1
|
Alqosiri HM, Alqasiri HM, Alqasire SE, Nava VE, Bandyopadhyay BC, Raub CB. Breast cancer extracellular matrix invasion depends on local mechanical loading of the collagen network. J Mater Chem B 2025. [PMID: 40135428 DOI: 10.1039/d4tb01474j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Active mechanical stresses in and around tumors affect cancer cell behavior and independently regulate cancer progression. To investigate the role of mechanical stress in breast cancer cell invasion, magnetic alginate beads loaded with iron oxide nanoparticles were coated with MDA-MB-231 breast cancer cells and embedded in a three-dimensional extracellular matrix (ECM) model subjected to an external magnetic field during culture. Bead displacement, cell shape and patterns of invasion of the collagen gel, and cell proliferation were assessed over 7 days of culture. The alginate beads swelled over the first 24 h in culture, creating circumferential stress akin to that created by tumor growth, while bead magnetic properties enabled local mechanical loading (compression, tension, and relaxation) and motion within the in vitro tissue constructs upon exposure to an external magnetic field. Beads displaced 0.2-1.6 mm through the collagen gels, depending on magnet size and distance, compressing the collagen network microstructure without gel mechanical failure. Invading cells formed a spatulate pattern as they moved into the compressed ECM region, with individual cells aligned parallel to the bead surface. During the first 24 hours of compressive magnetic force loading, invading cancer cells became round, losing elongation and ability to invade out from the bead surface, while still actively dividing. In contrast, cell invasion in unloaded constructs and in loaded constructs away from the compression region invaded as single cells, transversely outward from the bead surface. Finally, cell proliferation was 1.3× higher only after external magnet removal, which caused relaxation of mechanical stress in the collagen network. These findings indicate effects on breast cancer invasion of mechanical loading of ECM, both from compressive loading and from load relaxation. Findings point to the influence of mechanical stress on cancer cell behavior and suggest that relaxing mechanical stress in and around a tumor may promote cancer progression through higher proliferation and invasion.
Collapse
Affiliation(s)
- Hanadi M Alqosiri
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
| | - Hadeel M Alqasiri
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
| | - Sara E Alqasire
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
| | - Victor E Nava
- Veterans Affairs Medical Center, Washington, DC, 20422, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Bidhan C Bandyopadhyay
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
- Veterans Affairs Medical Center, Washington, DC, 20422, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Christopher B Raub
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
| |
Collapse
|
2
|
Liu X, Dong Y, Wang C, Guo Z. Application of chitosan as nano carrier in the treatment of inflammatory bowel disease. Int J Biol Macromol 2024; 278:134899. [PMID: 39187100 DOI: 10.1016/j.ijbiomac.2024.134899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD), is characterized by persistent and recurrent gastrointestinal inflammation. Conventional IBD therapies often involve the use of antibiotics, NSAIDs, biological agents, and immunomodulators. While these medications can mitigate acute inflammatory symptoms, their long-term efficacy is frequently compromised due to cumulative toxic effects. In recent years, significant attention has shifted toward nanoparticle (NP)-based therapies as potential alternatives for IBD management. Various drug delivery strategies, including those targeting microbiota interactions, ligand-receptor binding, pH sensitivity, biodegradability, pressure response, and specific charge and size parameters, have been explored and optimized in animal studies. This review provides a comprehensive overview of the current landscape of chitosan NP-mediated drug delivery systems for IBD treatment. Additionally, it will discuss the prevailing challenges and propose future research directions to advance chitosan NP-based therapeutic strategies for IBD.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Gastroenterology, Huaihe Hospital of Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Yunrui Dong
- Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, China
| | - Chenyu Wang
- Department of General Surgery, Huaihe Hospital of Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Zhiguo Guo
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province), No.616 Bianyangsan Road, Suzhou 234000, Anhui, China.
| |
Collapse
|
3
|
Zhang YB, Wang JF, Wang MX, Peng J, Kong XD, Tian J. Nano-based drug delivery systems for active ingredients from traditional Chinese medicine: Harnessing the power of nanotechnology. Front Pharmacol 2024; 15:1405252. [PMID: 38910887 PMCID: PMC11190311 DOI: 10.3389/fphar.2024.1405252] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction: Traditional Chinese medicine (TCM) is gaining worldwide popularity as a complementary and alternative medicine. The isolation and characterization of active ingredients from TCM has become optional strategies for drug development. In order to overcome the inherent limitations of these natural products such as poor water solubility and low bioavailability, the combination of nanotechnology with TCM has been explored. Taking advantage of the benefits offered by the nanoscale, various drug delivery systems have been designed to enhance the efficacy of TCM in the treatment and prevention of diseases. Methods: The manuscript aims to present years of research dedicated to the application of nanotechnology in the field of TCM. Results: The manuscript discusses the formulation, characteristics and therapeutic effects of nano-TCM. Additionally, the formation of carrier-free nanomedicines through self-assembly between active ingredients of TCM is summarized. Finally, the paper discusses the safety behind the application of nano-TCM and proposes potential research directions. Discussion: Despite some achievements, the safety of nano-TCM still need special attention. Furthermore, exploring the substance basis of TCM formulas from the perspective of nanotechnology may provide direction for elucidating the scientific intension of TCM formulas.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Tian
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
4
|
Olunusi SO, Ramli NH, Fatmawati A, Ismail AF, Okwuwa CC. Revolutionizing tropical fruits preservation: Emerging edible coating technologies. Int J Biol Macromol 2024; 264:130682. [PMID: 38460636 DOI: 10.1016/j.ijbiomac.2024.130682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Tropical fruits, predominantly cultivated in Southeast Asia, are esteemed for their nutritional richness, distinctive taste, aroma, and visual appeal when consumed fresh. However, postharvest challenges have led to substantial global wastage, nearly 50 %. The advent of edible biopolymeric nanoparticles presents a novel solution to preserve the fruits' overall freshness. These nanoparticles, being edible, readily available, biodegradable, antimicrobial, antioxidant, Generally Recognized As Safe (GRAS), and non-toxic, are commonly prepared via ionic gelation owing to the method's physical crosslinking, simplicity, and affordability. The resulting biopolymeric nanoparticles, with or without additives, can be employed in basic formulations or as composite blends with other materials. This study aims to review the capabilities of biopolymeric nanoparticles in enhancing the physical and sensory aspects of tropical fruits, inhibiting microbial growth, and prolonging shelf life. Material selection for formulation is crucial, considering coating materials, the fruit's epidermal properties, internal and external factors. A variety of application techniques are covered such as spraying, and layer-by-layer among others, including their advantages, and disadvantages. Finally, the study addresses safety measures, legislation, current challenges, and industrial perspectives concerning fruit edible coating films.
