1
|
Sarker SS, Hasan Sarkar MM, Sharmin SA, Tarannum N, Akter T, Alam MA, Miah MI, Ali Shaikh MA, Parveen S. Molecular characterization of chromium tolerant and gelatin hydrolyzing bacterial isolates from tannery wastes: Perspective on chrome-tanned leather waste biodegradation in Bangladesh. J Genet Eng Biotechnol 2025; 23:100479. [PMID: 40390507 PMCID: PMC11994310 DOI: 10.1016/j.jgeb.2025.100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 02/12/2025] [Accepted: 03/10/2025] [Indexed: 05/21/2025]
Abstract
Improper management of chrome-tanned leather waste (CTLW) might potentially cause adverse environmental consequences. To mitigate that harmful impact, this study aims to find and conduct molecular characterization of bacteria from tannery wastes that can tolerate chromium (Cr) and hydrolyze gelatin. Bacteria from tannery wastes are naturally adapted to Cr; eight Cr(III) tolerant bacteria, namely bacterial isolate (BI) 1 to 8, were isolated from the collected waste samples. The isolated bacteria showed the maximum tolerance concentration (MTC) range of 700 to 1500 ppm for Cr(III) and 200 to 600 ppm for Cr(VI). Physiological and biochemical analysis, including the gelatin hydrolysis activity, identified those isolates up to the genus level. Among the isolates, BI 4, 5, and 7 were able to hydrolyze gelatin. Therefore, 16S rRNA molecular characterization was conducted for those isolates, which confirmed BI 4, 5, and 7 as Bacillus wiedmannii (Accession No: OR564007), Enterococcus faecium (Accession No: OR564008), and Bacillus cereus (Accession No: OR564009), respectively. Bacteria with gelatin hydrolyzing activity can be the potential for degrading hydrothermally treated CTLW. Thereby, those three isolates were applied to explore their biodegradation ability in real world scenario. The biodegradation experiments showed that Enterococcus faecium, Bacillus cereus, and Bacillus wiedmannii were able to biodegrade hydrothermally treated CTLW at 98.67 %, 98.33 % and 98.00 %, respectively. The present study demonstrates Enterococcus faecium, Bacillus cereus, and Bacillus wiedmannii having biodegradation of CTLW applications might mitigate environmental pollution caused by this waste in the perspective of Bangladesh.
Collapse
Affiliation(s)
- Shashanka Shekhar Sarker
- Leather Research Institute (LRI), Bangladesh Council of Scientific and Industrial Research (BCSIR), Nayarhat, Savar, Dhaka 1350, Bangladesh.
| | - Md Murshed Hasan Sarkar
- Bangladesh Council of Scientific and Industrial Research Laboratories, Dhaka 1205, Bangladesh
| | - Shamima Akhter Sharmin
- Environmental Biotechnology Division, National Institute of Biotechnology (NIB), Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh.
| | - Nourin Tarannum
- Leather Research Institute (LRI), Bangladesh Council of Scientific and Industrial Research (BCSIR), Nayarhat, Savar, Dhaka 1350, Bangladesh
| | - Taslima Akter
- Leather Research Institute (LRI), Bangladesh Council of Scientific and Industrial Research (BCSIR), Nayarhat, Savar, Dhaka 1350, Bangladesh
| | - Md Ashraful Alam
- Leather Research Institute (LRI), Bangladesh Council of Scientific and Industrial Research (BCSIR), Nayarhat, Savar, Dhaka 1350, Bangladesh
| | - Md Ibrahim Miah
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Md Aftab Ali Shaikh
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh; Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Sahana Parveen
- Leather Research Institute (LRI), Bangladesh Council of Scientific and Industrial Research (BCSIR), Nayarhat, Savar, Dhaka 1350, Bangladesh.
| |
Collapse
|
2
|
Xu H, Zhang H, Qin C, Li X, Xu D, Zhao Y. Groundwater Cr(VI) contamination and remediation: A review from 1999 to 2022. CHEMOSPHERE 2024; 360:142395. [PMID: 38797207 DOI: 10.1016/j.chemosphere.2024.142395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Hexavalent chromium (Cr(VI)) contamination of groundwater has traditionally been an environmental issue of great concern due to its bioaccumulative and highly toxic nature. This paper presents a review and bibliometric analysis of the literature on the interest area "Cr(VI) in groundwater" published in the Web of Science Core Collection from 1999 to 2022. First, information on 203 actual Cr(VI)-contaminated groundwater sites around the world was summarized, and the basic characteristics of the sources and concentrations of contamination were derived. 68.95% of the sites were due to human causes and 56.43% of these sites had Cr(VI) concentrations in the range of 0-10 mg/L. At groundwater sites with high Cr(VI) contamination due to natural causes, 75.00% of the sites had Cr(VI) concentrations less than 0.2 mg/L. A total of 936 papers on "Cr(VI) in groundwater" were retrieved for bibliometric analysis: interest in research on Cr(VI) in groundwater has grown rapidly in recent years; 59.4% of the papers were published in the field of environmental sciences. A systematic review of the progress of studies on the Cr(VI) removal/remediation based on reduction, adsorption and biological processes is presented. Out of 666 papers on Cr(VI) removal/remediation, 512, 274, and 75 papers dealt with the topics of reduction, adsorption, and bioremediation, respectively. In addition, several studies have demonstrated the potential applicability of natural attenuation in the remediation of Cr(VI)-contaminated groundwater. This paper will help researchers to understand and investigate methodological strategies to remove Cr(VI) from groundwater in a more targeted and effective manner.
Collapse
Affiliation(s)
- Huichao Xu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Hui Zhang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Chuanyu Qin
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Xiaoyu Li
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Dan Xu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Yongsheng Zhao
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Perea KR, DeVeaux LC, Lee BD, Losey NA. Complete genome sequence of Cellulomonas sp., strain ES6, a chromate-reducing bacterium isolated from chromium-contaminated subsurface sediment. Microbiol Resour Announc 2023; 12:e0049523. [PMID: 37681972 PMCID: PMC10586102 DOI: 10.1128/mra.00495-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 09/09/2023] Open
Abstract
Cellulomonas sp. strain ES6 is a chromate-reducing bacterium isolated from chromium contaminated subsurface sediment. Illumina MiSeq and Oxford Nanopore sequencing were used to assemble the genome sequence which consisted of a single circular chromosome of 4.13 Mb, contained 3,960 protein encoding genes and with an overall G + C content 75.38%.
Collapse
Affiliation(s)
- Katheryn R. Perea
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | - Linda C. DeVeaux
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | - Brady D. Lee
- Earth, Biological and Quantitative Systems Science Division, Savannah River National Laboratory, Aiken, South Carolina, USA
| | - Nathaniel A. Losey
- Earth, Biological and Quantitative Systems Science Division, Savannah River National Laboratory, Aiken, South Carolina, USA
| |
Collapse
|
4
|
Nivetha N, Srivarshine B, Sowmya B, Rajendiran M, Saravanan P, Rajeshkannan R, Rajasimman M, Pham THT, Shanmugam V, Dragoi EN. A comprehensive review on bio-stimulation and bio-enhancement towards remediation of heavy metals degeneration. CHEMOSPHERE 2023; 312:137099. [PMID: 36372332 DOI: 10.1016/j.chemosphere.2022.137099] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Pollution of heavy metals is one of the risky contaminations that should be managed for all intents and purposes of general well-being concerns. The bioaccumulation of these heavy metals inside our bodies and pecking orders will influence our people in the future. Bioremediation is a bio-mechanism where residing organic entities use and reuse the squanders that are reused to one more form. This could be accomplished by taking advantage of the property of explicit biomolecules or biomass that is equipped for restricting by concentrating the necessary heavy metal particles. The microorganisms can't obliterate the metal yet can change it into a less harmful substance. In this unique circumstance, this review talks about the sources, poisonousness, impacts, and bioremediation strategies of five heavy metals: lead, mercury, arsenic, chromium, and manganese. The concentrations here are the ordinary strategies for bioremediation such as biosorption methods, the use of microbes, green growth, and organisms, etc. This review demonstrates the toxicity of heavy metal contamination degradation by biotransformation through bacterioremediation and biodegradation through mycoremediation.
