1
|
Jayalatha NA, Devatha CP. Experimental investigation for treating ibuprofen and triclosan by biosurfactant from domestic wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116913. [PMID: 36521217 DOI: 10.1016/j.jenvman.2022.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The presence of emerging pollutants of pharmaceutical products and personal care products (PPCPs) in the aquatic environment overspreads the threat on living beings. Bioremediation is a promising option for treating wastewater. In the present study, an experimental investigation was carried out to produce a biosurfactant by Pseudomonas aeruginosa (MTCC 1688) for the removal of Ibuprofen (IBU) and Triclosan (TCS) from domestic wastewater. It was performed in three stages. Firstly, the production and optimization of biosurfactant was carried out to arrive at the best combination of crude sunflower oil, sucrose and ammonium bicarbonate (10%: 5.5 g/L: 1 g/L) to yield effective biosurfactant production (crude biosurfactant) and further extended to achieve critical micelle concentration (CMC) formation by dilution (biosurfactant at 10.5%). The stability of the biosurfactant was also confirmed. Biosurfactant showed a reduction in the surface tension to 41 mN/m with a yield concentration of 11.2 g/L. Secondly, its effectiveness was evaluated for the removal of IBU and TCS from the domestic wastewater collected during the dry and rainy seasons. Complete removal of IBU was achieved at 36 h & 6 h and TCS at 6 h & 1 h by crude biosurfactant and biosurfactant at CMC formation for the dry season sample. IBU removal was achieved in 2 h by both crude and biosurfactant at CMC and no TCS was detected in the rainy season sample. Thirdly, biotransformation intermediates of IBU and TCS formed during the application of the biosurfactant and degradation pathways are proposed based on the Liquid Chromatography-Mass Spectrometry (LC-MS) and it indicates that there is no formation of toxic by-products. Based on the results, it is evident that biosurfactant at CMC has performed better for the removal of IBU and TCS than crude biosurfactants without any formation of toxic intermediates. Hence, this study proved to be an eco-friendly, cost-effective and sustainable treatment option for domestic wastewater treatment.
Collapse
Affiliation(s)
- N A Jayalatha
- Department of Civil Engineering, National Institute of Technology, Karnataka, Surathkal, Mangalore, 575025, Karnataka, India.
| | - C P Devatha
- Department of Civil Engineering, National Institute of Technology, Karnataka, Surathkal, Mangalore, 575025, Karnataka, India.
| |
Collapse
|
2
|
Gudiukaite R, Nadda AK, Gricajeva A, Shanmugam S, Nguyen DD, Lam SS. Bioprocesses for the recovery of bioenergy and value-added products from wastewater: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113831. [PMID: 34649321 DOI: 10.1016/j.jenvman.2021.113831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/04/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Wastewater and activated sludge present a major challenge worldwide. Wastewater generated from large and small-scale industries, laundries, human residential areas and other sources is emerging as a main problem in sanitation and maintenance of smart/green cities. During the last decade, different technologies and processes have been developed to recycle and purify the wastewater. Currently, identification and fundamental consideration of development of more advanced microbial-based technologies that enable wastewater treatment and simultaneous resource recovery to produce bioenergy, biofuels and other value-added compounds (organic acids, fatty acids, bioplastics, bio-pesticides, bio-surfactants and bio-flocculants etc.) became an emerging topic. In the last several decades, significant development of bioprocesses and techniques for the extraction and recovery of mentioned valuable molecules and compounds from wastewater, waste biomass or sludge has been made. This review presents different microbial-based process routes related to resource recovery and wastewater application for the production of value-added products and bioenergy. Current process limitations and insights for future research to promote more efficient and sustainable routes for this under-utilized and continually growing waste stream are also discussed.
Collapse
Affiliation(s)
- Renata Gudiukaite
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Avenue 7, LT-10257, Vilnius, Lithuania.
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India.
| | - Alisa Gricajeva
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Avenue 7, LT-10257, Vilnius, Lithuania
| | - Sabarathinam Shanmugam
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
| | - D Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 442-760, South Korea
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
3
|
Gaur VK, Sharma P, Sirohi R, Awasthi MK, Dussap CG, Pandey A. Assessing the impact of industrial waste on environment and mitigation strategies: A comprehensive review. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:123019. [PMID: 32768833 DOI: 10.1016/j.jhazmat.2020.123019] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 05/10/2023]
Abstract
The increasing demand of rising population leads to the escalation of industrial sectors such as agro-, food-, paper and pulp industries. These industries generated hazardous waste which is primarily organic in nature thus is being dumped or processed in the environment. These waste leads to increasing contamination leading to increased mortality, physical and morphological changes in the organisms/animals in contact. Although the generated waste is hazardous yet it predominantly contains macromolecules and bioactive compounds thus can be efficiently utilized for the extraction and production of value added products. This article reviews the effect of these waste streams on terrestrial and aquatic ecosystems. Since these wastes abundantly contain proteins, lipids, carbohydrates and lignocelluloses thus recycling, reuse and valorization offers an effective strategy for their reduction while comforting the environment. The policies laid down by national and international agencies that directs these industries for reducing the generation of waste and increasing the recyclability and reuse of the generated waste is discussed and the gaps and bottlenecks for these is identified. This study essentially provides the state-of-art information on above aspects by identifying the gaps for future research directions and may contribute in policy development for mitigation strategies.
Collapse
Affiliation(s)
- Vivek Kumar Gaur
- Environmental Biotechnology Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Ranjna Sirohi
- Department of Postharvest Process and Food Engineering, GB Pant University of Agriculture and Technology, Pantnagar, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| | - Claude-Gilles Dussap
- Polytech Clermont Ferrand, Institut Pascal, Univeriste Clermont Auvergne, Clermont Ferrand, France
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India; Frontier Research Lab, Yonsei University, Seoul, South Korea.
| |
Collapse
|
4
|
Enhancement of glycolipid production by Stenotrophomonas acidaminiphila TW3 cultivated in low cost substrate. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Jiang J, Zu Y, Li X, Meng Q, Long X. Recent progress towards industrial rhamnolipids fermentation: Process optimization and foam control. BIORESOURCE TECHNOLOGY 2020; 298:122394. [PMID: 31757615 DOI: 10.1016/j.biortech.2019.122394] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 05/20/2023]
Abstract
The global market for rhamnolipids production holds great promise, and is in need of an economically viable mass-production scheme. Accordingly, several strategies have been employed to improve the efficiency of rhamnolipid production in the past few decades. Currently, rhamnolipids can be produced by Pseudomonas aeruginosa at a high yield (over 70 g/L) when vegetable oil is used as the carbon source under optimized fed-batch cultivations. However, severe foaming during rhamnolipid fermentation inhibits scaling-up and production efficiency. Stop valve was found to effective break the extremely stable rhamnolipids foams during fermentation, and production efficiency of rhamnolipids was highly improved, while its scale-up mechanism needs further study. In addition, the combination of both chemical and mechanical approaches is likely to be more efficiently resolving the foam problem existed in rhamnolipids fermentation than either chemical or mechanical methods alone.