Collapse
Affiliation(s)
- Samuel Olugbenga Olunusi
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Nor Hanuni Ramli
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Adam Fatmawati
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia; Centre for Research in Advanced Fluid and Processes, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| | - Ahmad Fahmi Ismail
- Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Bandar Indera Mahkota, 25200, Bandar Indera Mahkota Razak, Kuantan, Pahang, Malaysia
| | - Chigozie Charity Okwuwa
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| |
Collapse
|
5
|
Verma D, Okhawilai M, Goh KL, Thakur VK, Senthilkumar N, Sharma M, Uyama H. Sustainable functionalized chitosan based nano-composites for wound dressings applications: A review. ENVIRONMENTAL RESEARCH 2023; 235:116580. [PMID: 37474094 DOI: 10.1016/j.envres.2023.116580] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Functionalized chitosan nanocomposites have been studied for wound dressing applications due to their excellent antibacterial and anti-fungal properties. Polysaccharides show excellent antibacterial and drug-release properties and can be utilized for wound healing. In this article, we comprise distinct approaches for chitosan functionalization, such as photosensitizers, dendrimers, graft copolymerization, quaternization, acylation, carboxyalkylation, phosphorylation, sulfation, and thiolation. The current review article has also discussed brief insights on chitosan nanoparticle processing for biomedical applications, including wound dressings. The chitosan nanoparticle preparation technologies have been discussed, focusing on wound dressings owing to their targeted and controlled drug release behavior. The future directions of chitosan research include; a) finding an effective solution for chronic wounds, which are unable to heal completely; b) providing effective wound healing solutions for diabetic wounds and venous leg ulcers; c) to better understanding the wound healing mechanism with such materials which can help provide the optimum solution for wound dressing; d) to provide an improved treatment option for wound healing.
Collapse
Affiliation(s)
- Deepak Verma
- International Graduate Program of Nanoscience and Technology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manunya Okhawilai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Kheng Lim Goh
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK; Newcastle University in Singapore, 567739, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom
| | - Nangan Senthilkumar
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mohit Sharma
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Republic of Singapore
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Elmowafy M, Shalaby K, Elkomy MH, Alsaidan OA, Gomaa HAM, Abdelgawad MA, Mostafa EM. Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers (Basel) 2023; 15:1123. [PMID: 36904364 PMCID: PMC10007077 DOI: 10.3390/polym15051123] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
In the last few decades, several natural bioactive agents have been widely utilized in the treatment and prevention of many diseases owing to their unique and versatile therapeutic effects, including antioxidant, anti-inflammatory, anticancer, and neuroprotective action. However, their poor aqueous solubility, poor bioavailability, low GIT stability, extensive metabolism as well as short duration of action are the most shortfalls hampering their biomedical/pharmaceutical applications. Different drug delivery platforms have developed in this regard, and a captivating tool of this has been the fabrication of nanocarriers. In particular, polymeric nanoparticles were reported to offer proficient delivery of various natural bioactive agents with good entrapment potential and stability, an efficiently controlled release, improved bioavailability, and fascinating therapeutic efficacy. In addition, surface decoration and polymer functionalization have opened the door to improving the characteristics of polymeric nanoparticles and alleviating the reported toxicity. Herein, a review of the state of knowledge on polymeric nanoparticles loaded with natural bioactive agents is presented. The review focuses on frequently used polymeric materials and their corresponding methods of fabrication, the needs of such systems for natural bioactive agents, polymeric nanoparticles loaded with natural bioactive agents in the literature, and the potential role of polymer functionalization, hybrid systems, and stimuli-responsive systems in overcoming most of the system drawbacks. This exploration may offer a thorough idea of viewing the polymeric nanoparticles as a potential candidate for the delivery of natural bioactive agents as well as the challenges and the combating tools used to overcome any hurdles.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Hesham A. M. Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| |
Collapse
|
7
|
Vodyashkin AA, Kezimana P, Vetcher AA, Stanishevskiy YM. Biopolymeric Nanoparticles-Multifunctional Materials of the Future. Polymers (Basel) 2022; 14:2287. [PMID: 35683959 PMCID: PMC9182720 DOI: 10.3390/polym14112287] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Nanotechnology plays an important role in biological research, especially in the development of delivery systems with lower toxicity and greater efficiency. These include not only metallic nanoparticles, but also biopolymeric nanoparticles. Biopolymeric nanoparticles (BPNs) are mainly developed for their provision of several advantages, such as biocompatibility, biodegradability, and minimal toxicity, in addition to the general advantages of nanoparticles. Therefore, given that biopolymers are biodegradable, natural, and environmentally friendly, they have attracted great attention due to their multiple applications in biomedicine, such as drug delivery, antibacterial activity, etc. This review on biopolymeric nanoparticles highlights their various synthesis methods, such as the ionic gelation method, nanoprecipitation method, and microemulsion method. In addition, the review also covers the applications of biodegradable polymeric nanoparticles in different areas-especially in the pharmaceutical, biomedical, and agricultural domains. In conclusion, the present review highlights recent advances in the synthesis and applications of biopolymeric nanoparticles and presents both fundamental and applied aspects that can be used for further development in the field of biopolymeric nanoparticles.
Collapse
Affiliation(s)
- Andrey A. Vodyashkin
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
| | - Parfait Kezimana
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
- Department of Agrobiotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya Str., 117588 Moscow, Russia
| | - Yaroslav M. Stanishevskiy
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
| |
Collapse
|
8
|
Kalidason A, Saito K, Nanbu Y, Sasaki H, Ohsumi R, Kanazawa A, Kuroiwa T. Biodegradable Crosslinked Chitosan Gel Microbeads with Controlled Size, Prepared by Membrane Emulsification-External Gelation and Their Application as Reusable Adsorption Materials. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2022. [DOI: 10.1252/jcej.21we061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anchali Kalidason
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University
| | - Kaori Saito
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University
| | - Yuki Nanbu
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University
| | - Hideki Sasaki
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University
| | - Rina Ohsumi
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University
| | - Akihiko Kanazawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University
| | | |
Collapse
|
9
|
Oh JW, Shin J, Chun S, Muthu M, Gopal J. Evaluating the Anticarcinogenic Activity of Surface Modified/Functionalized Nanochitosan: The Emerging Trends and Endeavors. Polymers (Basel) 2021; 13:3138. [PMID: 34578039 PMCID: PMC8471611 DOI: 10.3390/polym13183138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan begins its humble journey from marine food shell wastes and ends up as a versatile nutraceutical. This review focuses on briefly discussing the antioxidant activity of chitosan and retrospecting the accomplishments of chitosan nanoparticles as an anticarcinogen. The various modified/functionalized/encapsulated chitosan nanoparticles and nanoforms have been listed and their biomedical deliverables presented. The anticancer accomplishments of chitosan and its modified composites have been reviewed and presented. The future of surface modified chitosan and the lacunae in the current research focus have been discussed as future perspective. This review puts forth the urge to expand the scientific curiosity towards attempting a variety of functionalization and surface modifications to chitosan. There are few well known modifications and functionalization that benefit biomedical applications that have been proven for other systems. Being a biodegradable, biocompatible polymer, chitosan-based nanomaterials are an attractive option for medical applications. Therefore, maximizing expansion of its bioactive properties are explored. The need for applying the ideal functionalization that will significantly promote the anticancer contributions of chitosan nanomaterials has also been stressed.