Collapse
Affiliation(s)
- N Nivetha
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - B Srivarshine
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - B Sowmya
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | | | - Panchamoorthy Saravanan
- Department of Petrochemical Technology, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Tamilnadu, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Tamilnadu, India
| | - Thi Hong Trang Pham
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Natural Science, Duy Tan University, Da Nang, 550000, Viet Nam
| | - VenkatKumar Shanmugam
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Elena-Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron No 73, 700050, Romania
| |
Collapse
|
5
|
Zhang K, Zhu Z, Luo S, Xu Z, Lei P, Gan M, Chen P, Zhu J. One-step synthesis of a novel natural mineral-derived Fe@BC for enhancing Cr(VI) bioreduction: Synergistic role of electron transfer and microbial metabolism. CHEMOSPHERE 2022; 308:136439. [PMID: 36115474 DOI: 10.1016/j.chemosphere.2022.136439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/16/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Iron minerals, which exert excellent biocompatibility and reactivity with redox-active microorganisms, have attracted attention as a precursor to synthesizing composite materials with higher catalytic efficiency in driving redox-active microorganisms to reduce Cr(VI). However, researches on the effective preparation method of composites, the interaction between bacteria and composite materials and the mechanism of electron transfer are still scarce. In this work, Fe-complex@BC prepared by a one-step method using goethite was used for chromium treatment together with soil microorganisms. The composite was the best-performing in promoting Cr(VI) bioreduction (up to 3.48 mg (L·h)-1) than Fe-complex (2.26 mg (L·h)-1) and biochar (0.5 mg (L·h)-1), even about 19 times higher than that of bioreduction without materials. Specifically, Fe-complex@BC shortened the electron transfer distance due to its excellent adsorption properties for bacteria and Cr(VI). Its high redox activity also promoted Cr(VI) bioreduction by directly enhancing electron transfer. In addition, the presence of the Fe(III)/Fe(II) cycle proved that the active sites of composite could be regenerated to reduce Cr(VI) persistently by receiving extracellular electrons from bacteria. High-throughput 16 S rDNA gene sequencing indicated the composite could promote the proliferation of electrochemically active bacteria, which directly enhanced bioreduction. This study developed the low-cost Fe@BC material prepared by a one-step co-pyrolysis method, which exerts a synergistic effect with soil microorganisms and presents a promising potential for chromium pollution treatment.
Collapse
Affiliation(s)
- Ke Zhang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Zhenyu Zhu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Sheng Luo
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Zichao Xu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Pan Lei
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Pan Chen
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| |
Collapse
|
6
|
Khanal A, Hur HG, Fredrickson JK, Lee JH. Direct and Indirect Reduction of Cr(VI) by Fermentative Fe(III)-Reducing Cellulomonas sp. Strain Cellu-2a. J Microbiol Biotechnol 2021; 31:1519-1525. [PMID: 34489371 PMCID: PMC9706010 DOI: 10.4014/jmb.2107.07038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
Hexavalent chromium (Cr(VI)) is recognized to be carcinogenic and toxic and registered as a contaminant in many drinking water regulations. It occurs naturally and is also produced by industrial processes. The reduction of Cr(VI) to Cr(III) has been a central topic for chromium remediation since Cr(III) is less toxic and less mobile. In this study, fermentative Fe(III)-reducing bacterial strains (Cellu-2a, Cellu-5a, and Cellu-5b) were isolated from a groundwater sample and were phylogenetically related to species of Cellulomonas by 16S rRNA gene analysis. One selected strain, Cellu-2a showed its capacity of reduction of both soluble iron (ferric citrate) and solid iron (hydrous ferric oxide, HFO), as well as aqueous Cr(VI). The strain Cellu-2a was able to reduce 15 μM Cr(VI) directly with glucose or sucrose as a sole carbon source under the anaerobic condition and indirectly with one of the substrates and HFO in the same incubations. The heterogeneous reduction of Cr(VI) by the surface-associated reduced iron from HFO by Cellu-2a likely assisted the Cr(VI) reduction. Fermentative features such as large-scale cell growth may impose advantages on the application of bacterial Cr(VI) reduction over anaerobic respiratory reduction.
Collapse
Affiliation(s)
- Anamika Khanal
- Department of Bioenvironmental Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hor-Gil Hur
- School of Environmental and Earth Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - James K. Fredrickson
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea,Corresponding author Phone: +82-63-270-2546 Fax: +82-63-270-2550 E-mail:
| |
Collapse
|
7
|
Chen J, Deng S, Jia W, Li X, Chang J. Removal of multiple heavy metals from mining-impacted water by biochar-filled constructed wetlands: Adsorption and biotic removal routes. BIORESOURCE TECHNOLOGY 2021; 331:125061. [PMID: 33823487 DOI: 10.1016/j.biortech.2021.125061] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Granular biochar made from walnut shells was layered into sand-based constructed wetlands (CWs) to treat simulated mining-impacted water (MIW). The results showed that the biochar media exhibited markedly high capacities for metal binding and acidity neutralization, supported notably better plant growth and mitigated metal transfer from the plant roots to the shoots. The addition of organic liquid wastes (domestic sewage and plant straw hydrolysation broth) stimulated biogenic sulfate reduction after 40 d of adaptation to effectively remove multiple heavy metals in the MIW. The microbial community compositions were prominently regulated by organic carbon, with desirable communities dominated by Cellulomonas and Desulfobulbus formed in the CWs for MIW biotreatment. The role of macrophytes in the CWs in MIW treatment was insignificant and was dependent on operation conditions and metal species. A biochar-packed CW system with liquid organic waste supplementation was effective in metal removal and acidity neutralization of MIW.
Collapse
Affiliation(s)
- Jinquan Chen
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650500, China
| | - Shengjiong Deng
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650500, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
| | - Wei Jia
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650500, China; China Machinery International Engineering Design and Research Institute Co., Ltd, Changsha 410007, China
| | - Xuan Li
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650500, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
| | - Junjun Chang
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650500, China.
| |
Collapse
|
8
|
Song X, Wang Q, Jin P, Chen X, Tang S, Wei C, Li K, Ding X, Tang Z, Fu H. Enhanced biostimulation coupled with a dynamic groundwater recirculation system for Cr(VI) removal from groundwater: A field-scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145495. [PMID: 33770851 DOI: 10.1016/j.scitotenv.2021.145495] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
A large gap exists between laboratory findings and successful implementation of bioremediation technologies for the treatment of chromium (Cr)-contaminated sites. This work conducted the enhanced bioremediation of Cr(VI) in situ via the addition of organic carbon (ethanol) coupled with a dynamic groundwater recirculation (DGR)-based system in a field-scale study. The DGR system was applied to successfully (1) remove Cr(VI) from groundwater via enhanced flushing by the recirculation system and (2) deliver the biostimulant to the heterogeneous subsurface environment, including a sand/cobble aquifer and a fractured bedrock aquifer. The results showed that the combined extraction and bioreduction of Cr(VI) were able to reduce Cr(VI) concentrations from 1000 to 2000 mg/L to below the clean-up goal of 0.1 mg/L within the operation period of 52 days. The effectiveness of Cr(VI) bioremediation and the relationship between microbial communities and geochemical parameters were evaluated. Multiple-line of evidence demonstrated that the introduction of ethanol significantly stimulated a variety of bacteria, including those responsible for denitrification, sulfate reduction and reduction of Cr(VI), which contributed to the establishment of reducing conditions in both aquifers. Cr(VI) was removed from groundwater via combined mechanisms of physical removal through the DGR system and the bioreduction of Cr(VI) followed by precipitation. In particular, it was found competitive growth among Cr(VI)-reducing bacteria (such as the enrichment of Geobacter, along with the reduced relative abundance of Acinetobacter and Pseudomonas) was induced by ethanol injection. Furthermore, Cr(VI), total organic carbon, NO2-, and SO42- played important roles in shaping the composition of the microbial community and its functions.
