1
|
Wüllhorst V, Wüllhorst R, Overmeyer R, Endrass T. Comprehensive Analysis of Event-Related Potentials of Response Inhibition: The Role of Negative Urgency and Compulsivity. Psychophysiology 2025; 62:e70000. [PMID: 39905275 PMCID: PMC11794679 DOI: 10.1111/psyp.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025]
Abstract
Behavioral and neural correlates of response inhibition are assumed to relate to impulsivity and compulsivity, but findings are inconsistent, possibly due to prior research studying these dimensions in isolation. Negative urgency, the tendency to act impulsive under negative affect, and compulsivity relate to various mental disorders and are assumed to reflect deficits in inhibitory control. However, few studies have examined how response inhibition relates to negative urgency, compulsivity, or their interaction. To address this gap, we conducted a comprehensive analysis of the behavioral and neural correlates of response inhibition and their associations with negative urgency and compulsivity. We examined 233 participants who performed a stop-signal task while electroencephalography was recorded. The analysis involved single-trial regression and latency analyses to explore the relationships with self-reported negative urgency and compulsivity. Stop-signal reaction times (SSRTs) and negative urgency were associated with an attenuated P3 effect contrasting successful stop versus go trials. Crucially, longer SSRT was associated with reduced P1 amplitudes (on successful and failed stops) and a later onset and peak of the P3. Interestingly, the opposite pattern was observed for higher negative urgency with higher P1 amplitudes and an earlier P3 onset and peak in successful stop trials. Associations with compulsivity were not observed. Considering early sensorimotor processes and latency effects are important to capture differences between negative urgency and SSRT. Higher stop-signal-related P1 amplitudes and a faster action cancellation process may compensate reduced P3-related activity in high negative urgency.
Collapse
Affiliation(s)
- Verena Wüllhorst
- Faculty of Psychology, Institute of Clinical Psychology and PsychotherapyTechnische Universtität DresdenDresdenGermany
| | - Raoul Wüllhorst
- Faculty of Psychology, Institute of Clinical Psychology and PsychotherapyTechnische Universtität DresdenDresdenGermany
| | - Rebecca Overmeyer
- Faculty of Psychology, Institute of Clinical Psychology and PsychotherapyTechnische Universtität DresdenDresdenGermany
| | - Tanja Endrass
- Faculty of Psychology, Institute of Clinical Psychology and PsychotherapyTechnische Universtität DresdenDresdenGermany
| |
Collapse
|
2
|
Hervault M, Soh C, Wessel JR. Does the stop-signal P3 reflect inhibitory control? Cortex 2025; 183:232-250. [PMID: 39754857 PMCID: PMC11839379 DOI: 10.1016/j.cortex.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/16/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025]
Abstract
The ability to stop already-initiated actions is paramount to adaptive behavior. In psychology and neuroscience alike, action-stopping is a popular model behavior to probe inhibitory control - the underlying cognitive control process that is purportedly vital to regulating thoughts and actions. Starting with seminal work in the 1990s, the frontocentral stop-signal P3 - an event-related potential derived from scalp EEG - has been proposed as a neurophysiological index of inhibitory control during action-stopping. However, this association has been challenged repeatedly over recent years. Here, we perform a critical review of both the evidence in support of the association between this P3 index and inhibitory control, as well as its documented criticisms. We first comprehensively review literature from the past three decades that suggested a link between stop-signal P3 and inhibitory control. Second, we then replicate the key empirical patterns reported in that body of literature in a uniquely large stop-signal task EEG dataset (N = 255). Third, we then examine the criticisms raised against the view of P3 as an index of inhibitory control and evaluate the evidence supporting these arguments. Finally, we present an updated view of the process(es) reflected in the stop-signal P3. Specifically, we propose that the stop-signal P3 indexes a specific, selective inhibitory control process that critically contributes to action-stopping. This view is motivated by recent two-stage models of inhibitory control and emerging empirical data. Together, we hope to clarify the process(es) reflected in the stop-signal P3 and resolve the ongoing debates regarding its utility as an index of inhibitory control during action-stopping.