Collapse
Affiliation(s)
- Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.-W.O.); (J.S.)
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.-W.O.); (J.S.)
| | - Sechul Chun
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| | - Manikandan Muthu
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| | - Judy Gopal
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| |
Collapse
|
10
|
Sivanesan I, Gopal J, Muthu M, Shin J, Mari S, Oh J. Green Synthesized Chitosan/Chitosan Nanoforms/Nanocomposites for Drug Delivery Applications. Polymers (Basel) 2021; 13:2256. [PMID: 34301013 PMCID: PMC8309384 DOI: 10.3390/polym13142256] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan has become a highlighted polymer, gaining paramount importance and research attention. The fact that this valuable polymer can be extracted from food industry-generated shell waste gives it immense value. Chitosan, owing to its biological and physicochemical properties, has become an attractive option for biomedical applications. This review briefly runs through the various methods involved in the preparation of chitosan and chitosan nanoforms. For the first time, we consolidate the available scattered reports on the various attempts towards greens synthesis of chitosan, chitosan nanomaterials, and chitosan nanocomposites. The drug delivery applications of chitosan and its nanoforms have been reviewed. This review points to the lack of systematic research in the area of green synthesis of chitosan. Researchers have been concentrating more on recovering chitosan from marine shell waste through chemical and synthetic processes that generate toxic wastes, rather than working on eco-friendly green processes-this is projected in this review. This review draws the attention of researchers to turn to novel and innovative green processes. More so, there are scarce reports on the application of green synthesized chitosan nanoforms and nanocomposites towards drug delivery applications. This is another area that deserves research focus. These have been speculated and highlighted as future perspectives in this review.
Collapse
Affiliation(s)
- Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Judy Gopal
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India
| | - Manikandan Muthu
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Selvaraj Mari
- Department of Chemistry, Guru Nanak College, Chennai 600 042, India
| | - Jaewook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
11
|
Boroumand H, Badie F, Mazaheri S, Seyedi ZS, Nahand JS, Nejati M, Baghi HB, Abbasi-Kolli M, Badehnoosh B, Ghandali M, Hamblin MR, Mirzaei H. Chitosan-Based Nanoparticles Against Viral Infections. Front Cell Infect Microbiol 2021; 11:643953. [PMID: 33816349 PMCID: PMC8011499 DOI: 10.3389/fcimb.2021.643953] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/22/2021] [Indexed: 01/23/2023] Open
Abstract
Viral infections, in addition to damaging host cells, can compromise the host immune system, leading to frequent relapse or long-term persistence. Viruses have the capacity to destroy the host cell while liberating their own RNA or DNA in order to replicate within additional host cells. The viral life cycle makes it challenging to develop anti-viral drugs. Nanotechnology-based approaches have been suggested to deal effectively with viral diseases, and overcome some limitations of anti-viral drugs. Nanotechnology has enabled scientists to overcome the challenges of solubility and toxicity of anti-viral drugs, and can enhance their selectivity towards viruses and virally infected cells, while preserving healthy host cells. Chitosan is a naturally occurring polymer that has been used to construct nanoparticles (NPs), which are biocompatible, biodegradable, less toxic, easy to prepare, and can function as effective drug delivery systems (DDSs). Furthermore, chitosan is Generally Recognized as Safe (GRAS) by the US Food and Drug Administration (U.S. FDA). Chitosan NPs have been used in drug delivery by the oral, ocular, pulmonary, nasal, mucosal, buccal, or vaginal routes. They have also been studied for gene delivery, vaccine delivery, and advanced cancer therapy. Multiple lines of evidence suggest that chitosan NPs could be used as new therapeutic tools against viral infections. In this review we summarize reports concerning the therapeutic potential of chitosan NPs against various viral infections.