Collapse
Affiliation(s)
- Xin Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Peng Jin
- EPCR Innovation and Technology LLC, PA 19406, USA
| | - Xing Chen
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shiyue Tang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changlong Wei
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Kang Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoyan Ding
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Tang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Fu
- Nanjing Kangdi Environmental Protection Technology Co., LTD, Nanjing 21000, China
| |
Collapse
|
9
|
Microorganisms employed in the removal of contaminants from wastewater of iron and steel industries. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-021-00982-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Long S, Tong H, Zhang X, Jia S, Chen M, Liu C. Heavy Metal Tolerance Genes Associated With Contaminated Sediments From an E-Waste Recycling River in Southern China. Front Microbiol 2021; 12:665090. [PMID: 34054770 PMCID: PMC8155521 DOI: 10.3389/fmicb.2021.665090] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Heavy metal pollution that results from electronic waste (e-waste) recycling activities has severe ecological environmental toxicity impacts on recycling areas. The distribution of heavy metals and the impact on the bacteria in these areas have received much attention. However, the diversity and composition of the microbial communities and the characteristics of heavy metal resistance genes (HMRGs) in the river sediments after long-term e-waste contamination still remain unclear. In this study, eight river sediment samples along a river in a recycling area were studied for the heavy metal concentration and the microbial community composition. The microbial community consisted of 13 phyla including Firmicutes (ranging from 10.45 to 36.63%), Proteobacteria (11.76 to 32.59%), Actinobacteria (14.81 to 27.45%), and unclassified bacteria. The abundance of Firmicutes increased along with the level of contaminants, while Actinobacteria decreased. A canonical correspondence analysis (CCA) showed that the concentration of mercury was significantly correlated with the microbial community and species distribution, which agreed with an analysis of the potential ecological risk index. Moreover, manually curated HMRGs were established, and the HMRG analysis results according to Illumina high-throughput sequencing showed that the abundance of HMRGs was positively related to the level of contamination, demonstrating a variety of resistance mechanisms to adapt, accommodate, and live under heavy metal-contaminated conditions. These findings increase the understanding of the changes in microbial communities in e-waste recycling areas and extend our knowledge of the HMRGs involved in the recovery of the ecological environment.
Collapse
Affiliation(s)
- Shengqiao Long
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Shuyu Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.,National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
Fu L, Feng A, Xiao J, Wu Q, Ye Q, Peng S. Remediation of soil contaminated with high levels of hexavalent chromium by combined chemical-microbial reduction and stabilization. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123847. [PMID: 33264926 DOI: 10.1016/j.jhazmat.2020.123847] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
In order to solve the problem of re-oxidation after chemical remediation of soil contaminated with high levels of hexavalent chromium (Cr(VI)), we investigated the use of chemical reduction combined with microbial stabilization to remediate soils contaminated with high Cr(VI) concentration. The leaching toxicity and microbial diversity of Cr(VI)-contaminated soil and the leaching toxicity of remediated soil oxidized by potassium permanganate (KMnO4) were measured. The results indicate that the conversion rate of Cr(VI) reached 97 %, and the concentration of Cr(VI) in toxic solutions leaching can be reduced by 95 % after 40 days of microbial stabilization. Sterilization experiments showed that the reduction of Cr(VI) by microorganisms is stable. The results of microbial diversity analysis indicate that bacterial community changed more than fungal community during the reduction process of Cr(VI), and the species abundance and species evenness of bacteria decreased. Bacillus spp. and Halomonas spp. were the dominant species in this study.
Collapse
Affiliation(s)
- Lijuan Fu
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Aixi Feng
- Yuhuan Environmental Science and Technology Co., Ltd, No. 88, Hongqi Street, Qiaoxi District, Shijiazhuang, Hebei Province, 050000, China
| | - Jingjing Xiao
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Qing Wu
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China.
| | - Qunying Ye
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Sen Peng
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| |
Collapse
|
12
|
Bioremediation of Hexavalent Chromium by Chromium Resistant Bacteria Reduces Phytotoxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176013. [PMID: 32824890 PMCID: PMC7504174 DOI: 10.3390/ijerph17176013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/03/2022]
Abstract
Chromium (Cr) (VI) has long been known as an environmental hazard that can be reduced from aqueous solutions through bioremediation by living cells. In this study, we investigated the efficiency of reduction and biosorption of Cr(VI) by chromate resistant bacteria isolated from tannery effluent. From 28 screened Cr(VI) resistant isolates, selected bacterial strain SH-1 was identified as Klebsiella sp. via 16S rRNA sequencing. In Luria–Bertani broth, the relative reduction level of Cr(VI) was 95%, but in tannery effluent, it was 63.08% after 72 h of incubation. The cell-free extract of SH-1 showed a 72.2% reduction of Cr(VI), which indicated a higher activity of Cr(VI) reducing enzyme than the control. Live and dead biomass of SH-1 adsorbed 51.25 mg and 29.03 mg Cr(VI) per gram of dry weight, respectively. Two adsorption isotherm models—Langmuir and Freundlich—were used for the illustration of Cr(VI) biosorption using SH-1 live biomass. Scanning electron microscopy (SEM) analysis showed an increased cell size of the treated biomass when compared to the controlled biomass, which supports the adsorption of reduced Cr on the biomass cell surface. Fourier-transform infrared analysis indicated that Cr(VI) had an effect on bacterial biomass, including quantitative and structural modifications. Moreover, the chickpea seed germination study showed beneficial environmental effects that suggest possible application of the isolate for the bioremediation of toxic Cr(VI).
Collapse
|
13
|
Cao L, Ma Y, Deng D, Jiang H, Wang J, Liu Y. Electricity production of microbial fuel cells by degrading cellulose coupling with Cr(VI) removal. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122184. [PMID: 32092674 DOI: 10.1016/j.jhazmat.2020.122184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
A facultative exoelectrogen strain Lsc-8 belonging to the Cellulomonas genus with the ability to degrade carboxymethyl cellulose (CMC) coupled with the reduction of Cr(VI), was successfully isolated from rumen content. The maximum output power density of the microbial fuel cells (MFCs) inoculated strain Lsc-8 was 9.56 ± 0.37 mW·m-2 with CMC as the sole carbon source. From the biomass analysis it can be seen that the electricity generation of the MFCs was primarily attributed to the planktonic cells of strain Lsc-8 rather than the biofilm attached on the electrode, which was different from Geobacter sulfurreducens. Especially, during electricity generation of the MFCs using CMC as carbon source in the anode chamber, the Cr(VI) reduction were simultaneously realized. And it is also found that the Cr(VI) reduction ratio by strain Lsc-8 is directly related to the initial Cr(VI) concentration, and it increased with the increase of initial Cr(VI) concentration at first, then started to decrease when the Cr(VI) concentration was above 21 mg ·L-1. Meanwhile, the highest output power density of 3.47 ± 0.28 mW·m-2 was observed coupling with 95.22 ± 2.72 % of Cr(VI) reduction. These data suggested that the strain Lsc-8 could reduce high toxicity Cr(VI) to low toxicity Cr(III) coupled with electricity generation in MFCs with CMC as the carbon source. Our results also suggested that this study will provide a possibility to simultaneously degrade Cr(VI) and generate electricity by using cellulose as the carbon source via MFCs.