Collapse
Affiliation(s)
- Jingjing Jiang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Yunqiao Zu
- School of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Xiaoyi Li
- Hangzhou Greenda Electronic Materials Co. Ltd., Hangzhou, PR China
| | - Qin Meng
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou, PR China
| | - Xuwei Long
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, PR China.
| |
Collapse
|
6
|
A bacterial strain of Pseudomonas aeruginosa B0406 pathogen opportunistic, produce a biosurfactant with tolerance to changes of pH, salinity and temperature. Microb Pathog 2020; 139:103869. [DOI: 10.1016/j.micpath.2019.103869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 11/23/2022]
|
7
|
Rice based distillers dried grains with solubles as a low cost substrate for the production of a novel rhamnolipid biosurfactant having anti-biofilm activity against Candida tropicalis. Colloids Surf B Biointerfaces 2019; 182:110358. [DOI: 10.1016/j.colsurfb.2019.110358] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
|
8
|
Structure elucidation and proposed de novo synthesis of an unusual mono-rhamnolipid by Pseudomonas guguanensis from Chennai Port area. Sci Rep 2019; 9:5992. [PMID: 30979908 PMCID: PMC6461634 DOI: 10.1038/s41598-019-42045-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/04/2019] [Indexed: 11/16/2022] Open
Abstract
In this paper, we describe the isolation of an unusual type of high molecular weight monorhamnolipid attached to esters of palmitic, stearic, hexa and octadecanoic acids as against the routinely reported di-rhamnolipids linked to hydroxydecanoic acids. The bioemulsifier was column-purified and the chemical nature of the compound was elucidated using FT-IR, GC-MS and 1D [1H and13C] and 2D NMR. This monorhamnolipid is extracted from a bacterium, Pseudomonas guganensis and is not reported to have biological activities, let alone emulsification abilities. The bacterium continually produced rhamnolipids when nourished with n-hexadecane as its lone carbon source. The extracellularly secreted monorhamnolipids are capable of degrading hydrocarbons, with most preference to n-hexadecane [EI24 of 56 ± 1.42% by 2 mL of the spent medium]. Whilst the crude ethyl acetate partitioned extract had an EI24 of 65 ± 1.43%; the purified rhamnolipid product showed 78 ± 1.75% both at 12.5 mg/mL concentration. The used-up n-hexadecane is biotransformed to prepare its own rhamnolipids which in return is utilized to degrade n-alkanes thus creating a circular pathway which is proposed herein. This bacterium can be seen as a new source of bioemulsifier to reduce hydrocarbon in polluted waters.
Collapse
|
9
|
Jadhav JV, Anbu P, Yadav S, Pratap AP, Kale SB. Sunflower Acid Oil‐Based Production of Rhamnolipid UsingPseudomonas aeruginosaand Its Application in Liquid Detergents. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jagruti V. Jadhav
- Department of Oils, Oleochemicals and Surfactants TechnologyInstitute of Chemical Technology (University under Section 3 of UGC Act 1956; Formerly UDCT/ UICT) Nathalal Parekh Marg, Matunga (East), Mumbai, 400 019 India
| | - Padmini Anbu
- Department of ChemistryK. J. Somaiya College of Science and Commerce Vidyavihar, Mumbai, 400 077 India
| | - Sneha Yadav
- Department of ChemistryK. J. Somaiya College of Science and Commerce Vidyavihar, Mumbai, 400 077 India
| | - Amit P. Pratap
- Department of Oils, Oleochemicals and Surfactants TechnologyInstitute of Chemical Technology (University under Section 3 of UGC Act 1956; Formerly UDCT/ UICT) Nathalal Parekh Marg, Matunga (East), Mumbai, 400 019 India
| | - Sandeep B. Kale
- DBT–ICT Centre for Energy Biosciences, Department of Chemical EngineeringInstitute of Chemical Technology (University under Section 3 of UGC Act 1956; Formerly UDCT/ UICT) Nathalal Parekh Marg, Matunga (East), Mumbai, 400 019 India
| |
Collapse
|
10
|
Wu J, Zhang J, Zhang H, Gao M, Liu L, Zhan X. Recycling of cooking oil fume condensate for the production of rhamnolipids by Pseudomonas aeruginosa WB505. Bioprocess Biosyst Eng 2019; 42:777-784. [DOI: 10.1007/s00449-019-02081-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/25/2019] [Indexed: 10/27/2022]
|
11
|
El-Housseiny GS, Aboshanab KM, Aboulwafa MM, Hassouna NA. Rhamnolipid production by a gamma ray-induced Pseudomonas aeruginosa mutant under solid state fermentation. AMB Express 2019; 9:7. [PMID: 30617633 PMCID: PMC6325051 DOI: 10.1186/s13568-018-0732-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/31/2018] [Indexed: 12/05/2022] Open
Abstract
Solid-state fermentation has a special advantage of preventing the foaming problem that obstructs submerged fermentation processes for rhamnolipid production. In the present work, a 50:50 mixture of sugarcane bagasse and sunflower seed meal was selected as the optimum substrate for rhamnolipid production using a Pseudomonas aeruginosa mutant 15GR and an impregnating solution including 5% v/v glycerol. Using Box-Behnken design, the optimum fermentation conditions were found to be an inoculum size 1% v/v, temperature 30 °C and unlike other studies, pH 8. These optimized conditions yielded a 67% enhancement of rhamnolipid levels reaching 46.85 g rhamnolipids per liter of impregnating solution, after 10 days, which was about 5.5 folds higher than that obtained by submerged liquid fermentation. Although maximum rhamnolipids concentration was obtained after 10 days of incubation, rhamnolipids concentration already reached high levels (41.87 g/l) after only 6 days. This rhamnolipid level was obtained in a shorter time and using lower carbon source concentrations than most studies reported so far. The findings obtained indicate an enormous potential for employing solid-state fermentation for rhamnolipid production by the studied isolate.