Collapse
Affiliation(s)
- Homa Boroumand
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fereshteh Badie
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Mazaheri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Badehnoosh
- Department of Gynecology and Obstetrics, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
12
|
Rashki S, Asgarpour K, Tarrahimofrad H, Hashemipour M, Ebrahimi MS, Fathizadeh H, Khorshidi A, Khan H, Marzhoseyni Z, Salavati-Niasari M, Mirzaei H. Chitosan-based nanoparticles against bacterial infections. Carbohydr Polym 2021; 251:117108. [DOI: 10.1016/j.carbpol.2020.117108] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/23/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022]
|
13
|
Wang X, Gong J, Tan W, Hu T, Rong R, Gui Z, Nie K, Xu X. Adsorption of proteins on oral Zn 2+ doped iron oxide nanoparticles in mouse stomach and in vitro: triggering nanoparticle aggregation. NANOSCALE 2020; 12:22754-22767. [PMID: 33174556 DOI: 10.1039/d0nr06315k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oral route is one of the most important portals of nanoparticle entry to the body. However, in vivo protein corona formed in the gastrointestinal tract has not been studied owing to the difficulty for the recovery of nanoparticles from the in vivo environment. In this study, by using the magnetic property of iron oxide nanoparticles (Fe3O4 NPs) and Zn2+ doped iron oxide nanoparticles (Zn0.4Fe2.6O4 NPs), the nanoparticles were separated from the gastric fluid after oral administration in mice. The effects of Zn2+ doping and static magnetic field (SMF) treatment on the protein adsorption on the nanoparticles were investigated in vitro and in vivo. Zn2+ doping decreases the adsorption of pepsin on the nanoparticles in vitro and affects the composition of the protein corona in vivo and enhances protein adsorption-induced aggregation of the nanoparticles in vitro and in vivo. SMF treatment affects the composition of the protein corona of Fe3O4 NPs and Zn0.4Fe2.6O4 NPs, and enhances the aggregation of Fe3O4 NPs and Zn0.4Fe2.6O4 NPs in vivo. Furthermore, the results demonstrate that electrostatic attraction is the crucial force to drive adsorption of proteins on Fe3O4 NPs and Zn0.4Fe2.6O4 NPs and protein adsorption-induced change in the surface charge of nanoparticles plays an important role in the pH-dependent aggregation of the nanoparticles. In addition, the work provides the evidence that the protein adsorption-induced aggregation of Fe3O4 NPs and Zn0.4Fe2.6O4 NPs has no effect on their magnetic susceptibility. The results highlight that Zn0.4Fe2.6O4 NPs may be used as a potential oral magnetic resonance imaging contrast agent in diagnosis of gastrointestinal disease.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
A Self-Referenced Diffraction-Based Optical Leaky Waveguide Biosensor Using Photofunctionalised Hydrogels. BIOSENSORS-BASEL 2020; 10:bios10100134. [PMID: 32987938 PMCID: PMC7601400 DOI: 10.3390/bios10100134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
We report a novel self-referenced diffraction-based leaky waveguide (LW) comprising a thin (~2 µm) film of a photofunctionalisable hydrogel created by covalent attachment of a biotinylated photocleavable linker to chitosan. Streptavidin attached to the chitosan via the photocleavable linker was selectively removed by shining 365 nm light through a photomask to create an array of strips with high and low loading of the protein, which served as sensor and reference regions respectively. The differential measurements between sensor and reference regions were used for measuring analytes (i.e., biotin protein A and IgG) while reducing environmental and non-specific effects. These include changes in temperature and sample composition caused by non-adsorbing and adsorbing species, leading to reduction in effects by ~98%, ~99%, and ~97% respectively compared to the absolute measurements. The novelty of this work lies in combining photofunctionalisable hydrogels with diffraction-based LWs for referencing. This is needed to realise the full potential of label-free optical biosensors to measure analyte concentrations in real samples that are complex mixtures, and to allow for sample analysis outside of laboratories where drifts and fluctuations in temperature are observed.
Collapse
|
15
|
Mahdavinia GR, Etemadi H. Surface modification of iron oxide nanoparticles with κ-carrageenan/carboxymethyl chitosan for effective adsorption of bovine serum albumin. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
16
|
Immobilization of xylanase on modified grafted alginate polyethyleneimine bead based on impact of sodium cation effect. Int J Biol Macromol 2019; 140:1284-1295. [DOI: 10.1016/j.ijbiomac.2019.08.211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 12/18/2022]
|
17
|
Razavi N, Es'haghi Z. Employ of magnetic polyaniline coated chitosan nanocomposite for extraction and determination of phthalate esters in diapers and wipes using gas chromatography. Microchem J 2018. [DOI: 10.1016/j.microc.2018.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Song Z, Hu Y, Qi L, Xu T, Yang Y, Xu Z, Lai X, Wang X, Zhang D, Li S. An effective and recyclable deproteinization method for polysaccharide from oyster by magnetic chitosan microspheres. Carbohydr Polym 2018; 195:558-565. [DOI: 10.1016/j.carbpol.2018.04.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 01/14/2023]
|
19
|
Heng T, Ze W, Wen-Sheng T, Xiao-Ping L, Jian-Guo Q, Xiao-Hong Y. Synthesis of magnetic Fe 3O 4 micro/nanospheres in organic solvent. J Appl Biomater Funct Mater 2018; 16:26-31. [PMID: 29618254 DOI: 10.1177/2280800017753328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Micro/nanostructured materials have attracted a great deal of attention, and many strategies have been developed to fabricate micro/nanostructured materials. METHODS Amine-functionalized micro/nanostructured Fe3O4 with different sizes was synthesized conveniently in organic media. The chemical structures of as-synthesized products were characterized by FTIR, TEM, SEM, and XRD. RESULTS The ligand binds to the Fe3O4 core by hydrogen bond between the oxygen atom on the surface of Fe3O4 and the hydrogen atom in molecular ethylenediamine. Their magnetic properties were also investigated. CONCLUSIONS First, there is no need to control the reaction under a nitrogen atmosphere, and just one salt is used as an iron source. The growth and the surface modification of Fe3O4 crystalline nucleation happen at the same time. Second, monodispersed Fe3O4 micro/nanospheres were prepared without additional surfactant or external magnetic fields. Third, this method is preferred compared with the conventional organic phase method, as the reaction condition is milder and less pollutant will be produced.
Collapse
Affiliation(s)
- Tan Heng
- 1 School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, China
| | - Wang Ze
- 2 School of Material Engineering, Jiangsu University of Technology, Jiangsu Key Laboratory of Advanced Materials Design and Additive Manufacturing, Changzhou, China
| | - Tan Wen-Sheng
- 3 Changzhou Key Laboratory of Large Plastic Parts Intelligence Manufacturing, Changzhou College of Information Technology, Changzhou, China
| | - Li Xiao-Ping
- 2 School of Material Engineering, Jiangsu University of Technology, Jiangsu Key Laboratory of Advanced Materials Design and Additive Manufacturing, Changzhou, China
| | - Qiu Jian-Guo
- 4 Nantong HuaNaiTe Graphite Equipment Co. Ltd, Nantong, China
| | - Yang Xiao-Hong
- 2 School of Material Engineering, Jiangsu University of Technology, Jiangsu Key Laboratory of Advanced Materials Design and Additive Manufacturing, Changzhou, China
| |
Collapse
|
20
|
Mahdavinia GR, Soleymani M, Etemadi H, Sabzi M, Atlasi Z. Model protein BSA adsorption onto novel magnetic chitosan/PVA/laponite RD hydrogel nanocomposite beads. Int J Biol Macromol 2018; 107:719-729. [DOI: 10.1016/j.ijbiomac.2017.09.042] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/15/2022]
|
21
|
Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 2017; 9:E53. [PMID: 29156634 PMCID: PMC5750659 DOI: 10.3390/pharmaceutics9040053] [Citation(s) in RCA: 718] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded as safe for human dietary use and approved for wound dressing applications. Chitosan has been used as a carrier in polymeric nanoparticles for drug delivery through various routes of administration. Chitosan has chemical functional groups that can be modified to achieve specific goals, making it a polymer with a tremendous range of potential applications. Nanoparticles (NP) prepared with chitosan and chitosan derivatives typically possess a positive surface charge and mucoadhesive properties such that can adhere to mucus membranes and release the drug payload in a sustained release manner. Chitosan-based NP have various applications in non-parenteral drug delivery for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections which will be exemplified in this review. Chitosan shows low toxicity both in vitro and some in vivo models. This review explores recent research on chitosan based NP for non-parenteral drug delivery, chitosan properties, modification, toxicity, pharmacokinetics and preclinical studies.