Collapse
Affiliation(s)
- Mario Hervault
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; Cognitive Control Collaborative, University of Iowa, Iowa City, IA, USA.
| | - Cheol Soh
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; Cognitive Control Collaborative, University of Iowa, Iowa City, IA, USA
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; Cognitive Control Collaborative, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
3
|
Isherwood S, Kemp SA, Miletić S, Stevenson N, Bazin PL, Forstmann B. Multi-study fMRI outlooks on subcortical BOLD responses in the stop-signal paradigm. eLife 2025; 12:RP88652. [PMID: 39841120 PMCID: PMC11753779 DOI: 10.7554/elife.88652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
This study investigates the functional network underlying response inhibition in the human brain, particularly the role of the basal ganglia in successful action cancellation. Functional magnetic resonance imaging (fMRI) approaches have frequently used the stop-signal task to examine this network. We merge five such datasets, using a novel aggregatory method allowing the unification of raw fMRI data across sites. This meta-analysis, along with other recent aggregatory fMRI studies, does not find evidence for the innervation of the hyperdirect or indirect cortico-basal-ganglia pathways in successful response inhibition. What we do find, is large subcortical activity profiles for failed stop trials. We discuss possible explanations for the mismatch of findings between the fMRI results presented here and results from other research modalities that have implicated nodes of the basal ganglia in successful inhibition. We also highlight the substantial effect smoothing can have on the conclusions drawn from task-specific general linear models. First and foremost, this study presents a proof of concept for meta-analytical methods that enable the merging of extensive, unprocessed, or unreduced datasets. It demonstrates the significant potential that open-access data sharing can offer to the research community. With an increasing number of datasets being shared publicly, researchers will have the ability to conduct meta-analyses on more than just summary data.
Collapse
Affiliation(s)
- Scott Isherwood
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
| | - Sarah A Kemp
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
- Sensorimotor Neuroscience and Ageing Research Lab, School of Psychological Sciences, University of TasmaniaHobartAustralia
| | - Steven Miletić
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
- Department of Psychology, Faculty of Social Sciences, Leiden UniversityLeidenNetherlands
| | - Niek Stevenson
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
| | | | - Birte Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
4
|
Weber S, Salomoni SE, St George RJ, Hinder MR. Stopping Speed in Response to Auditory and Visual Stop Signals Depends on Go Signal Modality. J Cogn Neurosci 2024; 36:1395-1411. [PMID: 38683725 DOI: 10.1162/jocn_a_02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Past research has found that the speed of the action cancellation process is influenced by the sensory modality of the environmental change that triggers it. However, the effect on selective stopping processes (where participants must cancel only one component of a multicomponent movement) remains unknown, despite these complex movements often being required as we navigate our busy modern world. Thirty healthy adults (mean age = 31.1 years, SD = 10.5) completed five response-selective stop signal tasks featuring different combinations of "go signal" modality (the environmental change baring an imperative to initiate movement; auditory or visual) and "stop signal" modality (the environmental change indicating that action cancellation is required: auditory, visual, or audiovisual). EMG recordings of effector muscles allowed detailed comparison of the characteristics of voluntary action and cancellation between tasks. Behavioral and physiological measures of stopping speed demonstrated that the modality of the go signal influenced how quickly participants cancelled movement in response to the stop signal: Stopping was faster in two cross-modal experimental conditions (auditory go - visual stop; visual go - auditory stop), than in two conditions using the same modality for both signals. A separate condition testing for multisensory facilitation revealed that stopping was fastest when the stop signal consisted of a combined audiovisual stimulus, compared with all other go-stop stimulus combinations. These findings provide novel evidence regarding the role of attentional networks in action cancellation and suggest modality-specific cognitive resources influence the latency of the stopping process.