Collapse
Affiliation(s)
- Ghadir S. El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, POB: 11566, Cairo, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, POB: 11566, Cairo, Egypt
| | - Mohammad M. Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, POB: 11566, Cairo, Egypt
| | - Nadia A. Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, POB: 11566, Cairo, Egypt
| |
Collapse
|
12
|
Amani H. Application of a Dynamic Method for the Volumetric Mass Transfer Coefficient Determination in the Scale-Up of Rhamnolipid Biosurfactant Production. J SURFACTANTS DETERG 2018. [DOI: 10.1002/jsde.12184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hossein Amani
- Faculty of Chemical Engineering; Babol Noshirvani University of Technology; Babol Iran
| |
Collapse
|
13
|
Saimmai A, Maneerat S, Chooklin CS. Using Corn Husk Powder as a Novel Substrate to Produce a Surface Active Compound from Labrenzia aggregate
KP-5. J SURFACTANTS DETERG 2018. [DOI: 10.1002/jsde.12047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Atipan Saimmai
- Faculty of Agricultural Technology; Phuket Rajabhat University; Muang Phuket 83000 Thailand
- Halal Science Center; Phuket Rajabhat University; Muang Phuket 83000 Thailand
| | - Suppasil Maneerat
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro-Industry; Prince of Songkla University; Hat Yai Songkhla 90110 Thailand
| | - Chanika S. Chooklin
- Faculty of Science and Fisheries Technology; Rajamangala University of Technology Srivijaya; Trang Campus, Sikao Trang Thailand
| |
Collapse
|
14
|
Chen C, Sun N, Li D, Long S, Tang X, Xiao G, Wang L. Optimization and characterization of biosurfactant production from kitchen waste oil using Pseudomonas aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:14934-14943. [PMID: 29549612 DOI: 10.1007/s11356-018-1691-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
Kitchen waste oil (KWO) from catering industries or households was used as a low-cost carbon source for producing biosurfactants by self-isolated Pseudomonas aeruginosa. Fermentation performance with KWO was superior to those with four other carbon sources, with higher optical density (OD600) of 2.33 and lower interfacial tension of 0.57 mN/m. Culture conditions for biosurfactant production were optimized, with optimal pH of 8.0 and nitrogen source concentration of 2.0 g/L, respectively. The results of infrared spectroscopy and liquid chromatography-mass spectrometry (LC-MS) showed that the biosurfactant was a mixture of six rhamnolipid congeners, among which Rha-Rha-C10-C10 and Rha-C10-C10 were the main components, with mass fraction of approximately 34.20 and 50.86%, respectively. The critical micelle concentration (CMC) obtained was 55.87 mg/L. In addition, the rhamnolipids exhibited excellent tolerance to temperature (20-100 °C), pH (6.0-12.0), and salinity (2-20%; w/v) in a wide range, thereby showing good stability to extreme environmental conditions. The rhamnolipids positively affected oil removal from oil sludge and KWO-contaminated cotton cloth, with removal rate of 34.13 and of 30.92%, respectively. Our results demonstrated that biosurfactant production from KWO was promising, with advantages of good performance, low cost and environmental safety.
Collapse
Affiliation(s)
- Chunyan Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No.8 Xindu Avenue, Xindu District, Chengdu, 610500, People's Republic of China.
| | - Ni Sun
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No.8 Xindu Avenue, Xindu District, Chengdu, 610500, People's Republic of China
| | - Dongsheng Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No.8 Xindu Avenue, Xindu District, Chengdu, 610500, People's Republic of China
| | - Sihua Long
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No.8 Xindu Avenue, Xindu District, Chengdu, 610500, People's Republic of China
| | - Xiaoyu Tang
- Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin South Road, Chengdu, 610500, People's Republic of China.
| | - Guoqing Xiao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No.8 Xindu Avenue, Xindu District, Chengdu, 610500, People's Republic of China
| | - Linyuan Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No.8 Xindu Avenue, Xindu District, Chengdu, 610500, People's Republic of China
| |
Collapse
|
15
|
Sodium chloride effect on the aggregation behaviour of rhamnolipids and their antifungal activity. Sci Rep 2017; 7:12907. [PMID: 29018256 PMCID: PMC5635025 DOI: 10.1038/s41598-017-13424-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022] Open
Abstract
In this work, the antifungal activity of rhamnolipids produced by Pseudomonas aeruginosa #112 was evaluated against Aspergillus niger MUM 92.13 and Aspergillus carbonarius MUM 05.18. It was demonstrated that the di-rhamnolipid congeners were responsible for the antifungal activity exhibited by the crude rhamnolipid mixture, whereas mono-rhamnolipids showed a weak inhibitory activity. Furthermore, in the presence of NaCl (from 375 mM to 875 mM), the antifungal activity of the crude rhamnolipid mixture and the purified di-rhamnolipids was considerably increased. Dynamic Light Scattering studies showed that the size of the structures formed by the rhamnolipids increased as the NaCl concentration increased, being this effect more pronounced in the case of di-rhamnolipids. These results were confirmed by Confocal Scanning Laser Microscopy, which revealed the formation of giant vesicle-like structures (in the µm range) by self-assembling of the crude rhamnolipid mixture in the presence of 875 mM NaCl. In the case of the purified mono- and di-rhamnolipids, spherical structures (also in the µm range) were observed at the same conditions. The results herein obtained demonstrated a direct relationship between the rhamnolipids antifungal activity and their aggregation behaviour, opening the possibility to improve their biological activities for application in different fields.
Collapse
|
16
|
Wang M, He M, Fang Y, Baeyens J, Tan T. The Ni-Mo/γ-Al2O3 catalyzed hydrodeoxygenation of FAME to aviation fuel. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
17
|
|
18
|
Utilization of Agro-Industry Residue for Rhamnolipid Production by P. aeruginosa AMB AS7 and Its Application in Chromium Removal. Appl Biochem Biotechnol 2017; 183:70-90. [DOI: 10.1007/s12010-017-2431-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 01/27/2017] [Indexed: 11/25/2022]
|
19
|
Radzuan MN, Banat IM, Winterburn J. Production and characterization of rhamnolipid using palm oil agricultural refinery waste. BIORESOURCE TECHNOLOGY 2017; 225:99-105. [PMID: 27888734 DOI: 10.1016/j.biortech.2016.11.052] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 06/06/2023]
Abstract
In this research we assess the feasibility of using palm oil agricultural refinery waste as a carbon source for the production of rhamnolipid biosurfactant through fermentation. The production and characterization of rhamnolipid produced by Pseudomonas aeruginosa PAO1 grown on palm fatty acid distillate (PFAD) under batch fermentation were investigated. Results show that P. aeruginosa PAO1 can grow and produce 0.43gL-1 of rhamnolipid using PFAD as the sole carbon source. Identification of the biosurfactant product using mass spectrometry confirmed the presence of monorhamnolipid and dirhamnolipid. The rhamnolipid produced from PFAD were able to reduce surface tension to 29mNm-1 with a critical micelle concentration (CMC) 420mgL-1 and emulsify kerosene and sunflower oil, with an emulsion index up to 30%. Results demonstrate that PFAD could be used as a low-cost substrate for rhamnolipid production, utilizing and transforming it into a value added biosurfactant product.