Collapse
Affiliation(s)
- Munawar A Mohammed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Jaweria T M Syeda
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Kishor M Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Ellen K Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| |
Collapse
|
22
|
Xie J, Jiang H, Shen J, Peng T, Wang J, Yao K, Sun S, Shao B, Tang J. Design of Multifunctional Nanostructure for Ultrafast Extraction and Purification of Aflatoxins in Foodstuffs. Anal Chem 2017; 89:10556-10564. [PMID: 28866878 DOI: 10.1021/acs.analchem.7b02777] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aflatoxins (AFs) are a class of carcinogens, associated with liver cancers, that exist in foodstuffs. There are extremely low maximum limits of AFs in foodstuffs (0.025-20 μg·kg-1). Quick and sensitive detection of such low concentration of AFs in foodstuffs is dominated by the efficiency and selectivity of the AF enrichment process, which is extremely challenging although substantial efforts have been made in recent decades. Here we design and synthesize a multilayer nanoarchitecture composed of a broad-spectrum aflatoxin monoclonal antibody shell, chitosan middle layer, and magnetic bead core (denoted AF-mAb/CTS/Fe3O4). The efficiency of AF-mAb/CTS/Fe3O4 in extracting AFs has been found to be more than 60 times higher than both conventional immunoaffinity chromatography and solid-phase extraction. Furthermore, the nanocomposite displays excellent selectivity and good reusability as well as outstanding efficiency. When coupled to ultraperformance liquid chromatography-tandem quadrupole mass spectrometry, this new nanoarchitecture enables us to probe six AFs at concentrations as low as 0.003 μg·kg-1 in foodstuffs with free matrix effects, which is nearly 10 times smaller than the regulated maximum tolerated does. It is believed that the new nanoarchitecture will provide an efficient and fast pathway to detect AFs in foodstuffs to protect human being from some critical liver cancers.
Collapse
Affiliation(s)
- Jie Xie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Haiyang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Tao Peng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Jianyi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Kai Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Shujuan Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Bing Shao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Junwang Tang
- Department of Chemical Engineering, University College London , Torrington Place, London WC1E 7JE, United Kingdom
| |
Collapse
|
23
|
Qasim M, Asghar K, Dharmapuri G, Das D. Investigation of novel superparamagnetic Ni 0.5Zn 0.5Fe 2O 4@albumen nanoparticles for controlled delivery of anticancer drug. NANOTECHNOLOGY 2017; 28:365101. [PMID: 28675377 DOI: 10.1088/1361-6528/aa7d81] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the present work, multifunctional Ni0.5Zn0.5Fe2O4@albumen (NZF@Alb) and doxorubicin-loaded Ni0.5Zn0.5Fe2O4@albumen (NZF@Alb-Dox) core-shell nanoparticles have been prepared by a green and simple method using inexpensive chicken egg albumen and have been characterized for different physiochemical properties. The structural, morphological, thermal, and magnetic properties of the prepared nanoparticles have been investigated by an x-ray diffractometer, high-resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy, Fourier-transformed infrared, thermogravimetric analysis, and vibrating sample magnetometer techniques. Superparamagnetic Ni0.5Zn0.5Fe2O4 nanoparticles (NZF NPs) with the mean size ∼20 nm were coated with albumen matrix by an ultrasonication process. Inverse fast Fourier transform-assisted HRTEM micrographs and FTIR analysis revealed the coating of amorphous albumen on crystalline NZF NPs. NZF@Alb and NZF@Alb-Dox NPs have the mean size (D50) of ∼100 nm, good stability, and magnetic controllability. Magnetic measurements (field (H)-dependent magnetization (M)) show all samples to be super-paramagnetic in nature. Biocompatibilities of the NZF and NZF@Alb NPs were confirmed by in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against RAW 264.7 cells. NZF@Alb NPs have been found to be more biocompatible than bare NZF. In Vitro Dox release behavior from NZF@Alb-Dox NPs has been studied at pH 7.4 and 5, and a sustained and pH-dependent drug release profile were observed. In vitro cytotoxicity or anticancer activity of the blank NZF@Alb NPs, free Dox, and NZF@Alb-Dox NPs against HeLa cells (cancer cell line) were also examined by MTT assay. The obtained results suggest that this scalable egg-albumen-based magnetic nanoformulation is suitable for targeted drug delivery applications. Thus, the present study could be extremely useful for the advancement of albumin-based nanocarrier design and development for biomedical applications such as targeted and controlled delivery of anticancer drugs.