Collapse
Affiliation(s)
- Lianbin Cao
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, PR China
| | - Yamei Ma
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, PR China
| | - Dandan Deng
- College of Biology and Food, Shangqiu Normal University, No. 55 Pingyuan Road, Shangqiu, Henan Province, 476000, PR China
| | - Huichun Jiang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, PR China
| | - Jiaxin Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, PR China
| | - Ying Liu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
14
|
Ramírez V, Baez A, López P, Bustillos R, Villalobos MÁ, Carreño R, Contreras JL, Muñoz-Rojas J, Fuentes LE, Martínez J, Munive JA. Chromium Hyper-Tolerant Bacillus sp. MH778713 Assists Phytoremediation of Heavy Metals by Mesquite Trees ( Prosopis laevigata). Front Microbiol 2019; 10:1833. [PMID: 31456770 PMCID: PMC6700308 DOI: 10.3389/fmicb.2019.01833] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/25/2019] [Indexed: 12/04/2022] Open
Abstract
Heavy metal accumulation in mesquite trees (Prosopis laevigata) growing in aluminum, titanium, chromium and zirconium-polluted soils of a semi-arid region in Mexico was investigated using wavelength dispersive X-ray fluorescence analysis. The results showed that P. laevigata trees can hyper accumulate up to 4100 mg/kg of Al, 14000 mg/kg of Fe, 1600 mg/kg of Ti, 2500 mg/kg of Zn, but not chromium, regarding high chromium concentrations found in soils (435 mg/kg). Since plant-associated microorganism can modulate phytoremediation efficiency, the biodiversity of P. laevigata associated bacteria was studied. Eighty-eight isolates from P. laevigata nodules were obtained; all isolates tolerated high concentrations of Al, Fe, Zn and Cr in vitro. The top-six chromium tolerant strains were identified by 16S rRNA sequence analysis as belonging to genus Bacillus. Bacillus sp. MH778713, close to Bacillus cereus group, showed to be the most resistant strain, tolerating up to 15000 mg/L Cr (VI) and 10000 mg/L of Al. Regarding the bioaccumulation traits, Bacillus sp. MH778713 accumulated up to 100 mg Cr(VI)/g of cells when it was exposed to 1474 mg/L of Cr VI. To assess Bacillus sp. MH778713 ability to assist Prosopis laevigata phytoremediation; twenty plants were inoculated or non-inoculated with Bacillus sp. MH778713 and grown in nitrogen-free Jensen's medium added with 0, 10 and 25 mg/L of Cr(VI). Only plants inoculated with Bacillus sp. grew in the presence of chromium showing the ability of this strain to assist chromium phytoremediation. P. laevigata and Bacillus spp. may be considered as good candidates for soil restoration of arid and semiarid sites contaminated with heavy metals.
Collapse
Affiliation(s)
- Verónica Ramírez
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Antonino Baez
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Primavera López
- Centro de Investigaciones en Dispositivos Semiconductores, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Rocío Bustillos
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel Ángel Villalobos
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tlaxcala, Mexico
| | - Ricardo Carreño
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - José Luis Contreras
- Facultad de Arquitectura, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Jesús Muñoz-Rojas
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Luis Ernesto Fuentes
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Javier Martínez
- Centro de Investigaciones en Dispositivos Semiconductores, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - José Antonio Munive
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
15
|
Szecsody JE, Truex MJ, Qafoku NP, McKinley JP, Ivarson KA, Di Pietro S. Persistence of chromate in vadose zone and aquifer sediments in Hanford, Washington. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:482-492. [PMID: 31048177 DOI: 10.1016/j.scitotenv.2019.04.173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
This study of vadose zone and aquifer sediments beneath a former dichromate spill site showed that the persistence of CrVI in the sediments and the large differences in released mass and rate was caused by the dissolution of multiple CrVI surface phases. Vadose zone sediments contained numerous 1 to 10 μm high solubility calcium chromate crystals, with lesser amounts of unidentified phases indicated by Ba/Cr association in weathered pyroxenes and Ca/Cr association in weathered Ca-rich plagioclase. Most (>90%) of the CrVI mass in these vadose zone sediments was readily leached in laboratory columns at high concentrations (up to 187 mg/L CrVI) likely from the highly soluble calcium chromate. Additional CrVI associated with other CrVI surface phases was additionally slowly released over 100 s of hours. The source of Ca and Ba for the CrVI precipitates may be from mineral dissolution associated with the historical surface spills of CrVI as an acidic dichromate solution. In contrast, aquifer sediments contained significantly less CrVI, which was slowly released over 100 s of hours. Small-sized CrVI-containing precipitates (<5 μm) were associated with Ca, Fe, and, to a lesser extent, Ba. Leaching with groundwater caused a decrease in ferrous iron surface phases. The observed leaching of CrVI from vadose zone and aquifer sediments has created a continuous source of CrVI to groundwater.
Collapse
Affiliation(s)
- Jim E Szecsody
- Pacific Northwest National Laboratory, Richland, WA 99354, United States of America.
| | - Mike J Truex
- Pacific Northwest National Laboratory, Richland, WA 99354, United States of America
| | - Nikolla P Qafoku
- Pacific Northwest National Laboratory, Richland, WA 99354, United States of America
| | - James P McKinley
- Pacific Northwest National Laboratory, Richland, WA 99354, United States of America
| | - Kristine A Ivarson
- CH(2)M Hill Plateau Remediation Contractor, Richland, WA 99354, United States of America
| | - Silvina Di Pietro
- Applied Research Center, Florida International University, Miami, FL 33023, United States of America
| |
Collapse
|
16
|
Hu B, Song Y, Wu S, Zhu Y, Sheng G. Slow released nutrient-immobilized biochar: A novel permeable reactive barrier filler for Cr(VI) removal. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
He Y, Gong Y, Su Y, Zhang Y, Zhou X. Bioremediation of Cr (VI) contaminated groundwater by Geobacter sulfurreducens: Environmental factors and electron transfer flow studies. CHEMOSPHERE 2019; 221:793-801. [PMID: 30684777 DOI: 10.1016/j.chemosphere.2019.01.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 12/14/2018] [Accepted: 01/06/2019] [Indexed: 05/17/2023]
Abstract
In this study, the removal of Cr (VI) was examined in the presence of bio-produced Fe (II) from hematite, sulfate and dissolved organic matter by Geobacter sulfurreducens. The adaptation results of G. sulfurreducens showed that cells growth was stimulated up to 576 μM of Cr (VI) concentration. The first-order rate and electron transfer rate in each step during Cr (VI) reduction by G. sulfurreducens in the presence of hematite was clearly modeled and calculated. For Cr (VI) reduction rate, both separately dissolved and adsorbed bio-produced Fe (II) were faster than G. sulfurreducens although bio-produced Fe (II) contributed only 20% to total Cr (VI) removal in a combined system containing Cr (VI), hematite and G. sulfurreducens. The electron transfer rate from G. sulfurreducens to hematite (R2) to produce Fe (II) was a limited step and electron transfer rate from acetate to Cr (VI) (1.8 μeq L-1 h-1) by G. sulfurreducens was much higher than that to hematite (0.272 μeq L-1 h-1, producing Fe (II)). Cr (VI) reduction was enhanced in the presence of SO42- due to sulfate boost cells growth. AQDS enhanced Cr (VI) reduction by serving as an electron shuttle thus accelerating the electron transfer rate.