Collapse
Affiliation(s)
- Mohd Nazren Radzuan
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, United Kingdom; Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Malaysia
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Northern Ireland, United Kingdom
| | - James Winterburn
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
20
|
Kłosowska-Chomiczewska IE, Mędrzycka K, Hallmann E, Karpenko E, Pokynbroda T, Macierzanka A, Jungnickel C. Rhamnolipid CMC prediction. J Colloid Interface Sci 2016; 488:10-19. [PMID: 27816634 DOI: 10.1016/j.jcis.2016.10.055] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 12/22/2022]
Abstract
Relationships between the purity, pH, hydrophobicity (logKow) of the carbon substrate, and the critical micelle concentration (CMC) of rhamnolipid type biosurfactants (RL) were investigated using a quantitative structure-property relationship (QSPR) approach and are presented here for the first time. Measured and literature CMC values of 97 RLs, representing biosurfactants at different stages of purification, were considered. An arbitrary scale for RLs purity was proposed and used in the modelling. A modified evolutionary algorithm was used to create clusters of equations to optimally describe the relationship between CMC and logKow, pH and purity (the optimal equation had an R2 of 0.8366). It was found that hydrophobicity of the carbon substrate used for the biosynthesis of the RL had the most significant influence on the final CMC of the RL. Purity of the RLs was also found to have a significant impact, where generally the less pure the RL the higher the CMC. These results were in accordance with our experimental data. Therefore, our model equation may be used for controlling the biosynthesis of biosurfactants with properties targeted for specific applications.
Collapse
Affiliation(s)
- I E Kłosowska-Chomiczewska
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - K Mędrzycka
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - E Hallmann
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - E Karpenko
- Department of Physical Chemistry of Fossil Fuels InPOCC, National Academy of Sciences of Ukraine, 3a Naukova St., Lviv 79053, Ukraine
| | - T Pokynbroda
- Department of Physical Chemistry of Fossil Fuels InPOCC, National Academy of Sciences of Ukraine, 3a Naukova St., Lviv 79053, Ukraine
| | - A Macierzanka
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - C Jungnickel
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
21
|
Gudiña EJ, Rodrigues AI, de Freitas V, Azevedo Z, Teixeira JA, Rodrigues LR. Valorization of agro-industrial wastes towards the production of rhamnolipids. BIORESOURCE TECHNOLOGY 2016; 212:144-150. [PMID: 27092993 DOI: 10.1016/j.biortech.2016.04.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
In this work, oil mill wastewater (OMW), a residue generated during olive oil extraction, was evaluated as an inducer of rhamnolipid production. Using a medium containing as sole ingredients corn steep liquor (10%, v/v), sugarcane molasses (10%, w/v) and OMW (25%, v/v), Pseudomonas aeruginosa #112 produced 4.5 and 5.1g of rhamnolipid per liter in flasks and reactor, respectively, with critical micelle concentrations as low as 13mg/l. Furthermore, in the medium supplemented with OMW, a higher proportion of more hydrophobic rhamnolipid congeners was observed comparing with the same medium without OMW. OMW is a hazardous waste which disposal represents a serious environmental problem; therefore, its valorization as a substrate for the production of added-value compounds such as rhamnolipids is of great interest. This is the first report of rhamnolipid production using a mixture of these three agro-industrial by-products, which can be useful for the sustainable production of rhamnolipids.
Collapse
Affiliation(s)
- Eduardo J Gudiña
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Ana I Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV - Research Unit, Faculty of Science, Porto University, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Zélia Azevedo
- REQUIMTE/LAQV - Research Unit, Faculty of Science, Porto University, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lígia R Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
22
|
Brumano LP, Soler MF, da Silva SS. Recent Advances in Sustainable Production and Application of Biosurfactants in Brazil and Latin America. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1089/ind.2015.0027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Larissa Pereira Brumano
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Matheus Francisco Soler
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Silvio Silvério da Silva
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| |
Collapse
|
23
|
Lan G, Fan Q, Liu Y, Chen C, Li G, Liu Y, Yin X. Rhamnolipid production from waste cooking oil using Pseudomonas SWP-4. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.05.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Borges WS, Moura AAO, Coutinho Filho U, Cardoso VL, Resende MM. OPTIMIZATION OF THE OPERATING CONDITIONS FOR RHAMNOLIPID PRODUCTION USING SLAUGHTERHOUSE-GENERATED INDUSTRIAL FLOAT AS SUBSTRATE. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2015. [DOI: 10.1590/0104-6632.20150322s00003675] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Padilha CEDA, Padilha CADA, Souza DFDS, Oliveira JAD, Macedo GRD, Santos ESD. Prediction of rhamnolipid breakthrough curves on activated carbon and Amberlite XAD-2 using Artificial Neural Network and Group Method Data Handling models. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.02.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Gudiña EJ, Rodrigues AI, Alves E, Domingues MR, Teixeira JA, Rodrigues LR. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. BIORESOURCE TECHNOLOGY 2015; 177:87-93. [PMID: 25479398 DOI: 10.1016/j.biortech.2014.11.069] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/12/2014] [Accepted: 11/15/2014] [Indexed: 05/20/2023]
Abstract
In this work, biosurfactant production by a Pseudomonas aeruginosa strain was optimized using low-cost substrates. The highest biosurfactant production (3.2 g/l) was obtained using a culture medium containing corn steep liquor (10% (v/v)) and molasses (10% (w/v)). The biosurfactant reduced the surface tension of water up to 30 mN/m, and exhibited a high emulsifying activity (E24=60%), with a critical micelle concentration as low as 50 mg/l. The biosurfactant produced in this alternative medium was characterized as a mixture of eight different rhamnolipid congeners, being the most abundant the mono-rhamnolipid Rha-C10-C10. However, using LB medium, nine different rhamnolipid congeners were identified, being the most abundant the di-rhamnolipid Rha-Rha-C10-C10. The rhamnolipid mixture produced in the alternative medium exhibited a better performance in removing oil from contaminated sand when compared with two chemical surfactants, suggesting its potential use as an alternative to traditional chemical surfactants in enhanced oil recovery or bioremediation.