Collapse
Affiliation(s)
- Mohd Qasim
- School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046, India
| | | | | | | |
Collapse
|
24
|
Awad GEA, Wehaidy HR, Abd El Aty AA, Hassan ME. A novel alginate–CMC gel beads for efficient covalent inulinase immobilization. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4024-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
|
26
|
Thakur S, Hashim N, Neogi S, Ray AK. Size-dependent adsorption and conformational changes induced in bovine serum albumin (BSA) on exposure to titanium dioxide (TiO 2) nanoparticles. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2016.1257639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shaila Thakur
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Noshin Hashim
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada
| | - Sudarsan Neogi
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Ajay K. Ray
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada
| |
Collapse
|
27
|
Protein adsorption using novel carboxymethyl-curdlan microspheres. Int J Biol Macromol 2016; 87:603-10. [DOI: 10.1016/j.ijbiomac.2016.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/24/2016] [Accepted: 03/04/2016] [Indexed: 11/22/2022]
|
28
|
Kim HS, Shin US. Core-Shell Structured Chitosan-Carbon Nanotube Membrane as a Positively Charged Drug Delivery System: Selective Loading and Releasing Profiles for Bovine Serum Albumin. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Han-Sem Kim
- Department of Nanobiomedical Science & BK21 PlUS NBM Global Research Center for Regenerative Medicine; Dankook University; Chungnam Cheonan 330-714 Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Chungnam Cheonan 330-714 Republic of Korea
| | - Ueon Sang Shin
- Department of Nanobiomedical Science & BK21 PlUS NBM Global Research Center for Regenerative Medicine; Dankook University; Chungnam Cheonan 330-714 Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Chungnam Cheonan 330-714 Republic of Korea
| |
Collapse
|
29
|
Varga N, Csapó E, Majláth Z, Ilisz I, Krizbai IA, Wilhelm I, Knapp L, Toldi J, Vécsei L, Dékány I. Targeting of the kynurenic acid across the blood-brain barrier by core-shell nanoparticles. Eur J Pharm Sci 2016; 86:67-74. [PMID: 26924227 DOI: 10.1016/j.ejps.2016.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/29/2016] [Accepted: 02/21/2016] [Indexed: 11/26/2022]
Abstract
Core-shell nanoparticles (CSNPs) were developed to get over therapeutic amount of kynurenic acid (KYNA) across the blood-brain barrier (BBB). Bovine serum albumin (BSA) was used as core for encapsulation of KYNA and the BSA/KYNA composite was finally encapsulated by poly(allylamine) hydrochloride (PAH) polymer as shell. In the interest of the optimization of the synthesis the BSA and KYNA interaction was studied by two-dimensional surface plasmon resonance (SPR) technique as well. The average size of d~100 nm was proven by dynamic light scattering (DLS) and transmission electron microscopy (TEM), while the structure of the composites was characterized by fluorescence (FL) and circular dichroism (CD) spectroscopy. The in vitro release properties of KYNA were investigated by a vertical diffusion cell at 25.0 °C and 37.5 °C and the kinetic of the release were discussed. The penetration capacity of the NPs into the central nervous system (CNS) was tested by an in vitro BBB model. The results demonstrated that the encapsulated KYNA had significantly higher permeability compared to free KYNA molecules. In the neurobiological serial of in vivo experiments the effects of peripherally administered KYNA with CSNPs were studied in comparison with untreated KYNA. These results clearly proved that KYNA in the CSNPs, administrated peripherally is suitable to cross the BBB and to induce electrophysiological effects within the CNS. As the neuroprotective properties of KYNA nowadays are proven, the importance of the results is obvious.
Collapse
Affiliation(s)
- N Varga
- MTA-SZTE Supramolecular and Nanostructured Materials Research Group, Department of Medical Chemistry, Faculty of Medicine, University of Szeged, H-6720 Dóm tér 8, Szeged, Hungary
| | - E Csapó
- MTA-SZTE Supramolecular and Nanostructured Materials Research Group, Department of Medical Chemistry, Faculty of Medicine, University of Szeged, H-6720 Dóm tér 8, Szeged, Hungary
| | - Z Majláth
- Department of Neurology, University of Szeged, H-6725 Semmelweis u. 6, Szeged, Hungary
| | - I Ilisz
- Department of Inorganic and Analytical Chemistry, University of Szeged, H-6720 Dóm tér 7, Szeged, Hungary
| | - I A Krizbai
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - I Wilhelm
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - L Knapp
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Közép fasor 52, Szeged, Hungary
| | - J Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Közép fasor 52, Szeged, Hungary; MTA-SZTE Neuroscience Research Group, H-6725 Semmelweis u. 6, Szeged, Hungary
| | - L Vécsei
- Department of Neurology, University of Szeged, H-6725 Semmelweis u. 6, Szeged, Hungary; Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Közép fasor 52, Szeged, Hungary
| | - I Dékány
- MTA-SZTE Supramolecular and Nanostructured Materials Research Group, Department of Medical Chemistry, Faculty of Medicine, University of Szeged, H-6720 Dóm tér 8, Szeged, Hungary.
| |
Collapse
|
30
|
Liu G, Li T, Yang X, She Y, Wang M, Wang J, Zhang M, Wang S, Jin F, Jin M, Shao H, Jiang Z, Yu H. Competitive fluorescence assay for specific recognition of atrazine by magnetic molecularly imprinted polymer based on Fe3O4-chitosan. Carbohydr Polym 2016; 137:75-81. [PMID: 26686107 DOI: 10.1016/j.carbpol.2015.10.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 01/10/2023]
Abstract
A novel fluorescence sensing strategy for determination of atrazine in tap water involving direct competition between atrazine and 5-(4,6-dichlorotriazinyl) aminofluorescein (5-DTAF), and which exploits magnetic molecularly imprinted polymer (MMIP), has been developed. The MMIP, based on Fe3O4-chitosan nanoparticles, was synthesized to recognize specific binding sites of atrazine. The recognition capability and selectivity of the MMIP for atrazine and other triazine herbicides was investigated. Under optimal conditions, the competitive reaction between 5-DTAF and atrazine was performed to permit quantitation. Fluorescence intensity changes at 515 nm was linearly related to the logarithm of the atrazine concentration for the range 2.32-185.4 μM. The detection limit for atrazine was 0.86μM (S/N=3) and recoveries were 77.6-115% in spiked tap water samples.
Collapse
Affiliation(s)
- Guangyang Liu
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, PR China; Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Tengfei Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xin Yang
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yongxin She
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Miao Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jing Wang
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, PR China; Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Min Zhang
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shanshan Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Fen Jin
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Maojun Jin
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hua Shao
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Zejun Jiang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hailong Yu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
31
|
Honarmand D, Ghoreishi SM, Habibi N, Nicknejad ET. Controlled release of protein from magnetite-chitosan nanoparticles exposed to an alternating magnetic field. J Appl Polym Sci 2015. [DOI: 10.1002/app.43335] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dariush Honarmand
- Department of Chemical Engineering; Isfahan University of Technology; 84156-83111 Isfahan Iran
| | - Seyyed M. Ghoreishi
- Department of Chemical Engineering; Isfahan University of Technology; 84156-83111 Isfahan Iran
| | - Neda Habibi
- Nanotechnology and Advanced Materials Institute; Isfahan University of Technology; 84156-83111 Isfahan Iran
| | | |
Collapse
|
32
|
Liu Y, Chen Y, Wen S, Ren C, Cao P, Huang J, Liu B, Jiang G. Study of Protein Adsorption/Adhesion Behaviors on Solid Beads Surface with Different Surface Properties. J DISPER SCI TECHNOL 2015. [DOI: 10.1080/01932691.2015.1082917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Jiang X, Cheng J, Zhou H, Li F, Wu W, Ding K. Polyaniline-coated chitosan-functionalized magnetic nanoparticles: Preparation for the extraction and analysis of endocrine-disrupting phenols in environmental water and juice samples. Talanta 2015; 141:239-46. [DOI: 10.1016/j.talanta.2015.04.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/29/2015] [Accepted: 04/05/2015] [Indexed: 10/23/2022]
|
34
|
Zhao W, Odelius K, Edlund U, Zhao C, Albertsson AC. In Situ Synthesis of Magnetic Field-Responsive Hemicellulose Hydrogels for Drug Delivery. Biomacromolecules 2015. [PMID: 26196600 PMCID: PMC4535706 DOI: 10.1021/acs.biomac.5b00801] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
A one-pot
synthetic methodology for fabricating stimuli-responsive
hemicellulose-based hydrogels was developed that consists of the in
situ formation of magnetic iron oxide (Fe3O4) nanoparticles during the covalent cross-linking of O-acetyl-galactoglucomannan
(AcGGM). The Fe3O4 nanoparticle content controlled
the thermal stability, macrostructure, swelling behavior, and magnetization
of the hybrid hydrogels. In addition, the magnetic field-responsive
hemicellulose hydrogels (MFRHHs) exhibited excellent adsorption and
controlled release profiles with bovine serum albumin (BSA) as the
model drug. Therefore, the MFRHHs have great potential to be utilized
in the biomedical field for tissue engineering applications, controlled
drug delivery, and magnetically assisted bioseparation. Magnetic field-responsive
hemicellulose hydrogels, prepared using a straightforward one-step
process, expand the applications of biomass-derived polysaccharides
by combining the renewability of hemicellulose and the magnetism of
Fe3O4 nanoparticles.
