); p = 0.0129) and some gender differences for the rs6265 (Val66Met) and rs7103411 polymorphisms. Treatment outcome stratified for subtypes of depression did not differ significantly between the investigated polymorphisms or using haplotype analyses. However, results showed a tendency towards significance. At this stage, we cannot support an influence of these three polymorphisms. Further studies in larger patient samples to increase sample sizes of subgroups are warranted.
Collapse
Affiliation(s)
- Richard Musil
- Department of Psychiatry and Psychotherapy, Psychiatric Clinic, Ludwig-Maximilians-University Munich, Nussbaumstrasse 7, 80336, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
EEG Alpha Power as an Intermediate Measure Between Brain-Derived Neurotrophic Factor Val66Met and Depression Severity in Patients With Major Depressive Disorder. J Clin Neurophysiol 2013; 30:261-7. [DOI: 10.1097/wnp.0b013e3182933d6e] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
39
|
BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 2013; 14:401-16. [PMID: 23674053 DOI: 10.1038/nrn3505] [Citation(s) in RCA: 558] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that synaptic dysfunction is a key pathophysiological hallmark in neurodegenerative disorders, including Alzheimer's disease. Understanding the role of brain-derived neurotrophic factor (BDNF) in synaptic plasticity and synaptogenesis, the impact of the BDNF Val66Met polymorphism in Alzheimer's disease-relevant endophenotypes - including episodic memory and hippocampal volume - and the technological progress in measuring synaptic changes in humans all pave the way for a 'synaptic repair' therapy for neurodegenerative diseases that targets pathophysiology rather than pathogenesis. This article reviews the key issues in translating BDNF biology into synaptic repair therapies.
Collapse
|
40
|
Brain-derived neurotrophic factor serum levels and genotype: association with depression during interferon-α treatment. Neuropsychopharmacology 2013; 38:985-95. [PMID: 23303061 PMCID: PMC3629388 DOI: 10.1038/npp.2012.263] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Depression has been associated with inflammation, and inflammation may both influence and interact with growth factors such as brain-derived neurotrophic factor (BDNF). Both the functional Val66Met BDNF polymorphism (rs6265) and BDNF levels have been associated with depression. It is thus plausible that decreased BDNF could mediate and/or moderate cytokine-induced depression. We therefore prospectively employed the Beck Depression Inventory-II (BDI-II), the Hospital Anxiety and Depression Scale (HADS), and the Montgomery-Asberg Depression Rating Scale (MADRS) in 124 initially euthymic patients during treatment with interferon-alpha (IFN-α), assessing serum BDNF and rs6265. Using mixed-effect repeated measures, lower pretreatment BDNF was associated with higher depression symptoms during IFN-α treatment (F144,17.2=6.8; P<0.0001). However, although the Met allele was associated with lower BDNF levels (F1,83.0=5.0; P=0.03), it was only associated with increased MADRS scores (F4,8.9=20.3; P<0.001), and not the BDI-II or HADS. An exploratory comparison of individual BDI-II items indicated that the Met allele was associated with suicidal ideation, sadness, and worthlessness, but not neurovegetative symptoms. Conversely, the serotonin transporter promoter polymorphism (5-HTTLPR) short allele was associated with neurovegetative symptoms such as insomnia, poor appetite and fatigue, but not sadness, worthlessness, or suicidal ideation. IFN-α therapy further lowered BDNF serum levels (F4,37.7=5.0; P=0.003), but this decrease occurred regardless of depression development. The findings thus do not support the hypothesis that decreasing BDNF is the primary pathway by which IFN-α worsens depression. Nonetheless, the results support the hypothesis that BDNF levels influence resiliency against developing inflammatory cytokine-associated depression, and specifically to a subset of symptoms distinct from those influenced by 5-HTTLPR.