Collapse
Affiliation(s)
- Eduardo J Gudiña
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Ana I Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Eliana Alves
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lígia R Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
27
|
Hazra C, Kundu D, Chaudhari A. Lipopeptide biosurfactant from Bacillus clausii BS02 using sunflower oil soapstock: evaluation of high throughput screening methods, production, purification, characterization and its insecticidal activity. RSC Adv 2015. [DOI: 10.1039/c4ra13261k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Production, purification and characterization of a lipopeptide biosurfactant (surfactin) fromBacillus clausiiBS02 for biocontrol activity against pulse beetles and mealybugs.
Collapse
Affiliation(s)
- Chinmay Hazra
- School of Life Sciences
- North Maharashtra University
- Jalgaon 425 001
- India
| | - Debasree Kundu
- School of Life Sciences
- North Maharashtra University
- Jalgaon 425 001
- India
| | - Ambalal Chaudhari
- School of Life Sciences
- North Maharashtra University
- Jalgaon 425 001
- India
| |
Collapse
|
28
|
de Santana-Filho AP, Camilios-Neto D, de Souza LM, Sassaki GL, Mitchell DA, Krieger N. Evaluation of the Structural Composition and Surface Properties of Rhamnolipid Mixtures Produced by Pseudomonas aeruginosa UFPEDA 614 in Different Cultivation Periods. Appl Biochem Biotechnol 2014; 175:988-95. [DOI: 10.1007/s12010-014-1343-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 10/16/2014] [Indexed: 11/30/2022]
|
29
|
Li Y, Zhang W, Xu J. Siloxanes removal from biogas by a lab-scale biotrickling filter inoculated with Pseudomonas aeruginosa S240. JOURNAL OF HAZARDOUS MATERIALS 2014; 275:175-184. [PMID: 24857900 DOI: 10.1016/j.jhazmat.2014.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 04/01/2014] [Accepted: 05/04/2014] [Indexed: 06/03/2023]
Abstract
Removing volatile methyl siloxanes (VMSs) from biogas remains a longstanding challenge in the field of biological process due to their low bioavailability and biodegradation. To address this issue, a lab-scale aerobic biotrickling filter, packed with porous lava and inoculated with an effective strain of Pseudomonas aeruginosa, was developed and its performance for octamethylcyclotetrasiloxane (D4, selected as a model VMS) removal from an aerobic synthetic gas was monitored. The biotrickling filter exhibited a relatively high removal efficiency over 74% at empty bed residence time of 13.2 min. Rhamnolipids, biosurfactants produced by P. aeruginosa, were identified in the liquid phase of the biotrickling filter by HPLC-MS and ATR-FTIR, and they were found to be the main factor of improving D4 removal. Moreover, dimethylsilanediol, methanol, silicic acid in the liquid phase and carbon dioxide in the gas phase, as the biodegradation products of D4, were determined by GC-MS, silicic acid analysis and non-dispersive infrared analysis. To our knowledge, it is the first time to report the existence of methanol in the D4 degradation products. Finally, a metabolic pathway for D4 degradation by P. aeruginosa was proposed based on our results.
Collapse
Affiliation(s)
- Yunhui Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Weijiang Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Jiao Xu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, PR China.
| |
Collapse
|
30
|
Liu JF, Wu G, Yang SZ, Mu BZ. Structural characterization of rhamnolipid produced by Pseudomonas aeruginosa strain FIN2 isolated from oil reservoir water. World J Microbiol Biotechnol 2013; 30:1473-84. [PMID: 24297330 DOI: 10.1007/s11274-013-1565-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 11/23/2013] [Indexed: 11/30/2022]
Abstract
Biosurfactant-producing microorganisms inhabiting oil reservoirs are of great potential in industrial applications. Yet, till now, the knowledge about the structure and physicochemical property of their metabolites are still limited. The aim of this study was to purify and structurally characterize the biosurfactant from Pseudomonas aeruginosa strain FIN2, a newly isolated strain from an oil reservoir. The purification was conducted by silica gel column chromatography followed by pre-RP HPLC and the structural characterization was carried out by GC-MS combined with MS/MS. The results show that the biosurfactant produced by FIN2 is rhamnolipid in nature and its four main fractions were identified to be Rha-C10-C10(46.1 %), Rha-Rha-C10-C10(20.1 %), Rha-C8-C10 (7.5 %) and Rha-C10-C12:1(5.5 %), respectively. Meanwhile, the rarely reported rhamnolipid congeners containing β-hydroxy fatty acids of C6, C9, C10:1 and C11 were also proved to be present in the rhamnolipid mixture produced. The rhamnolipid mixture exhibited a strong surface activity by lowering the surface tension of distilled water to 28.6 mN/m with a CMC value of 195 mg/l.