Collapse
|
5
|
Friehs MA, Schmalbrock P, Merz S, Dechant M, Hartwigsen G, Frings C. A touching advantage: cross-modal stop-signals improve reactive response inhibition. Exp Brain Res 2024; 242:599-618. [PMID: 38227008 PMCID: PMC10894768 DOI: 10.1007/s00221-023-06767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024]
Abstract
The ability to inhibit an already initiated response is crucial for navigating the environment. However, it is unclear which characteristics make stop-signals more likely to be processed efficiently. In three consecutive studies, we demonstrate that stop-signal modality and location are key factors that influence reactive response inhibition. Study 1 shows that tactile stop-signals lead to better performance compared to visual stop-signals in an otherwise visual choice-reaction task. Results of Study 2 reveal that the location of the stop-signal matters. Specifically, if a visual stop-signal is presented at a different location compared to the visual go-signal, then stopping performance is enhanced. Extending these results, study 3 suggests that tactile stop-signals and location-distinct visual stop-signals retain their performance enhancing effect when visual distractors are presented at the location of the go-signal. In sum, these results confirm that stop-signal modality and location influence reactive response inhibition, even in the face of concurrent distractors. Future research may extend and generalize these findings to other cross-modal setups.
Collapse
Affiliation(s)
- Maximilian A Friehs
- Psychology of Conflict, Risk and Safety, Department of Technology, Human and Institutional Behaviour, Faculty of Behavioural, Management and Social Sciences, University of Twente, Enschede, The Netherlands.
- School of Psychology, University College Dublin, Dublin, Ireland.
- Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Philipp Schmalbrock
- Department of General Psychology and Methodology, Trier University, Trier, Germany
| | - Simon Merz
- Department of General Psychology and Methodology, Trier University, Trier, Germany
| | - Martin Dechant
- UCLIC, University College London, London, UK
- ZEISS Vision Science Lab, Carl Zeiss Vision International GmbH, Turnstrasse 27, 73430, Aalen, Germany
| | - Gesa Hartwigsen
- Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Christian Frings
- Department of General Psychology and Methodology, Trier University, Trier, Germany
| |
Collapse
|
6
|
Powell A, Sumnall H, Smith J, Kuiper R, Montgomery C. Recovery of neuropsychological function following abstinence from alcohol in adults diagnosed with an alcohol use disorder: Systematic review of longitudinal studies. PLoS One 2024; 19:e0296043. [PMID: 38166127 PMCID: PMC10760842 DOI: 10.1371/journal.pone.0296043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Alcohol use disorders (AUD) associate with structural and functional brain differences, including impairments in neuropsychological function; however, reviews (mostly cross-sectional) are inconsistent with regards to recovery of such functions following abstinence. Recovery is important, as these impairments associate with treatment outcomes and quality of life. OBJECTIVE(S) To assess neuropsychological function recovery following abstinence in individuals with a clinical AUD diagnosis. The secondary objective was to assess predictors of neuropsychological recovery in AUD. METHODS Following the preregistered protocol (PROSPERO: CRD42022308686), APA PsycInfo, EBSCO MEDLINE, CINAHL, and Web of Science Core Collection were searched between 1999-2022. Study reporting follows the Joanna Briggs Institute (JBI) Manual for Evidence Synthesis, study quality was assessed using the JBI Checklist for Cohort Studies. Eligible studies were those with a longitudinal design that assessed neuropsychological recovery following abstinence from alcohol in adults with a clinical diagnosis of AUD. Studies were excluded if participant group was defined by another or co-morbid condition/injury, or by relapse. Recovery was defined as function reaching 'normal' performance. RESULTS Sixteen studies (AUD n = 783, controls n = 390) were selected for narrative synthesis. Most functions demonstrated recovery within 6-12 months, including sub-domains within attention, executive function, perception, and memory, though basic processing speed and working memory updating/tracking recovered earlier. Additionally, verbal fluency was not impaired at baseline (while verbal function was not assessed compared to normal levels), and concept formation and reasoning recovery was inconsistent. CONCLUSIONS These results provide evidence that recovery of most functions is possible. While overall robustness of results was good, methodological limitations included lack of control groups, additional methods to self-report to confirm abstinence, description/control for attrition, statistical control of confounds, and of long enough study durations to capture change.