Collapse
|
41
|
The TWIN-E project in emotional wellbeing: study protocol and preliminary heritability results across four MRI and DTI measures. Twin Res Hum Genet 2012; 15:419-41. [PMID: 22856376 DOI: 10.1017/thg.2012.12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Despite the significant advancements being made in the neurogenetics for mental health, the identification and validation of potential endophenotype markers of risk and resilience remain to be confirmed. The TWIN-E study (The Twin study in Wellbeing using Integrative Neuroscience of Emotion) aims to validate endophenotype markers of mental health across cognitive, brain, and autonomic measures by testing the heritability, clinical plausibility, and reliability of each of these measures in a large adult twin cohort. The specific gene and environmental mechanisms that moderate prospective links between endophenotype-phenotype markers and the final outcome of wellbeing will also be identified. TWIN-E is a national prospective study with three phases: I) baseline testing on a battery of online questionnaires and cognitive tasks, and EEG, MRI, and autonomic testing; II) 12-month follow-up testing on the online assessments; and III) randomized controlled trial of brain training. Minimum target numbers include 1,500 male/female twins (18-65 years) for the online assessments (Phase I and II), 300 twins for the EEG testing component, and 244 twins for the MRI testing component. For Phase III, each twin out of the pair will be randomized to either the treatment or waitlist control group to test the effects of brain training on mental health over a 30-day period, and to confirm the gene-environment and endophenotype contributions to treatment response. Preliminary heritability results are provided for the first 50% of the MRI subgroup (n = 142) for the grey matter volume, thickness, and surface area measures, and white matter diffuse tensor imaging fractional anisotropy.
Collapse
|
42
|
Bachmann V, Klein C, Bodenmann S, Schäfer N, Berger W, Brugger P, Landolt HP. The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity. Sleep 2012; 35:335-44. [PMID: 22379239 PMCID: PMC3274334 DOI: 10.5665/sleep.1690] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY OBJECTIVES EEG slow waves are the hallmark of deep NREM sleep and may reflect the restorative functions of sleep. Evidence suggests that increased sleep slow waves after sleep deprivation reflect plastic synaptic processes, and that brain-derived neurotrophic factor (BDNF) is causally involved in their homeostatic regulation. The functional Val66Met polymorphism of the gene encoding pro-BDNF causes impaired activity-dependent secretion of mature BDNF protein. We investigated whether this polymorphism contributes to the pronounced inter-individual variation in sleep slow wave activity (SWA) in humans. SETTING Sleep laboratory in temporal isolation unit. PARTICIPANTS Eleven heterozygous Met allele carriers and 11 individually sex- and age-matched Val/Val homozygotes. INTERVENTIONS Forty hours prolonged wakefulness. MEASUREMENTS AND RESULTS Cognitive performance, subjective state, and waking and sleep EEG in baseline and after sleep deprivation were studied. Val/Val homozygotes showed better response accuracy than Met allele carriers on a verbal 2-back working memory task. This difference did not reflect genotype-dependent differences in sleepiness, well-being, or sustained attention. In baseline and recovery nights, deep stage 4 sleep and NREM sleep intensity as quantified by EEG SWA (0.75-4.5 Hz) were higher in Val/Val compared to Val/Met genotype. Similar to sleep deprivation, the difference was most pronounced in the first NREM sleep episode. By contrast, increased activity in higher EEG frequencies (> 6 Hz) in wakefulness and REM sleep was distinct from the effects of prolonged wakefulness. CONCLUSION BDNF contributes to the regulation of sleep slow wave oscillations, suggesting that genetically determined variation in neuronal plasticity modulates NREM sleep intensity in humans.
Collapse
Affiliation(s)
- Valérie Bachmann
- Institute of Pharmacology and Toxicology, University of Zürich, Switzerland
- Zürich Center for Integrative Human Physiology, University of Zürich, Switzerland
| | - Carina Klein
- Institute of Pharmacology and Toxicology, University of Zürich, Switzerland
| | - Sereina Bodenmann
- Institute of Pharmacology and Toxicology, University of Zürich, Switzerland
| | - Nikolaus Schäfer
- Institute of Medical Molecular Genetics, University of Zürich, Schwerzenbach, Switzerland
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zürich, Schwerzenbach, Switzerland
- Zürich Center for Integrative Human Physiology, University of Zürich, Switzerland
| | - Peter Brugger
- Department of Neurology, University Hospital Zürich, Switzerland
- Zürich Center for Integrative Human Physiology, University of Zürich, Switzerland
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Switzerland
- Zürich Center for Integrative Human Physiology, University of Zürich, Switzerland
| |
Collapse
|
43
|
Quinn CR, Dobson-Stone C, Outhred T, Harris A, Kemp AH. The contribution of BDNF and 5-HTT polymorphisms and early life stress to the heterogeneity of major depressive disorder: a preliminary study. Aust N Z J Psychiatry 2012; 46:55-63. [PMID: 22247094 DOI: 10.1177/0004867411430878] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Two reported genetic polymorphisms related to the production of brain-derived neurotrophic factor (BNDF) and reuptake by the serotonin transporter (5-HTT) appear to contribute to depression in combination with stressful life events. The aim of the current study was to investigate the contribution of early life stress (ELS), BDNF (Val versus Met alleles) and 5-HTT polymorphisms (L versus S alleles) to melancholic (n = 65) and non-melancholic depression (n = 59). METHODS A mediation approach ((G × G) × E mediation model) was employed to confirm the indirect effects of ELS on the relationship between 5-HTTPLR × BDNF polymorphism combinations and depression subtype. A series of binary logistic regressions were then conducted to determine whether genotype, ELS, and their interaction were able to predict depression subtype. RESULTS Key findings indicated that BDNF and 5-HTT polymorphisms in combination with ELS contributed to the development of non-melancholic depression. An interaction between BDNF and ELS increased the risk of non-melancholia by 3.327, whereas the interaction between 5-HTT and ELS increased risk by 2.406. CONCLUSION The results support a role for genetic factors in the development of non-melancholia. The lack of findings in melancholia indicates that other mechanisms may underlie the subtype. Alternatively, null findings may reflect a Type II error associated with a small sample size. Future studies should consider further examination of differential gene-environment interactions for melancholia versus non-melancholia.