Collapse
Affiliation(s)
- Yaxue He
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Yufeng Gong
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Yiming Su
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China.
| |
Collapse
|
18
|
Nayak AK, Panda SS, Basu A, Dhal NK. Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:682-691. [PMID: 29723050 DOI: 10.1080/15226514.2017.1413332] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bioremediation of Cr (VI), Fe, and other heavy metals (HMs) through plant-microbes interaction is one of the efficient strategies due to its high efficiency, low cost, and ecofriendly nature. The aim of the study was to isolate, characterize, and assess the potential of rhizospheric bacteria to enhance growth and metal accumulation by the chromium hyperaccumulator Vetiveria zizanoides. The bacterial strain isolated from mine tailings was identified to be Bacillus cereus (T1B3) strain exhibited plant growth-promoting traits including, 1-aminocyclopropane-1-carboxylate deaminase, indole acetic acid, and siderophores production, nitrogen fixation, and P solubilization. Removal capacity (mg L-1) of T1B3 strain was 82% for Cr+6 (100), 92% for Fe (100), 67% for Mn(50), 36% for Zn (50), 31% for Cd (30), 25% for Cu (30), and 43% for Ni (50) during the active growth cycle in HM-amended, extract medium. Results indicate that inoculating the native V. zizanioides with T1B3 strain improves its phytoremediation efficiency of HMs. The mineralogical characteristics of chromite ore tailings and soil were also confirmed by X-ray diffraction, Fourier Transform Infrared, scanning electron microscope-energy dispersive spectroscopy analysis.
Collapse
Affiliation(s)
- A K Nayak
- a Environment and Sustainability Department , CSIR-Institute of Minerals and Materials Technology , Bhubaneswar , Odisha , India
| | - S S Panda
- a Environment and Sustainability Department , CSIR-Institute of Minerals and Materials Technology , Bhubaneswar , Odisha , India
| | - A Basu
- a Environment and Sustainability Department , CSIR-Institute of Minerals and Materials Technology , Bhubaneswar , Odisha , India
| | - N K Dhal
- a Environment and Sustainability Department , CSIR-Institute of Minerals and Materials Technology , Bhubaneswar , Odisha , India
| |
Collapse
|
19
|
Banerjee S, Joshi SR, Mandal T, Halder G. Insight into Cr 6+ reduction efficiency of Rhodococcus erythropolis isolated from coalmine waste water. CHEMOSPHERE 2017; 167:269-281. [PMID: 27728886 DOI: 10.1016/j.chemosphere.2016.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/23/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
A microbial treatment of Cr6+ contaminated wastewater with a chromium reducing bacteria isolated from coal mine area was investigated. In a series of batch study metal removal was executed under different parametric conditions which include pH (2-7), temperature (20-50 °C), initial Cr6+ concentration (1-100 mg/L), substrate utilization and its overall effect on biomass generation. Impact of oxygen availability was checked at different agitation speed and its role on the remedial process. Liquid phase reduction of Cr6+ was measured in terms of substrate reduction and total biomass yield. The bacterium species isolated was able to tolerate Cr6+ over a wide range from 1 to 100 mg/L before it reached minimum inhibition concentration. Apart from Cr6+, the bacterial isolate showed tolerance towards Fe, As, Cu, Ag, Zn, Mn, Mg and Pb. Removal mechanism adopted by the bacterium recommended that it employed accumulation of Cr6+ as Cr3+ both within and outside the cell. Classical Monod equation was used to determine the biokinetics of the bacterial isolate along with the interference of metal ion concentration and substrate utilization. Cr6+ removal was found prominent even in bimetallic solutions. The bacterial isolate was confirmed to be Rhodococcus erythopolis by 16s rRNA molecular characterization. Thus the bacterial isolate obtained from the coal mine area proved to be a potential agent for microbial remediation of Cr6+ laden waste water.
Collapse
Affiliation(s)
- Soumya Banerjee
- Department of Chemical Engg, National Institute of Technology, Durgapur, West Bengal, India
| | - S R Joshi
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, India
| | - Tamal Mandal
- Department of Chemical Engg, National Institute of Technology, Durgapur, West Bengal, India
| | - Gopinath Halder
- Department of Chemical Engg, National Institute of Technology, Durgapur, West Bengal, India.
| |
Collapse
|
20
|
Al-Battashi H, Joshi SJ, Pracejus B, Al-Ansari A. The Geomicrobiology of Chromium (VI) Pollution: Microbial Diversity and its Bioremediation Potential. ACTA ACUST UNITED AC 2016. [DOI: 10.2174/1874070701610010379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The role and significance of microorganisms in environmental recycling activities marks geomicrobiology one of the essential branches within the environmental biotechnology field. Naturally occurring microbes also play geo-active roles in rocks, leading to biomineralization or biomobilization of minerals and metals. Heavy metals, such as chromium (Cr), are essential micronutrients at very low concentrations, but are very toxic at higher concentrations. Generally, heavy metals are leached to the environment through natural processes or anthropogenic activities such as industrial processes, leading to pollution with serious consequences. The presence of potentially toxic heavy metals, including Cr, in soils does not necessarily result in toxicity because not all forms of metals are toxic. Microbial interaction with Cr by different mechanisms leads to its oxidation or reduction, where its toxicity could be increased or decreased. Chromite contains both Cr(III) and Fe(II) and microbial utilization of Fe(II)- Fe(III) conversion or Cr (III) - Cr (VI) could lead to the break-down of this mineral. Therefore, the extraction of chromium from its mineral as Cr (III) form increases the possibility of its oxidation and conversion to the more toxic form (Cr (VI)), either biologically or geochemically. Cr (VI) is quite toxic to plants, animals and microbes, thus its levels in the environment need to be studied and controlled properly. Several bacterial and fungal isolates showed high tolerance and resistance to toxic Cr species and they also demonstrated transformation to less toxic form Cr (III), and precipitation. The current review highlights toxicity issues associated with Cr species and environmental friendly bioremediation mediated by microorganisms.
Collapse
|
21
|
Zhang P, Van Nostrand JD, He Z, Chakraborty R, Deng Y, Curtis D, Fields MW, Hazen TC, Arkin AP, Zhou J. A Slow-Release Substrate Stimulates Groundwater Microbial Communities for Long-Term in Situ Cr(VI) Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12922-12931. [PMID: 25835088 DOI: 10.1021/acs.est.5b00024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cr(VI) is a widespread environmental contaminant that is highly toxic and soluble. Previous work indicated that a one-time amendment of polylactate hydrogen-release compound (HRC) reduced groundwater Cr(VI) concentrations for >3.5 years at a contaminated aquifer; however, microbial communities responsible for Cr(VI) reduction are poorly understood. In this study, we hypothesized that HRC amendment would significantly change the composition and structure of groundwater microbial communities, and that the abundance of key functional genes involved in HRC degradation and electron acceptor reduction would increase long-term in response to this slowly degrading, complex substrate. To test these hypotheses, groundwater microbial communities were monitored after HRC amendment for >1 year using a comprehensive functional gene microarray. The results showed that the overall functional composition and structure of groundwater microbial communities underwent sequential shifts after HRC amendment. Particularly, the abundance of functional genes involved in acetate oxidation, denitrification, dissimilatory nitrate reduction, metal reduction, and sulfate reduction significantly increased. The overall community dynamics was significantly correlated with changes in groundwater concentrations of microbial biomass, acetate, NO3-, Cr(VI), Fe(II) and SO4(2-). Our results suggest that HRC amendment primarily stimulated key functional processes associated with HRC degradation and reduction of multiple electron acceptors in the aquifer toward long-term Cr(VI) reduction.