Collapse
Affiliation(s)
- Anna Powell
- School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
- Liverpool Centre for Alcohol Research, University of Liverpool, Liverpool, United Kingdom
| | - Harry Sumnall
- Liverpool Centre for Alcohol Research, University of Liverpool, Liverpool, United Kingdom
- Public Health Institute, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jessica Smith
- Liverpool Centre for Alcohol Research, University of Liverpool, Liverpool, United Kingdom
- Public Health Institute, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| | - Rebecca Kuiper
- School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
- Liverpool Centre for Alcohol Research, University of Liverpool, Liverpool, United Kingdom
| | - Catharine Montgomery
- School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
- Liverpool Centre for Alcohol Research, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Aksiotis V, Myachykov A, Tumyalis A. Stop-signal delay reflects response selection duration in stop-signal task. Atten Percept Psychophys 2023; 85:1976-1989. [PMID: 37415061 DOI: 10.3758/s13414-023-02752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
The stop-signal task (SST) is widely used for studying the speed of the latent process of response inhibition. The SST patterns are typically explained by a horse-race model (HRM) with supposed Go and Stop processes. However, HRM does not agree with the sequential-stage model of response control. As a result, the exact relationship between the response selection, the response execution stages, and the Stop process remains unclear. We propose that response selection occurs within the stop-signal delay (SSD) period, and that the competition between the Go and Stop processes occurs within the response execution period. To confirm this, we conducted two experiments. In Experiment 1, participants carried out a modified SST task with an additional stimulus category - Cued-Go. In the Cued-Go trials, cues were followed by imperative Go signals. The Cue-Go period duration was dynamically adjusted by an adaptive algorithm based on the response times reflecting the individual response selection duration. In Experiment 2, Cued-Go stimuli were followed by Stop Signals in half of the trials and response inhibition efficiency was calculated. The results of Experiment 1 indicate that SSD reflects the duration of the response selection process. The results of Experiment 2 show that this process has an independent and small effect on the effectiveness of controlled inhibition of the target response. Based on our findings, we propose a two-stage model of response inhibition in SST, with the first stage including response selection process and the second stage response inhibition following the SS presentation.
Collapse
Affiliation(s)
- Vladislav Aksiotis
- Centre for Bioelectric Interfaces, Institute for Cognitive Neuroscience, Higher School of Economics, Krivokolenniy Pereulok 3, Moscow, 101000, Russian Federation
| | - Andriy Myachykov
- Department of Psychology, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, HSE University, Krivokolenniy Pereulok 3, Moscow, Russian Federation, 101000
| | - Alexey Tumyalis
- Centre for Bioelectric Interfaces, Institute for Cognitive Neuroscience, Higher School of Economics, Krivokolenniy Pereulok 3, Moscow, 101000, Russian Federation.
- Laboratory of Medical Neurointerfaces and Artificial Intellect, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, Ostrovityanova st. 1, bld. 10, Moscow, Russian Federation, 117513.
| |
Collapse
|
8
|
Cancellation but not restraint ability is modulated by trait anxiety: An event-related potential and oscillation study using Go-Nogo and stop-signal tasks. J Affect Disord 2022; 299:188-195. [PMID: 34863714 DOI: 10.1016/j.jad.2021.11.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Trait anxiety has a detrimental effect on attention, which further leads to dysfunction of inhibitory control. However, there is no study examining how trait anxiety modulates inhibitory abilities on restraint and cancellation in the same subjects. Therefore, we aimed to use electrophysiological recordings to interrogate whether and to what extent trait anxiety modulated these two kinds of inhibitory functions. The Cognitive Failures Questionnaire (CFQ), a self-reported assessment of daily absentmindedness, was also used to examine its association with inhibition-related electrophysiological indicators. METHODS Forty subjects were recruited from the top 10% (Higher Trait Anxiety [HTA], n= 20) and last 10% (Lower Trait Anxiety [LTA], n= 20) of the trait anxiety score distribution from 400 college students. During electrophysiological recordings, the Go-Nogo and stop-signal tasks were performed, which evaluated the abilities of restraint and cancellation, respectively. RESULTS The HTA and LTA groups showed a comparable behavioral performance of restraint and cancellation abilities. However, the results of time-frequency analysis revealed that those with HTA demonstrated a stronger power of alpha oscillations (600‒1000 ms) in response to Stop trials in the stop-signal task, compared with individuals with LTA. Such oscillatory activity was positively correlated with the CFQ score. There was no significant between-group difference of the brain activation in the Go-Nogo task. LIMITATIONS Future studies can recruit both individuals with trait anxiety and anxiety disorders to clarify the boundaries between healthy and pathological worries in terms of cancellation ability. CONCLUSIONS cancellation, but not restraint, is modulated by trait anxiety.