Collapse
Affiliation(s)
- Candice R Quinn
- Discipline of Psychiatry, Sydney Medical School, University of Sydney, Australia
| | | | | | | | | |
Collapse
|
44
|
EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci Biobehav Rev 2011; 36:677-95. [PMID: 22020231 DOI: 10.1016/j.neubiorev.2011.10.002] [Citation(s) in RCA: 442] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/23/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
Functional significance of delta oscillations is not fully understood. One way to approach this question would be from an evolutionary perspective. Delta oscillations dominate the EEG of waking reptiles. In humans, they are prominent only in early developmental stages and during slow-wave sleep. Increase of delta power has been documented in a wide array of developmental disorders and pathological conditions. Considerable evidence on the association between delta waves and autonomic and metabolic processes hints that they may be involved in integration of cerebral activity with homeostatic processes. Much evidence suggests the involvement of delta oscillations in motivation. They increase during hunger, sexual arousal, and in substance users. They also increase during panic attacks and sustained pain. In cognitive domain, they are implicated in attention, salience detection, and subliminal perception. This evidence shows that delta oscillations are associated with evolutionary old basic processes, which in waking adults are overshadowed by more advanced processes associated with higher frequency oscillations. The former processes rise in activity, however, when the latter are dysfunctional.
Collapse
|
45
|
Gonul AS, Kitis O, Eker MC, Eker OD, Ozan E, Coburn K. Association of the brain-derived neurotrophic factor Val66Met polymorphism with hippocampus volumes in drug-free depressed patients. World J Biol Psychiatry 2011; 12:110-8. [PMID: 20726825 DOI: 10.3109/15622975.2010.507786] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Val66Met BDNF gene polymorphism is shown to affect the function of mature BDNF and mature BDNF plays an important role in the hippocampal neurogenesis and neuronal survival. METHODS A relationship of Val66Met BDNF gene polymorphism and hippocampal volumes in 33 MDD patients and 40 healthy controls is investigated. Region of interest analysis was conducted on the images acquired via MRI. RESULTS Depressed patients had smaller left hippocampal volumes compared to healthy controls. The diagnosis of MDD was not significantly related to hippocampal volumes among Met carriers; however, among Val homozygotes depressed patients had significantly smaller left hippocampal volumes compared to controls. Although both right and left hippocampal volumes showed nearly significant correlation with the duration of illness, this correlation reached (negative) significant levels only in the right hippocampal volume of the Val homozygotes. CONCLUSIONS Val homozygote genotype may serve as a vulnerability factor in MDD regarding hippocampal volume loss. This finding can be considered as a supportive evidence for the neurotrophic factor hypothesis of depression.
Collapse
Affiliation(s)
- Ali Saffet Gonul
- Affective Disorders Unit, Department of Psychiatry, Ege University School of Medicine Bornova, Izmir, Turkey.