Collapse
Affiliation(s)
- Jin-Feng Liu
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | | | | | | |
Collapse
|
31
|
Campos JM, Montenegro Stamford TL, Sarubbo LA, de Luna JM, Rufino RD, Banat IM. Microbial biosurfactants as additives for food industries. Biotechnol Prog 2013; 29:1097-108. [DOI: 10.1002/btpr.1796] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/06/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Jenyffer Medeiros Campos
- Dept. de Nutrição; Universidade Federal de Pernambuco, Programa de Pós-graduação em Nutrição, Av. Prof. Moraes Rego, 1235, Cidade Universitária; Recife CEP: 50670-901 PE Brazil
| | - Tânia Lúcia Montenegro Stamford
- Dept. de Nutrição; Universidade Federal de Pernambuco, Programa de Pós-graduação em Nutrição, Av. Prof. Moraes Rego, 1235, Cidade Universitária; Recife CEP: 50670-901 PE Brazil
| | - Leonie Asfora Sarubbo
- Centro de Ciências e Tecnologia, Universidade Católica de Pernambuco, Rua do Príncipe, 526; Boa Vista, Recife CEP: 50050-900 PE Brazil
| | - Juliana Moura de Luna
- Centro de Ciências e Tecnologia, Universidade Católica de Pernambuco, Rua do Príncipe, 526; Boa Vista, Recife CEP: 50050-900 PE Brazil
| | - Raquel Diniz Rufino
- Centro de Ciências e Tecnologia, Universidade Católica de Pernambuco, Rua do Príncipe, 526; Boa Vista, Recife CEP: 50050-900 PE Brazil
| | - Ibrahim M. Banat
- School of Biomedical Sciences; Faculty of Life and Health Sciences; University of Ulster; BT52 1SA Northern Ireland U.K
| |
Collapse
|
32
|
George S, Jayachandran K. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. J Appl Microbiol 2013; 114:373-83. [PMID: 23164038 DOI: 10.1111/jam.12069] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/24/2012] [Accepted: 10/31/2012] [Indexed: 11/27/2022]
Abstract
AIM To improve biosurfactant production economics by the utilization of potential low-cost materials. METHODS AND RESULTS In an attempt to utilize cost-effective carbon sources in the fermentative production of biosurfactants, various pure and waste frying oils were screened by a standard biosurfactant producing strain. Considering the regional significance, easy availability and the economical advantages, waste frying coconut oil was selected as the substrate for further studies. On isolation of more competent strains that could use waste frying coconut oil efficiently as a carbon source, six bacterial strains were isolated on cetyltrimethyl ammonium bromide-methylene blue agar plate, from a soil sample collected from the premises of a coconut oil mill. Among these, Pseudomonas aeruginosa D was selected as the potential producer of rhamnolipid. Spectrophotometric method, TLC, methylene blue active substance assay, drop collapse technique, surface tension measurement by Du Nouy ring method and emulsifying test confirmed the rhamnolipid producing ability of the selected strain and various process parameters were optimized for the production of maximum amount of biosurfactant. Rhamnolipid components purified and separated by ethyl acetate extraction, preparative silica gel column chromatography, HPLC and TLC were characterized by fast atom bombardment mass spectrometry as a mixture of dirhamnolipids and monorhamnolipids. The rhamnolipid homologues detected were Rha-Rha-C(10) -C(10) , Rha-C(12) -C(10) and Rha-C(10) -C(8) /Rha-C(8) -C(10) . CONCLUSION These results indicated the possibility of waste frying coconut oil to be used as a very effective alternate substrate for the economic production of rhamnolipid by a newly isolated Ps. aeruginosa D. SIGNIFICANCE AND IMPACT OF THE STUDY Results of this study throws light on the alternate use of already used cooking oil as high-energy source for producing a high value product like rhamnolipid. This would provide options for the food industry other than the recycling and reuse of waste frying oils in cooking and also furthering the value of oil nuts.
Collapse
Affiliation(s)
- S George
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | | |
Collapse
|
33
|
Zhu L, Yang X, Xue C, Chen Y, Qu L, Lu W. Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process. BIORESOURCE TECHNOLOGY 2012; 117:208-213. [PMID: 22613897 DOI: 10.1016/j.biortech.2012.04.091] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/23/2012] [Accepted: 04/23/2012] [Indexed: 06/01/2023]
Abstract
Rhamnolipids find broad applications as natural surfactants, emulsifiers, and antibiotics because of their low toxicity, high biodegradability and environmental soundness. In this study, a pH stage-controlled process of fermentation of rhamnolipids by Pseudomonas aeruginosa O-2-2 was established. A yield of 24.06 g/L in batch fermentation was achieved in a 5-L fermentor via the optimization of stirring speed. By controlling pH, rhamnolipid production was increased to 28.8 g/L, an improvement of 19.7%, and more substrate was converted to rhamnolipids rather than to biomass. Fermentation kinetics models for cell growth, product synthesis and substrate consumption based on the pH stage-controlled fermentation indicated that rhamnolipid production could be further improved by fed-batch fermentation. Rhamnolipid production reached 70.56 g/L, an improvement of 193%, in the pH stage-controlled fed-batch fermentation when the stirring speeds was controlled at 500 rpm and the fermentation temperature was maintained at 30 °C.
Collapse
Affiliation(s)
- Lingqing Zhu
- Department of Biological Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | | | | | | | | |
Collapse
|
34
|
Borges WDS, Cardoso VL, Resende MMD. Use of a greasy effluent floater treatment station from the slaughterhouse for biosurfactant production. Biotechnol Appl Biochem 2012; 59:238-44. [DOI: 10.1002/bab.1018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 03/19/2012] [Indexed: 11/11/2022]
|
35
|
Schreiberová O, Hedbávná P, Cejková A, Jirků V, Masák J. Effect of surfactants on the biofilm of Rhodococcus erythropolis, a potent degrader of aromatic pollutants. N Biotechnol 2012; 30:62-8. [PMID: 22569140 DOI: 10.1016/j.nbt.2012.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/11/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
Abstract
Bioremediation processes based on biofilms are usually very effective. The presence of (bio)surfactants in such processes can increase bioavailability of hydrophobic pollutants in aqueous phase. However, surfactants can affect the biofilm as well as individual microbial cells in different ways. Biosurfactants produced by a microbial population can be involved in the final structure of biofilm. An external application of synthetic surfactants or 'foreign' biosurfactants often results in partial or complete destruction of the biofilm and their high concentrations also have a toxic effect on microbial cells. Finding a suitable surfactant and its concentration, which would minimize the negative effects mentioned above, would allow to construct effective bioremediation processes using the benefits of both the biofilm and the surfactant. In this context, G(+) bacterium Rhodococcus erythropolis, which has a wide potential for biodegradation of aromatic compounds, was studied. High surface hydrophobicity of its cells, given mainly by the presence of mycolic acids in the cell envelopes, allows formation of stable biofilms. Three synthetic surfactants (Spolapon AOS 146, Novanik 0633A, Tween 80) and rhamnolipid isolated from Pseudomonas aeruginosa were used. Changes in initial adhesion and biofilm formation caused by the surfactants were monitored in a flow cell equipped with hydrophilic/hydrophobic carriers and analyzed by image analysis.