Collapse
Affiliation(s)
- Ping Zhang
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Zhili He
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Romy Chakraborty
- Earth Science Division, Lawrence Berkeley National Laboratory , Berkeley, California 94270, United States
| | - Ye Deng
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Daniel Curtis
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University , Bozeman, Montana 59717, United States
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, The University of Tennessee , Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831-6342, United States
| | - Adam P Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
- Earth Science Division, Lawrence Berkeley National Laboratory , Berkeley, California 94270, United States
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing 100084, China
| |
Collapse
|
22
|
Malaviya P, Singh A. Bioremediation of chromium solutions and chromium containing wastewaters. Crit Rev Microbiol 2014; 42:607-33. [DOI: 10.3109/1040841x.2014.974501] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Piyush Malaviya
- Department of Environmental Sciences, University of Jammu, Jammu, India
| | - Asha Singh
- Department of Environmental Sciences, University of Jammu, Jammu, India
| |
Collapse
|
23
|
Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances. Folia Microbiol (Praha) 2014; 59:321-32. [PMID: 24470188 DOI: 10.1007/s12223-014-0304-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/12/2014] [Indexed: 01/16/2023]
Abstract
Chromium pollution is increasing incessantly due to continuing industrialization. Of various oxidation states, Cr(6+) is very toxic due to its carcinogenic and mutagenic nature. It also has deleterious effects on different microorganisms as well as on plants. Many species of bacteria thriving in the Cr(6+)-contaminated environments have evolved novel strategies to cope with Cr(6+) toxicity. Generally, decreased uptake or exclusion of Cr(6+) compounds through the membranes, biosorption, and the upregulation of genes associated with oxidative stress response are some of the resistance mechanisms in bacterial cells to overcome the Cr(6+) stress. In addition, bacterial Cr(6+) reduction into Cr(3+) is also a mechanism of specific significance as it transforms toxic and mobile chromium derivatives into reduced species which are innocuous and immobile. Ecologically, the bacterial trait of reductive immobilization of Cr(6+) derivatives is of great advantage in bioremediation. The present review is an effort to underline the bacterial resistance and reducing mechanisms to Cr(6+) compounds with recent development in order to garner a broad perspective.
Collapse
|
24
|
Hexavalent chromium reduction by Cellulomonas sp. strain ES6: the influence of carbon source, iron minerals, and electron shuttling compounds. Biodegradation 2012; 24:437-50. [DOI: 10.1007/s10532-012-9600-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
|
25
|
Shi Y, Chai L, Yang Z, Jing Q, Chen R, Chen Y. Identification and hexavalent chromium reduction characteristics of Pannonibacter phragmitetus. Bioprocess Biosyst Eng 2011; 35:843-50. [PMID: 22179413 DOI: 10.1007/s00449-011-0668-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/02/2011] [Indexed: 11/30/2022]
Abstract
A hexavalent chromium [Cr(VI)] reducing bacterial strain was isolated from chromium-containing slag. It was identified as Pannonibacter phragmitetus based on physiological, biochemical characteristics and 16S rRNA gene sequence analysis. This bacterium displayed great Cr(VI) reduction capability. The Cr(VI) could be completely removed in 24 h under anaerobic condition when the initial concentration was 1,917 mg L(-1), with the maximum reduction rate of 562.8 mg L(-1) h(-1). The Cr(VI) reduction rate increased with the increase of Cr(VI) concentration. P. phragmitetus was able to use many carbon sources such as lactose, fructose, glucose, pyruvate, citrate, formate, lactate, NADPH and NADH as electron donors, among which the lactate had the greatest power to promote the reduction process. Zn(2+), Cd(2+) and Ni(2+) inhibited, while Cu(2+), Pb(2+), Mn(2+) and Co(2+) stimulated the reduction. The optimum pH and temperature for reduction were 9.0 and 30 °C, respectively. The results indicated that this strain had great potential for application in the bioremediation of chromate-polluted soil and water systems.
Collapse
Affiliation(s)
- Yan Shi
- School of Metallurgical Science and Engineering, Central South University, Changsha, Hunan, China
| | | | | | | | | | | |
Collapse
|
26
|
Pang Y, Zeng GM, Tang L, Zhang Y, Liu YY, Lei XX, Wu MS, Li Z, Liu C. Cr(VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes. BIORESOURCE TECHNOLOGY 2011; 102:10733-10736. [PMID: 21937224 DOI: 10.1016/j.biortech.2011.08.078] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/15/2011] [Accepted: 08/18/2011] [Indexed: 05/31/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) was immobilized with polyvinyl alcohol (PVA), sodium alginate and multiwalled carbon nanotubes (MCNTs). After immobilization, the beads were subjected to freeze-thawing to enhance mechanical strength. When exposed to 80 mg/L Cr(VI), the immobilized bacteria were able to reduce 50% of them in 84 h, however the free cells were deactivated at this concentration. The beads were used to reduce 50 mg/L Cr(VI) for nine times, with the reduction efficiency above 90% in the first five times and 65% in the end.
Collapse
Affiliation(s)
- Ya Pang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Venil CK, Mohan V, Lakshmanaperumalsamy P, Yerima MB. Optimization of Chromium Removal by the Indigenous Bacterium Bacillus spp. REP02 Using the Response Surface Methodology. ISRN MICROBIOLOGY 2011; 2011:951694. [PMID: 23724315 PMCID: PMC3658643 DOI: 10.5402/2011/951694] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/17/2011] [Indexed: 11/23/2022]
Abstract
An indigenous bacterium, Bacillus REP02, was isolated from locally sourced chromium electroplating industrial effluents. Response surface methodology was employed to optimize the five critical medium parameters responsible for higher % Cr(2+) removal by the bacterium Bacillus REP02. A three-level Box-Behnken factorial design was used to optimize K2HPO4, yeast extract, MgSO4, NH4NO3, and dextrose for Cr(2+) removal. A coefficient of determination (R (2)) value (0.93), model F-value (3.92) and its low P-value (F < 0.0008) along with lower value of coefficient of variation (5.39) indicated the fitness of response surface quadratic model during the present study. At optimum parameters of K2HPO4 (0.6 g L(-1)), yeast extract (5.5 g L(-1)), MgSO4 (0.04 g L(-1)), NH4NO3 (0.20 g L(-1)), and dextrose (12.50 g L(-1)), the model predicted 98.86% Cr(2+) removal, and experimentally, 99.08% Cr(2+) removal was found.