Collapse
Affiliation(s)
- Weifeng Zhao
- †Fiber and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), Teknikringen 56-58 SE-100 44, Stockholm, Sweden.,‡College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Karin Odelius
- †Fiber and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), Teknikringen 56-58 SE-100 44, Stockholm, Sweden
| | - Ulrica Edlund
- †Fiber and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), Teknikringen 56-58 SE-100 44, Stockholm, Sweden
| | - Changsheng Zhao
- ‡College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, China
| | - Ann-Christine Albertsson
- †Fiber and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), Teknikringen 56-58 SE-100 44, Stockholm, Sweden
| |
Collapse
|
35
|
Fan H, Ji N, Zhao M, Xiong L, Sun Q. Interaction of bovine serum albumin with starch nanoparticles prepared by TEMPO-mediated oxidation. Int J Biol Macromol 2015; 78:333-8. [DOI: 10.1016/j.ijbiomac.2015.04.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/04/2015] [Accepted: 04/14/2015] [Indexed: 11/25/2022]
|
36
|
Esfahani H, Prabhakaran MP, Salahi E, Tayebifard A, Keyanpour-Rad M, Rahimipour MR, Ramakrishna S. Protein adsorption on electrospun zinc doped hydroxyapatite containing nylon 6 membrane: Kinetics and isotherm. J Colloid Interface Sci 2015; 443:143-52. [DOI: 10.1016/j.jcis.2014.12.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 01/01/2023]
|
37
|
Enhanced removal of methyl orange from aqueous solutions by poly HEMA–chitosan-MWCNT nano-composite. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2014.10.040] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Wang Z, Cai R, Yue T, Yuan Y, Niu C. Preparation and Characterization of Carboxymethyl Chitosan Modified Magnetic Nanoparticles for Bovine Serum Albumin Adsorption. SEP SCI TECHNOL 2015. [DOI: 10.1080/01496395.2014.956179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Abstract
To isolate recombinant chitinase quickly and boost its anti-fungi activities in vitro, functional magnetic nanometer carrier was used to immobilize recombinant chitinase from the crude enzyme solution and immobilized recombinant chitinase was applied to test whether it would inhibit the growth of gray mold from fruits. In this study, the carboxyl magnetic carrier was produced by solvent thermal reduction method and characterized by scanning electron microscope (SEM) and fourier transform infrared spectrometer (FTIR). Then, the carboxyl magnetic carrier activated by EDC/NHS was applied to immobilize recombinant chitinase and the immobilization efficiency was investigated by quantitative analysis. To obtain the highest immobilization efficiency, reaction conditions were optimized through combining different pH, temperature and reaction period. The results show that the surface of magnetic carrier was successfully carboxyl and the average diameter was 200nm. The immobilization efdiciency could reach the peak 64.43% after 7h reaction at the condition of pH 6 and 25°C. It also shows that immobilized recombinant chitinase can significantly inhibit the growth of gray mold isolated from table grape compared with the enzyme without immobilization with magnetic nanometer carrier.
Collapse
|
40
|
Wang Y, Xiong X, Zou W. Preparation of a magnetic chitosan composite adsorbent by ammonia fumigation. J Appl Polym Sci 2014. [DOI: 10.1002/app.40057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yong Wang
- Department of Materials Science and Engineering; College of Materials, Xiamen University; Xiamen 361005 China
| | - Xiaopeng Xiong
- Department of Materials Science and Engineering; College of Materials, Xiamen University; Xiamen 361005 China
| | - Weiwei Zou
- Department of Materials Science and Engineering; College of Materials, Xiamen University; Xiamen 361005 China
| |
Collapse
|
41
|
Zhu H, Fu Y, Jiang R, Yao J, Xiao L, Zeng G. Optimization of Copper(II) Adsorption onto Novel Magnetic Calcium Alginate/Maghemite Hydrogel Beads Using Response Surface Methodology. Ind Eng Chem Res 2014. [DOI: 10.1021/ie4031677] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huayue Zhu
- Laboratory
of Resource Utilization and Pollution Control, College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China
- Key
Laboratory for Biomass-Resource Chemistry and Environmental Biotechnology
of Hubei Province, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongqian Fu
- Laboratory
of Resource Utilization and Pollution Control, College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Ru Jiang
- Laboratory
of Resource Utilization and Pollution Control, College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China
- Key
Laboratory for Biomass-Resource Chemistry and Environmental Biotechnology
of Hubei Province, Wuhan University, Wuhan, Hubei 430072, China
| | - Jun Yao
- Laboratory
of Resource Utilization and Pollution Control, College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Ling Xiao
- Key
Laboratory for Biomass-Resource Chemistry and Environmental Biotechnology
of Hubei Province, Wuhan University, Wuhan, Hubei 430072, China
| | - Guangming Zeng
- Key
Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
42
|
Optimal immobilization of β-galactosidase onto κ-carrageenan gel beads using response surface methodology and its applications. ScientificWorldJournal 2014; 2014:571682. [PMID: 24672334 PMCID: PMC3929382 DOI: 10.1155/2014/571682] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/10/2013] [Indexed: 11/18/2022] Open
Abstract
β-Galactosidase (β-gal) was immobilized by covalent binding on novel κ-carrageenan gel beads activated by two-step method; the gel beads were soaked in polyethyleneimine followed by glutaraldehyde. 22 full-factorial central composite experiment designs were employed to optimize the conditions for the maximum enzyme loading efficiency. 11.443 U of enzyme/g gel beads was achieved by soaking 40 units of enzyme with the gel beads for eight hours. Immobilization process increased the pH from 4.5 to 5.5 and operational temperature from 50 to 55°C compared to the free enzyme. The apparent Km after immobilization was 61.6 mM compared to 22.9 mM for free enzyme. Maximum velocity Vmax was 131.2 μmol·min−1 while it was 177.1 μmol·min−1 for free enzyme. The full conversion experiment showed that the immobilized enzyme form is active as that of the free enzyme as both of them reached their maximum 100% relative hydrolysis at 4 h. The reusability test proved the durability of the κ-carrageenan beads loaded with β-galactosidase for 20 cycles with retention of 60% of the immobilized enzyme activity to be more convenient for industrial uses.