Collapse
|
9
|
Ikarashi K, Sato D, Fujimoto T, Edama M, Baba Y, Yamashiro K. Response Inhibitory Control Varies with Different Sensory Modalities. Cereb Cortex 2021; 32:275-285. [PMID: 34223874 DOI: 10.1093/cercor/bhab207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/12/2022] Open
Abstract
Response inhibition plays an essential role in preventing anticipated and unpredictable events in our daily lives. It is divided into proactive inhibition, where subjects postpone responses to an upcoming signal, and reactive inhibition, where subjects stop an impending movement based on the presentation of a signal. Different types of sensory input are involved in both inhibitions; however, differences in proactive and reactive inhibition with differences in sensory modalities remain unclear. This study compared proactive and reactive inhibitions induced by visual, auditory, and somatosensory signals using the choice reaction task (CRT) and stop-signal task (SST). The experiments showed that proactive inhibitions were significantly higher in the auditory and somatosensory modalities than in the visual modality, whereas reactive inhibitions were not. Examining the proactive inhibition-associated neural processing, the auditory and somatosensory modalities showed significant decreases in P3 amplitudes in Go signal-locked event-related potentials (ERPs) in SST relative to those in CRT; this might reflect a decreasing attentional resource on response execution in SST in both modalities. In contrast, we did not find significant differences in the reactive inhibition-associated ERPs. These results suggest that proactive inhibition varies with different sensory modalities, whereas reactive inhibition does not.
Collapse
Affiliation(s)
- Koyuki Ikarashi
- Major in Health and Welfare, Graduate School of Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Tomomi Fujimoto
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Mutsuaki Edama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Yasuhiro Baba
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Koya Yamashiro
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| |
Collapse
|
10
|
Nguyen AT, Albrecht MA, Lipp OV, Marinovic W. Motor output matters: Evidence of a continuous relationship between Stop/No-go P300 amplitude and peak force on failed inhibitions at the trial-level. Psychophysiology 2020; 57:e13558. [PMID: 32129505 DOI: 10.1111/psyp.13558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/09/2020] [Accepted: 02/12/2020] [Indexed: 01/02/2023]
Abstract
Motor actions can be suppressed with varying degrees of success, but this variability is not often captured as responses are typically represented as binary (response vs. no-response). Although the Stop/No-go P300 has been implicated as an index of inhibitory-control, it is unclear how the range of motor outputs relates to the P300. We examined the nature of this association in two experiments using an Anticipatory Timing and a Go/No-go Task, while measuring peak force, movement onset time, and P300. In both experiments, our results showed that trial-by-trial P300 amplitude on Failed Inhibitions were continuously related to peak force, where higher force (reflecting a greater degree of error) was associated with smaller P300 amplitude. Compared to Successful Inhibitions, P300 amplitude and onset latency on Failed Inhibitions were significantly reduced and delayed. Although the binary categorization of inhibition-success (Successful vs. Failed) accounts for significant variance in the P300, it misses a reliable linear relationship that can be captured by continuous measures of motor output. Overall, the results provide evidence that P300 may reflect the continuously varying engagement of inhibitory-control. We present an activation model to visualize the P300-force association and to illustrate how motor output might be modeled in the context of inhibitory-control. Our results highlight the relevance of P300 amplitude and the importance of studying the spectrum of motor output and the need for future models to account for motor output.
Collapse
Affiliation(s)
- An T Nguyen
- School of Psychology, Curtin University, Perth, WA, Australia
| | | | - Ottmar V Lipp
- School of Psychology, Curtin University, Perth, WA, Australia
| | | |
Collapse
|