Collapse
Affiliation(s)
- C K Venil
- Division of Food Microbiology and Biotechnology, Department of Food Science and Technology, Pondicherry University, Pondicherry 605 014, India
| | | | | | | |
Collapse
|
28
|
Brodie EL, Joyner DC, Faybishenko B, Conrad ME, Rios-Velazquez C, Malave J, Martinez R, Mork B, Willett A, Koenigsberg S, Herman DJ, Firestone MK, Hazen TC. Microbial community response to addition of polylactate compounds to stimulate hexavalent chromium reduction in groundwater. CHEMOSPHERE 2011; 85:660-665. [PMID: 21872904 DOI: 10.1016/j.chemosphere.2011.07.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 07/15/2011] [Accepted: 07/15/2011] [Indexed: 05/31/2023]
Abstract
To evaluate the efficacy of bioimmobilization of Cr(VI) in groundwater at the Department of Energy Hanford site, we conducted a series of microcosm experiments using a range of commercial electron donors with varying degrees of lactate polymerization (polylactate). These experiments were conducted using Hanford Formation sediments (coarse sand and gravel) immersed in Hanford groundwater, which were amended with Cr(VI) and several types of lactate-based electron donors (Hydrogen Release Compound, HRC; primer-HRC, pHRC; extended release HRC) and the polylactate-cysteine form (Metal Remediation Compound, MRC). The results showed that polylactate compounds stimulated an increase in bacterial biomass and activity to a greater extent than sodium lactate when applied at equivalent carbon concentrations. At the same time, concentrations of headspace hydrogen and methane increased and correlated with changes in the microbial community structure. Enrichment of Pseudomonas spp. occurred with all lactate additions, and enrichment of sulfate-reducing Desulfosporosinus spp. occurred with almost complete sulfate reduction. The results of these experiments demonstrate that amendment with the pHRC and MRC forms result in effective removal of Cr(VI) from solution most likely by both direct (enzymatic) and indirect (microbially generated reductant) mechanisms.
Collapse
Affiliation(s)
- Eoin L Brodie
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, CA 94720, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sivaswamy V, Boyanov MI, Peyton BM, Viamajala S, Gerlach R, Apel WA, Sani RK, Dohnalkova A, Kemner KM, Borch T. Multiple mechanisms of uranium immobilization by Cellulomonas sp. strain ES6. Biotechnol Bioeng 2011; 108:264-76. [PMID: 20872821 DOI: 10.1002/bit.22956] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Removal of hexavalent uranium (U(VI)) from aqueous solution was studied using a Gram-positive facultative anaerobe, Cellulomonas sp. strain ES6, under anaerobic, non-growth conditions in bicarbonate and PIPES buffers. Inorganic phosphate was released by cells during the experiments providing ligands for formation of insoluble U(VI) phosphates. Phosphate release was most probably the result of anaerobic hydrolysis of intracellular polyphosphates accumulated by ES6 during aerobic growth. Microbial reduction of U(VI) to U(IV) was also observed. However, the relative magnitudes of U(VI) removal by abiotic (phosphate-based) precipitation and microbial reduction depended on the buffer chemistry. In bicarbonate buffer, X-ray absorption fine structure (XAFS) spectroscopy showed that U in the solid phase was present primarily as a non-uraninite U(IV) phase, whereas in PIPES buffer, U precipitates consisted primarily of U(VI)-phosphate. In both bicarbonate and PIPES buffer, net release of cellular phosphate was measured to be lower than that observed in U-free controls suggesting simultaneous precipitation of U and PO₄³⁻. In PIPES, U(VI) phosphates formed a significant portion of U precipitates and mass balance estimates of U and P along with XAFS data corroborate this hypothesis. High-resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray spectroscopy (EDS) of samples from PIPES treatments indeed showed both extracellular and intracellular accumulation of U solids with nanometer sized lath structures that contained U and P. In bicarbonate, however, more phosphate was removed than required to stoichiometrically balance the U(VI)/U(IV) fraction determined by XAFS, suggesting that U(IV) precipitated together with phosphate in this system. When anthraquinone-2,6-disulfonate (AQDS), a known electron shuttle, was added to the experimental reactors, the dominant removal mechanism in both buffers was reduction to a non-uraninite U(IV) phase. Uranium immobilization by abiotic precipitation or microbial reduction has been extensively reported; however, the present work suggests that strain ES6 can remove U(VI) from solution simultaneously through precipitation with phosphate ligands and microbial reduction, depending on the environmental conditions. Cellulomonadaceae are environmentally relevant subsurface bacteria and here, for the first time, the presence of multiple U immobilization mechanisms within one organism is reported using Cellulomonas sp. strain ES6.
Collapse
Affiliation(s)
- Vaideeswaran Sivaswamy
- Center for Multiphase Environmental Research, Department of Chemical Engineering, Washington State University, Pullman, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gerlach R, Field EK, Viamajala S, Peyton BM, Apel WA, Cunningham AB. Influence of carbon sources and electron shuttles on ferric iron reduction by Cellulomonas sp. strain ES6. Biodegradation 2011; 22:983-95. [PMID: 21318474 DOI: 10.1007/s10532-011-9457-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 01/31/2011] [Indexed: 11/26/2022]
Abstract
Microbially reduced iron minerals can reductively transform a variety of contaminants including heavy metals, radionuclides, chlorinated aliphatics, and nitroaromatics. A number of Cellulomonas spp. strains, including strain ES6, isolated from aquifer samples obtained at the U.S. Department of Energy's Hanford site in Washington, have been shown to be capable of reducing Cr(VI), TNT, natural organic matter, and soluble ferric iron [Fe(III)]. This research investigated the ability of Cellulomonas sp. strain ES6 to reduce solid phase and dissolved Fe(III) utilizing different carbon sources and various electron shuttling compounds. Results suggest that Fe(III) reduction by and growth of strain ES6 was dependent upon the type of electron donor, the form of iron present, and the presence of synthetic or natural organic matter, such as anthraquinone-2,6-disulfonate (AQDS) or humic substances. This research suggests that Cellulomonas sp. strain ES6 could play a significant role in metal reduction in the Hanford subsurface and that the choice of carbon source and organic matter addition can allow for independent control of growth and iron reduction activity.
Collapse
Affiliation(s)
- Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Curdlan-like exopolysaccharide production by Cellulomonas flavigena UNP3 during growth on hydrocarbon substrates. World J Microbiol Biotechnol 2010; 27:1415-22. [PMID: 25187141 DOI: 10.1007/s11274-010-0593-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 10/05/2010] [Indexed: 10/18/2022]
Abstract
Cellulomonas flavigena UNP3, a natural isolate from vegetable oil contaminated soil sample has been studied for growth associated exopolysaccharide (EPS) production during growth on glucose, groundnut oil and naphthalene. The EPS showed matrix formation surrounding the cells during scanning electron microscopy. Cell surface hydrophobicity and emulsifying activity studies confirmed the role of EPS as bioemulsifier. Emulsifying activity was found to increase with time (0.2 U/mg for 10 min to 0.27 U/mg for 30 min). Emulsification index, E24 value increased with the increase in EPS concentration. Degradation of polyaromatic hydrocarbons was confirmed using gas chromatography analysis. FTIR analysis showed presence of characteristic absorbance at 895.10 cm(-1) for β-configuration of glucan. NMR studies also revealed EPS produced by C. flavigena UNP3 as a linear β-1, 3-D-glucan, and a curdlan like polysaccharide.