| | | | | | | | | | | |
Collapse
|
46
|
Meda SA, Jagannathan K, Gelernter J, Calhoun VD, Liu J, Stevens MC, Pearlson GD. A pilot multivariate parallel ICA study to investigate differential linkage between neural networks and genetic profiles in schizophrenia. Neuroimage 2010; 53:1007-15. [PMID: 19944766 PMCID: PMC3968678 DOI: 10.1016/j.neuroimage.2009.11.052] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/29/2009] [Accepted: 11/19/2009] [Indexed: 11/28/2022] Open
Abstract
Understanding genetic influences on both healthy and disordered brain function is a major focus in psychiatric neuroimaging. We utilized task-related imaging findings from an fMRI auditory oddball task known to be robustly associated with abnormal activation in schizophrenia, to investigate genomic factors derived from multiple single nucleotide polymorphisms (SNPs) from genes previously shown to be associated with schizophrenia. Our major aim was to investigate the relationship of these genomic factors to normal/abnormal brain functionality between controls and schizophrenia patients. We studied a Caucasian-only sample of 35 healthy controls and 31 schizophrenia patients. All subjects performed an auditory oddball task, which consists of detecting an infrequent sound within a series of frequent sounds. Each subject was characterized on 24 different SNP markers spanning multiple risk genes previously associated with schizophrenia. We used a recently developed technique named parallel independent component analysis (para-ICA) to analyze this multimodal data set (Liu et al., 2008). The method aims to identify simultaneously independent components of each modality (functional imaging, genetics) and the relationships between them. We detected three fMRI components significantly correlated with two distinct gene components. The fMRI components, along with their significant genetic profile (dominant SNP) correlations were as follows: (1) Inferior frontal-anterior/posterior cingulate-thalamus-caudate with SNPs from Brain derived neurotropic factor (BDNF) and dopamine transporter (DAT) [r=-0.51; p<0.0001], (2) superior/middle temporal gyrus-cingulate-premotor with SLC6A4_PR and SLC6A4_PR_AG (serotonin transporter promoter; 5HTTLPR) [r=0.27; p=0.03], and (3) default mode-fronto-temporal gyrus with Brain derived neurotropic factor and dopamine transporter (BDNF, DAT) [r=-0.25; p=0.04]. Functional components comprised task-relevant regions (including PFC, ACC, STG and MTG) frequently identified as abnormal in schizophrenia. Further, gene-fMRI combinations 1 (Z=1.75; p=0.03), 2 (Z=1.84; p=0.03) and 3 (Z=1.67; p=0.04) listed above showed significant differences between controls and patients, based on their correlated loading coefficients. We demonstrate a framework to identify interactions between "clusters" of brain function and of genetic information. Our results reveal the effect/influence of specific interactions, (perhaps epistastatic in nature), between schizophrenia risk genes on imaging endophenotypes representing attention/working memory and goal directed related brain function, thus establishing a useful methodology to probe multivariate genotype-phenotype relationships.
Collapse
Affiliation(s)
- Shashwath A Meda
- Olin Neuropsychiatry Research Center, Institute of Living, 200 Retreat Avenue, Hartford, CT 06106, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Beste C, Schneider D, Epplen JT, Arning L. The functional BDNF Val66Met polymorphism affects functions of pre-attentive visual sensory memory processes. Neuropharmacology 2010; 60:467-71. [PMID: 21056046 DOI: 10.1016/j.neuropharm.2010.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 11/29/2022]
Abstract
The brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is involved in nerve growth and survival. Especially, a single nucleotide polymorphism (SNP) in the BDNF gene, Val66Met, has gained a lot of attention, because of its effect on activity-dependent BDNF secretion and its link to impaired memory processes. We hypothesize that the BDNF Val66Met polymorphism may have modulatory effects on the visual sensory (iconic) memory performance. Two hundred and eleven healthy German students (106 female and 105 male) were included in the data analysis. Since BDNF is also discussed to be involved in the pathogenesis of depression, we additionally tested for possible interactions with depressive mood. The BDNF Val66Met polymorphism significantly influenced iconic-memory performance, with the combined Val/Met-Met/Met genotype group revealing less time stability of information stored in iconic memory than the Val/Val group. Furthermore, this stability was positively correlated with depressive mood exclusively in the Val/Val genotype group. Thus, these results show that the BDNF Val66Met polymorphism has an effect on pre-attentive visual sensory memory processes.
Collapse
Affiliation(s)
- Christian Beste
- Department of Biopsychology, Institute for Cognitive Neuroscience, Ruhr-University Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany.