Collapse
Affiliation(s)
- Olga Schreiberová
- Institute of Chemical Technology Prague, Department of Fermentation Chemistry and Bioengineering, Technicka 5, CZ-166 28 Prague 6, Czech Republic.
| | | | | | | | | |
Collapse
|
36
|
Aparna A, Srinikethan G, Smitha H. Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids Surf B Biointerfaces 2012; 95:23-9. [PMID: 22445235 DOI: 10.1016/j.colsurfb.2012.01.043] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/10/2012] [Accepted: 01/27/2012] [Indexed: 11/27/2022]
Abstract
Biosurfactant-producing bacteria were isolated from terrestrial samples collected in areas contaminated with petroleum compounds. Isolates were screened for biosurfactant production using Cetyl Tri Ammonium Bromide (CTAB)-Methylene blue agar selection medium and the qualitative drop-collapse test. An efficient bacterial strain was selected based on rapid drop collapse activity and highest biosurfactant production. The biochemical characteristics and partial sequenced 16S rRNA gene of isolate, 2B, identified the bacterium as Pseudomonas sp. Five different low cost carbon substrates were evaluated for their effect on biosurfactant production. The maximum biosurfactant synthesis (4.97 g/L) occurred at 96 h when the cells were grown on modified PPGAS medium containing 1% (v/v) molasses at 30 °C and 150 rpm. The cell free broth containing the biosurfactant could reduce the surface tension to 30.14 mN/m. The surface active compound showed emulsifying activity against a variety of hydrocarbons and achieved a maximum emulsion index of 84% for sunflower oil. Compositional analysis of the biosurfactant reveals that the extracted biosurfactant was a glycolipid type, which was composed of high percentages of lipid (∼65%, w/w) and carbohydrate (∼32%, w/w). Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant indicates the presence of carboxyl, hydroxyl and methoxyl functional groups. The mass spectra (MS) shows that dirhamnolipid (l-rhamnopyranosyl-l-rhamnopyranosyl-3-hydroxydecanoyl-3-hydroxydecanoate, Rha-Rha-C(10)-C(10)) was detected in abundance with the predominant congener monorhamnolipid (l-rhamnopyranosyl-β-hydroxydecanoyl-β-hydroxydecanoate, Rha-C(10)-C(10)). The crude oil recovery studies using the biosurfactant produced by Pseudomonas sp. 2B suggested its potential application in microbial enhanced oil recovery and bioremediation.
Collapse
Affiliation(s)
- A Aparna
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal 575025, Karnataka, India.
| | | | | |
Collapse
|
37
|
Abbasi H, Hamedi MM, Lotfabad TB, Zahiri HS, Sharafi H, Masoomi F, Moosavi-Movahedi AA, Ortiz A, Amanlou M, Noghabi KA. Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant. J Biosci Bioeng 2011; 113:211-9. [PMID: 22036074 DOI: 10.1016/j.jbiosc.2011.10.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 09/09/2011] [Accepted: 10/03/2011] [Indexed: 10/15/2022]
Abstract
An extensive investigation was conducted to isolate indigenous bacterial strains with outstanding performance for biosurfactant production from different types of spoiled fruits, food-related products and food processing industries. An isolate was selected from 800 by the highest biosurfactant yield in soybean oil medium and it was identified by 16S rRNA and the two most relevant hypervariable regions of this gene; V3 and V6 as Pseudomonas aeruginosa MA01. The isolate was able to produce 12 g/l of a glycolipid-type biosurfactant and generally less efficient to emulsify vegetable oils compared to hydrocarbons and could emulsify corn and coconut oils more than 50%. However, emulsification index (E(24)) of different hydrocarbons including hexane, toluene, xylene, brake oil, kerosene and hexadecane was between 55.8% and 100%. The surface tension of pure water decreased gradually with increasing biosurfactant concentration to 32.5 mNm(-1) with critical micelle concentration (CMC) value of 10.1mg/l. Among all carbon substrates examined, vegetable oils were the most effective on biosurfactant production. Two glycolipid fractions were purified from the biosurfactant crude extracts, and FTIR and ES-MS were used to determine the structure of these compounds. The analysis indicated the presence of three major monorhamnolipid species: R(1)C(10)C(10), R(1)C(10)C(12:1), and R(1)C(10)C(12); as well as another three major dirhamnolipid species: R(2)C(10)C(10), R(2)C(10)C(12:1), and R(2)C(10)C(12). The strain sweep experiment for measuring the linear viscoelastic of biosurfactant showed that typical behavior characteristics of a weak viscoelastic gel, with storage modulus greater than loss modulus at all frequencies examined, both showing some frequency dependence.
Collapse
Affiliation(s)
- Habib Abbasi
- Department of Food Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, Karaj 31587-77871, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Purification and structural characterization of fengycin homologues produced by Bacillus subtilis LSFM-05 grown on raw glycerol. J Ind Microbiol Biotechnol 2011; 38:863-71. [PMID: 21607611 DOI: 10.1007/s10295-011-0980-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
Raw glycerol is a byproduct of biodiesel production that currently has low to negative value for biodiesel producers. One option for increasing the value of raw glycerol is to use it as a feedstock for microbial production. Bacillus subtilis LSFM 05 was used for the production of fengycin in a mineral medium containing raw glycerol as the sole carbon source. Fengycin was isolated by acid precipitation at pH 2 and purified by silica gel column chromatography and characterized using electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) with collision-induced dissociation (CID). The mass spectrum revealed the presence of the ions of m/z 1,435.7, 1,449.9, 1,463.8, 1,477.8, 1,491.8 and 1,505.8, which were further fragmented by ESI-MS/MS. The CID profile showed the presence of a series of ions (m/z 1,080 and 966) and (m/z 1,108 and 994) that represented the different fengycin homologues A and B, respectively. Fengycin homologues A and B are variants that differ at position 6 of the peptide moiety, having either Ala or Val residues, respectively. Mass spectrometry analyses identified four fengycin A and three fengycin B variants with fatty acid components containing 14-17 carbons. These results demonstrate that raw glycerol can be used as feedstock to produce fengycin, and additional work should focus on the optimization of process conditions to increase productivity.
Collapse
|
39
|
Bharali P, Konwar BK. Production and Physico-chemical Characterization of a Biosurfactant Produced by Pseudomonas aeruginosa OBP1 Isolated from Petroleum Sludge. Appl Biochem Biotechnol 2011; 164:1444-60. [DOI: 10.1007/s12010-011-9225-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 03/01/2011] [Indexed: 11/28/2022]
|
40
|
Wan Nawawi WMF, Jamal P, Alam MZ. Utilization of sludge palm oil as a novel substrate for biosurfactant production. BIORESOURCE TECHNOLOGY 2010; 101:9241-9247. [PMID: 20674345 DOI: 10.1016/j.biortech.2010.07.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/06/2010] [Accepted: 07/08/2010] [Indexed: 05/29/2023]
Abstract
This paper introduces sludge palm oil (SPO) as a novel substrate for biosurfactant production by liquid state fermentation. Potential strains of microorganism were isolated from various hydrocarbon-based sources at palm oil mill and screened for biosurfactant production with the help of drop collapse method and surface tension activity. Out of 22 isolates of microorganism, the strain S02 showed the highest bacterial growth with a surface tension of 36.2 mN/m and was therefore, selected as a potential biosurfactant producing microorganism. Plackett-Burman experimental design was employed to determine the important nutritional requirement for biosurfactant production by the selected strain under controlled conditions. Six out of 11 factors of the production medium were found to significantly affect the biosurfactant production. K(2)HPO(4) had a direct proportional correlation with the biosurfactant production while sucrose, glucose, FeSO(4), MgSO(4), and NaNO(3) showed inversely proportional relationship with biosurfactant production in the selected experimental range.