Collapse
|
32
|
Piñón-Castillo H, Brito E, Goñi-Urriza M, Guyoneaud R, Duran R, Nevarez-Moorillon G, Gutiérrez-Corona J, Caretta C, Reyna-López G. Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent. J Appl Microbiol 2010; 109:2173-82. [DOI: 10.1111/j.1365-2672.2010.04849.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Franz B, Lichtenberg H, Hormes J, Dahl C, Prange A. The speciation of soluble sulphur compounds in bacterial culture fluids by X-ray absorption near edge structure spectroscopy. ENVIRONMENTAL TECHNOLOGY 2009; 30:1281-1289. [PMID: 19950470 DOI: 10.1080/09593330903055635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Over the last decade X-ray absorption near edge structure (XANES) spectroscopy has been used in an increasing number of microbiological studies. In addition to other applications it has served as a valuable tool for the investigation of the sulphur globules deposited intra- or extracellularly by certain photo- and chemotrophic sulphur-oxidizing (Sox) bacteria. For XANES measurements, these deposits can easily be concentrated by filtration or sedimentation through centrifugation. However, during oxidative metabolism of reduced sulphur compounds, such as sulphide or thiosulphate, sulphur deposits are not the only intermediates formed. Soluble intermediates such as sulphite may also be produced and released into the medium. In this study, we explored the potential of XANES spectroscopy for the detection and speciation of sulphur compounds in culture supernatants of the phototrophic purple sulphur bacterium Allochromatium vinosum. More specifically, we investigated A. vinosum DeltasoxY, a strain with an in frame deletion of the soxY gene. This gene encodes an essential component of the thiosulphate-oxidizing Sox enzyme complex. Improved sample preparation techniques developed for the DeltasoxY strain allowed for the first time not only the qualitative but also the quantitative analysis of bacterial culture supernatants by XANES spectroscopy. The results thus obtained verified and supplemented conventional HPLC analysis of soluble sulphur compounds. Sulphite and also oxidized organic sulphur compounds were shown by XANES spectroscopy to be present, some of which were not seen when standard HPLC protocols were used.
Collapse
Affiliation(s)
- Bettina Franz
- Niederrhein University of Applied Sciences, Microbiology and Food Hygiene, Mönchengladbach, Germany
| | | | | | | | | |
Collapse
|
34
|
Sonoassisted Microbial Reduction of Chromium. Appl Biochem Biotechnol 2009; 160:2000-13. [DOI: 10.1007/s12010-009-8716-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Accepted: 07/12/2009] [Indexed: 10/20/2022]
|
35
|
Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0084-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
|
37
|
Zahoor A, Rehman A. Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J Environ Sci (China) 2009; 21:814-820. [PMID: 19803088 DOI: 10.1016/s1001-0742(08)62346-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The present study was aimed to assess the ability of Bacillus sp. JDM-2-1 and Staphylococcus capitis to reduce hexavalent chromium into its trivalent form. Bacillus sp. JDM-2-1 could tolerate Cr(VI) (4800 microg/mL) and S. capitis could tolerate Cr(VI) (2800 microg/mL). Both organisms were able to resist Cd2+ (50 microg/mL), Cu2+ (200 microg/mL), Pb2+ (800 microg/mL), Hg2+ (50 microg/mL) and Ni2+ (4000 microg/mL). S. capitis resisted Zn2+ at 700 microg/mL while Bacillus sp. JDM-2-1 only showed resistance up to 50 microg/mL. Bacillus sp. JDM-2-1 and S. capitis showed optimum growth at pH 6 and 7, respectively, while both bacteria showed optimum growth at 37 degrees C. Bacillus sp. JDM-2-1 and S. capitis could reduce 85% and 81% of hexavalent chromium from the medium after 96 h and were also capable of reducing hexavalent chromium 86% and 89%, respectively, from the industrial effluents after 144 h. Cell free extracts of Bacillus sp. JDM-2-1 and S. capitis showed reduction of 83% and 70% at concentration of 10 microg Cr(VI)/mL, respectively. The presence of an induced protein having molecular weight around 25 kDa in the presence of chromium points out a possible role of this protein in chromium reduction. The bacterial isolates can be exploited for the bioremediation of hexavalent chromium containing wastes, since they seem to have a potential to reduce the toxic hexavalent form to its nontoxic trivalent form.
Collapse
Affiliation(s)
- Ahmed Zahoor
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | | |
Collapse
|
38
|
Viamajala S, Peyton BM, Gerlach R, Sivaswamy V, Apel WA, Petersen JN. Permeable reactive biobarriers for in situ Cr(VI) reduction: Bench scale tests usingCellulomonassp. strain ES6. Biotechnol Bioeng 2008; 101:1150-62. [DOI: 10.1002/bit.22020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Molokwane PE, Meli KC, Nkhalambayausi-Chirwa EM. Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading: Brits culture (South Africa). WATER RESEARCH 2008; 42:4538-4548. [PMID: 18760438 DOI: 10.1016/j.watres.2008.07.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 07/28/2008] [Accepted: 07/30/2008] [Indexed: 05/26/2023]
Abstract
A mixed-culture of bacteria collected from a wastewater treatment plant in Brits, North-West Province (South Africa) biocatalytically reduced Cr(VI) at much higher concentrations than previously observed in cultures isolated in North America. Cr(VI) reduction rate up to 8 times higher than the rate in previous cultures was achieved by the Brits culture under aerobic conditions. Near complete Cr(VI) reduction was observed in batches under initial concentrations up to 200mg Cr(VI)/L after incubation for 65h in aerobic cultures. Under anaerobic conditions up to 150mg Cr(VI)/L was completely removed after incubating for 130-155h. In the previous cultures, complete removal was only achieved in cultures at an initial Cr(VI) concentration lower than 30mg/L after incubation for 96-110h. Consortium cultures were characterised using 16S rRNA partial sequence analysis. Results showed that the Gram-positive Bacillus genera predominated under aerobic conditions with a small composition of the Gram-negative Microbacterium sp. More biodiversity was observed in anaerobic cultures with the marked appearance of Enterococcus, Arthrobacter, Paenibacillus and Oceanobacillus species. Experiments run on purified individual species did not achieve the same level of Cr(VI) reduction as observed in the original consortium from sludge indicating possible existence of interspecies interactions necessary for optimum Cr(VI) reduction. All Cr(VI) reduced was accounted for as Cr(III) with a small error range (2-6%).
Collapse
Affiliation(s)
- Pulane E Molokwane
- Water Utilisation Division, Department of Chemical Engineering, University of Pretoria, Pretoria, South Africa
| | | | | |
Collapse
|
40
|
Rehman A, Zahoor A, Muneer B, Hasnain S. Chromium tolerance and reduction potential of a Bacillus sp.ev3 isolated from metal contaminated wastewater. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2008; 81:25-29. [PMID: 18498008 DOI: 10.1007/s00128-008-9442-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Accepted: 04/15/2008] [Indexed: 05/26/2023]
Abstract
This study was aimed at assessing the ability of Bacillus sp.ev3 to reduce hexavalent chromium into its trivalent form. Bacillus sp.ev3 could tolerate Cr(6+) (4800 microg/mL), Pb(2+) (800 microg/mL), Cu(2+) (200 microg/mL), Cd(2+) (50 microg/mL), Zn(2+) (400 microg/mL), Ni(2+) (4000 microg/mL) and Hg(2+) (50 microg/mL). Bacillus sp.ev3 showed optimum growth at 37 degrees C and pH at 7. Bacillus sp.ev3 could reduce 91% of chromium from the medium after 96 h and was also capable to reduce 84% chromium from the industrial effluents after 144 h. Cell free extracts of Bacillus sp.ev3 grown in the presence of Cr showed reduction of 70%, 45.6% and 27.4% at concentrations of 10 microg Cr(6+)/mL, 50 microg Cr(6+)/mL and 100 microg Cr(6+)/mL, respectively.
Collapse
Affiliation(s)
- A Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | | | | | | |
Collapse
|