| | | | | | | |
Collapse
|
48
|
Gatt JM, Nemeroff CB, Schofield PR, Paul RH, Clark CR, Gordon E, Williams LM. Early life stress combined with serotonin 3A receptor and brain-derived neurotrophic factor valine 66 to methionine genotypes impacts emotional brain and arousal correlates of risk for depression. Biol Psychiatry 2010; 68:818-24. [PMID: 20728877 DOI: 10.1016/j.biopsych.2010.06.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/28/2010] [Accepted: 06/24/2010] [Indexed: 12/25/2022]
Abstract
BACKGROUND Depression will be the second largest burden of disease by 2020. Developing new tools for identifying risk and ultimately prevention of depression relies on elucidating the integrative relationships between susceptibility markers from gene-stress interactions and how they impact emotional brain and arousal systems. They have largely been studied in isolation. METHODS We examined how genetic (brain-derived neurotrophic factor [BDNF] valine 66 to methionine [Val66Met] and serotonin receptor gene 3A [HTR3A]) and early life stress susceptibility factors interact in predicting electroencephalogram (EEG) asymmetry, emotion-elicited heart rate, and self-reported negativity bias, each correlates of risk for depression. Caucasian volunteers (n = 363) were derived from the Brain Resource International Database, via the Brain Research And Integrative Neuroscience Network. RESULTS Individuals with both BDNF methionine and HTR3A CC risk genotypes and early life stressors demonstrated a profile of elevated emotion-elicited heart rate and right frontal hyper-activation with right parietotemporal hypoactivation in EEG asymmetry. Elevations in heart rate were a moderator of negativity bias. CONCLUSIONS The findings provide new evidence that these gene-stress susceptibility factors contribute to a brain-arousal profile indicative of risk for depression. They are a step toward identifying biological markers for detecting risk before overt symptoms. It would be valuable for future studies to examine comorbidity and specificity issues; for instance, whether these gene-stress factors contribute in different ways to the partially distinct EEG asymmetry profiles found with anxiety.
Collapse
Affiliation(s)
- Justine M Gatt
- Brain Dynamics Center, University of Sydney Medical School and Westmead Millennium Institute, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Hatch A, Madden S, Kohn M, Clarke S, Touyz S, Williams LM. Anorexia nervosa: towards an integrative neuroscience model. EUROPEAN EATING DISORDERS REVIEW 2010; 18:165-79. [PMID: 20443202 DOI: 10.1002/erv.974] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We reviewed the evidence for emotion-related disturbances in anorexia nervosa (AN) from behavioural, cognitive, biological and genetic domains of study. These domains were brought together within the framework of an integrative neuroscience model that emphasizes the role of emotion and feeling and their regulation, in brain organization. PsychInfo and Medline searches were performed to identify published peer-reviewed papers on AN within each domain. This review revealed evidence for 'Emotion', 'Thinking and Feeling' and 'Self-regulation' disturbances in AN that span non-conscious to conscious processes. An integrative neuroscience framework was then applied to develop a model of AN, from which hypotheses for empirical investigation are generated. We propose that AN reflects a core disturbance in emotion at the earliest time stage of information processing with subsequent effects on the later stages of thinking, feeling and self-regulation.
Collapse
Affiliation(s)
- A Hatch
- The Brain Dynamics Centre, Westmead Millennium Institute and University of Sydney, Westmead Hospital, Australia.
| | | | | | | | | | | |
Collapse
|
50
|
Gatt JM, Williams LM, Schofield PR, Dobson-Stone C, Paul RH, Grieve SM, Clark CR, Gordon E, Nemeroff CB. Impact of the HTR3A gene with early life trauma on emotional brain networks and depressed mood. Depress Anxiety 2010; 27:752-9. [PMID: 20694966 DOI: 10.1002/da.20726] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The risk for mental illnesses such as depression is increasingly conceptualized as the product of gene-environment interactions and their impact on brain structure and function. The role of serotonin 3A receptor gene (HTR3A -42C>T polymorphism) and its interaction with early life stress (ELS) was investigated in view of the receptor's localization to brain regions central to emotion processing. METHODS Fronto-limbic grey matter (GM) loss was measured using magnetic resonance imaging and assessed using voxel-based morphometry analysis in 397 nonclinical individuals from the Brain Resource International Database. Negative mood symptoms were also assessed. RESULTS The HTR3A CC genotype group, compared to the T carriers, demonstrated comparative loss to GM in hippocampal structures, which extended to the frontal cortices for those CC genotype individuals also exposed to ELS. Elevations in depressed mood were also evident. CONCLUSIONS These findings suggest that the HTR3A CC genotype may be associated with alterations in brain structures central to emotion processing, particularly when exposed to stress, and further highlight the potential role of the serotonin system in the pathophysiology of affective disorders. In contrast, those individuals with the T allele, in particular the TT genotype, may be more protected from such alterations combined with minimal exposure to ELS events.
Collapse
Affiliation(s)
- Justine M Gatt
- The Brain Dynamics Center, Westmead Millennium Institute & Discipline of Psychiatry, University of Sydney at Westmead Hospital, New South Wales, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|