Collapse
|
43
|
Liu J, Wang W, Liu H, Zhou Y, Zhang H, Zhou X. Penicillium expansum lipase-coated magnetic Fe3O4–polymer hybrid hollow nanoparticles: a highly recoverable and magnetically separable catalyst for the synthesis of 1,3-dibutylurea. RSC Adv 2014. [DOI: 10.1039/c4ra04156a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amino-epoxy supports were innovatively imported onto magnetic nanoparticles for immobilizing enzyme which represents a novel class of heterogeneous catalyst for the synthesis of 1,3-dibutylurea from ethylene carbonate and butylamine.
Collapse
Affiliation(s)
- Jun Liu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072, China
| | - Wenjing Wang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072, China
| | - Huiwen Liu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072, China
| | - Yaoliang Zhou
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072, China
| | - Haibo Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072, China
| | - Xiaohai Zhou
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072, China
| |
Collapse
|
44
|
PREPARATION AND CHARACTERIZATION OF CHITOSAN COATED MAGNETIC NANOPARTICLES AND THEIR BSA ADSORPTION PROPERTIES. ACTA POLYM SIN 2013. [DOI: 10.3724/sp.j.1105.2013.13073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Pyrgiotakis G, Blattmann CO, Pratsinis S, Demokritou P. Nanoparticle-nanoparticle interactions in biological media by atomic force microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:11385-95. [PMID: 23978039 PMCID: PMC4438084 DOI: 10.1021/la4019585] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Particle-particle interactions in physiological media are important determinants for nanoparticle fate and transport. Herein, such interactions are assessed by a novel atomic force microscopy (AFM)-based platform. Industry-relevant CeO2, Fe2O3, and SiO2 nanoparticles of various diameters were made by the flame spray pyrolysis (FSP)-based Harvard Versatile Engineering Nanomaterials Generation System (Harvard VENGES). The nanoparticles were fully characterized structurally and morphologically, and their properties in water and biological media were also assessed. The nanoparticles were attached on AFM tips and deposited on Si substrates to measure particle-particle interactions. The corresponding force was measured in air, water, and biological media that are widely used in toxicological studies. The presented AFM-based approach can be used to assess the agglomeration potential of nanoparticles in physiological fluids. The agglomeration potential of CeO2 nanoparticles in water and RPMI 1640 (Roswell Park Memorial Institute formulation 1640) was inversely proportional to their primary particle (PP) diameter, but for Fe2O3 nanoparticles, that potential is independent of PP diameter in these media. Moreover, in RPMI+10% Fetal Bovine Serum (FBS), the corona thickness and dispersibility of the CeO2 are independent of PP diameter, while for Fe2O3, the corona thickness and dispersibility were inversely proportional to PP diameter. The present method can be combined with dynamic light scattering (DLS), proteomics, and computer simulations to understand the nanobio interactions, with emphasis on the agglomeration potential of nanoparticles and their transport in physiological media.
Collapse
Affiliation(s)
- Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology at Harvard School of Public Health, Harvard University , 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| | | | | | | |
Collapse
|
46
|
Li Z, Qiang L, Zhong S, Wang H, Cui X. Synthesis and characterization of monodisperse magnetic Fe3O4@BSA core–shell nanoparticles. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.08.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Li J, Liao XP, Zhang QX, Shi B. Adsorption and separation of proteins by collagen fiber adsorbent. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 928:131-8. [DOI: 10.1016/j.jchromb.2013.03.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/18/2013] [Accepted: 03/28/2013] [Indexed: 01/28/2023]
|
48
|
Arteche Pujana M, Pérez-Álvarez L, Cesteros Iturbe LC, Katime I. Biodegradable chitosan nanogels crosslinked with genipin. Carbohydr Polym 2013; 94:836-42. [DOI: 10.1016/j.carbpol.2013.01.082] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 11/25/2022]
|
49
|
Gonzalez JS, Nicolás P, Ferreira ML, Avena M, Lassalle VL, Alvarez VA. Fabrication of ferrogels using different magnetic nanoparticles and their performance on protein adsorption. POLYM INT 2013. [DOI: 10.1002/pi.4498] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jimena S. Gonzalez
- Composite Materials Group (CoMP), Institute of Materials Science and Technology (INTEMA); University of Mar del Plata and National Research Council (CONICET); Solís 7575, B7608FLC Mar del Plata Argentina
| | - Paula Nicolás
- Institute of Chemistry of the South (Inquisur; Universidad Nacional del Sur − CONICET); Avda Alem 1253 Bahía Blanca Argentina
| | - María Luján Ferreira
- Pilot Plant of Chemical Engineering (PLAPIQUI); Universidad Nacional del Sur − CONICET); Camino La Carrindanga km 7 Bahía Blanca Argentina
| | - Marcelo Avena
- Institute of Chemistry of the South (Inquisur; Universidad Nacional del Sur − CONICET); Avda Alem 1253 Bahía Blanca Argentina
| | - Verónica L. Lassalle
- Institute of Chemistry of the South (Inquisur; Universidad Nacional del Sur − CONICET); Avda Alem 1253 Bahía Blanca Argentina
| | - Vera A. Alvarez
- Composite Materials Group (CoMP), Institute of Materials Science and Technology (INTEMA); University of Mar del Plata and National Research Council (CONICET); Solís 7575, B7608FLC Mar del Plata Argentina
| |
Collapse
|
50
|
Interaction of colloidal zinc oxide nanoparticles with bovine serum albumin and its adsorption isotherms and kinetics. Colloids Surf B Biointerfaces 2013; 102:195-201. [DOI: 10.1016/j.colsurfb.2012.07.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 07/20/2012] [Accepted: 07/26/2012] [Indexed: 11/22/2022]
|