Collapse
Affiliation(s)
- Wan Mohd Fazli Wan Nawawi
- Bioenvironmental Engineering Research Unit, Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
41
|
Rhamnolipid Surfactants: Alternative Substrates, New Strategies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 672:170-84. [DOI: 10.1007/978-1-4419-5979-9_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
42
|
Liu J, Huang XF, Lu LJ, Xu JC, Wen Y, Yang DH, Zhou Q. Comparison between waste frying oil and paraffin as carbon source in the production of biodemulsifier by Dietzia sp. S-JS-1. BIORESOURCE TECHNOLOGY 2009; 100:6481-6487. [PMID: 19643603 DOI: 10.1016/j.biortech.2009.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/05/2009] [Accepted: 07/06/2009] [Indexed: 05/28/2023]
Abstract
In order to lower the production cost, waste frying oils were used in the biosynthesis of demulsifier by Dietzia sp. S-JS-1, which was isolated from petroleum contaminated soil. After 7 days of cultivation, the biomass concentration of the most suitable waste frying oil (WFO II) culture reached 3.78 g/L, which was 2.4 times the concentration of paraffin culture. The biodemulsifier produced with WFO II culture broke the emulsions more efficiently than that produced with paraffin culture, given the same volume ratio of carbon source in the culture medium and the same cultivation conditions. It achieved 88.3% of oil separation ratio in W/O emulsion and 76.4% of water separation ratio in O/W emulsion within 5 h. With the aid of thin layer chromatography (TLC) and Fourier transform infrared (FTIR) spectrometry, biodemulsifiers produced from both paraffin and WFO II were identified as a mixture of lipopeptide homologues. The subtle variation in the distribution of these homologues and high biomass concentration of WFO II cultures may account for the afore-mentioned good demulsification performance.
Collapse
Affiliation(s)
- Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Albino JD, Nambi IM. Effect of biosurfactants on the aqueous solubility of PCE and TCE. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2009; 44:1565-1573. [PMID: 20183515 DOI: 10.1080/10934520903263538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The effect of biosurfactants on the solubility of tetrachloroethylene (PCE) and trichloroethylene (TCE) was studied in batch experiments pertaining to their use for solubilization and mobilization of such contaminants in surfactant enhanced aquifer remediation. Biosurfactants, rhamnolipid and surfactin used in solubility studies were synthesized in our laboratory by Pseudomonas aeruginosa (MTCC 2297) and Bacillus subtilis (MTCC 2423), respectively. The efficiency of the biosurfactants in solubilizing the chlorinated solvents was compared to that of synthetic surfactants. The Weight Solubilization Ratio (WSR) values for solubilization of PCE and TCE by biosurfactants were very high compared to the values obtained for synthetic surfactants. Surfactin proved to be a better surfactant over rhamnolipid. The WSR of surfactin on solubilization of PCE and TCE were 3.83 and 12.5, respectively, whereas the values obtained for rhamnolipid were 2.06 and 8.36. The solubility of the chlorinated solvents by biosurfactants was considerably affected by the changes in pH. The aqueous solubility of PCE and TCE increased tremendously with decrease in pH. The solubility of biosurfactants was observed to decrease with the pH, favoring partitioning of surfactants into the chlorinated solvents in significant amounts at lower pH. The excessive accumulation of biosurfactants at the interface facilitated interfacial tension reductions resulting in higher solubility of the chlorinated solvents at pH less than 7.
Collapse
Affiliation(s)
- John D Albino
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
| | | |
Collapse
|
44
|
Nitschke M, Costa SGVAO, Contiero J. Structure and applications of a rhamnolipid surfactant produced in soybean oil waste. Appl Biochem Biotechnol 2009; 160:2066-74. [PMID: 19649781 DOI: 10.1007/s12010-009-8707-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 07/05/2009] [Indexed: 11/25/2022]
Abstract
Soybean oil soapstock was utilized as an alternative carbon source for the production of rhamnolipids by Pseudomonas aeruginosa LBI strain. The chemical composition and properties of the rhamnolipid mixture obtained were determined to define its potential applications. The chemical characterization of the rhamnolipid has revealed the presence of ten different homologues. The monorhamnolipid RhaC10C1) and the dirhamnolipid Rha2C10C10 were the main components of the mixture that showed predominance of 44% and 29%, respectively, after 144-h of cultivation. The biosurfactant was able to form stable emulsions with several hydrocarbons and showed excellent emulsification for soybean oil and chicken fat (100%). The rhamnolipid removed 67% of crude oil present in sand samples and presented antimicrobial activity against Bacillus cereus and Mucor miehei at 64 microg/mL and inhibition of Neurospora crassa, Staphylococcus aureus, and Micrococcus luteus at 256 microg/mL. The results demonstrated that the rhamnolipid produced in soybean oil soapstock can be useful in environmental and food industry applications.
Collapse
Affiliation(s)
- Marcia Nitschke
- Department of Physical-Chemistry, Institute of Chemistry, University of São Paulo-USP, Av. Trabalhador São Carlense 400, 13560-970 São Carlos, SP, Brazil.
| | | | | |
Collapse
|
45
|
Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture. Appl Microbiol Biotechnol 2008; 81:441-8. [PMID: 18766338 DOI: 10.1007/s00253-008-1663-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
In recent years, biosurfactants have attracted attention because of their low toxicity, high biodegradability, and good ecological acceptability. However, their production in submerged liquid culture is hampered by the severe foaming that occurs. Solid-state cultivation can avoid this problem. In the current work, we optimized the production of a rhamnolipid biosurfactant by Pseudomonas aeruginosa UFPEDA 614, grown on a solid medium impregnated with a solution containing glycerol. During the study, we increased the production of the biosurfactant over tenfold, with levels reaching 172 g of rhamnolipid per kilogram of dry initial substrate after 12 days. On the basis of the volume of impregnating solution added to the solid support, this yield is of the order of 46 g/L, which is comparable with the best results that have been obtained to date in submerged liquid cultivation. Our results suggest that there is a great potential for using solid-state cultivation for the production of rhamnolipids.
Collapse
|