1
|
Song X, Wei H, Zhou Y, Song W, Shi C, Mu C, Wang C, Wang X. Utilization of Crab Shell Waste for Value-Added Bioplastics by Pseudomonas-Based Microbial Cell Factories. Int J Mol Sci 2025; 26:2543. [PMID: 40141183 PMCID: PMC11941876 DOI: 10.3390/ijms26062543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/23/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
With the development of the aquatic products processing industry, 6-8 million tons of shrimp and crab shell waste are produced globally annually, but, due to the lack of high-value conversion technology, crab shells are often discarded in large quantities as a by-product of processing. Pseudomonas-based microbial cell factories are capable of biosynthesis of high-value products using a wide range of substrates; however, there is currently no reliable fermentation model for producing high-value chemicals using crab shell waste by Pseudomonas strains. In this study, we first explored the culture conditions of shell fermentation using KT2440 through single-factor and orthogonal experiments, and the optimized fermentation parameters obtained are given as follows: a temperature of 30 °C, fermentation time of 42 h, substrate solid-liquid ratio of 7%, and rotational speed of 200 rpm. After optimization, the maximum cell growth was increased by 64.39% from 350.67 × 108 CFU/mL to 576.44 × 108 CFU/mL. Combined with engineering modification, two engineered strains, KT+IV and KT+lasBT, expressing exogenous proteases, were obtained, and the maximum growth was increased from 316.44 × 108 CFU/mL to 1268.44 × 108 CFU/mL and 616.89 × 108 CFU/mL, which were 300.84% and 94.94% higher, respectively. In addition, the engineered strain KT+NtrcT-D55E, which regulates nitrogen metabolism, was obtained, and the accumulation of intracellular polyhydroxy fatty acid esters (PHA) was increased from 20.00 mg/L to 78.58 mg/L, which was a significant increase of 292.93% relative to the control group. This study provides a theoretical basis and technical support for the high-value utilization of shrimp and crab shell resources and the development of environmentally friendly bioproducts.
Collapse
Affiliation(s)
- Xiaofen Song
- Marine Economic Research Center, Donghai Academy, Ningbo University, No. 169, Qixing South Road, Meishan Port District, Beilun District, Ningbo 315000, China; (X.S.); (H.W.); (W.S.); (C.S.); (C.M.); (C.W.)
| | - Hansheng Wei
- Marine Economic Research Center, Donghai Academy, Ningbo University, No. 169, Qixing South Road, Meishan Port District, Beilun District, Ningbo 315000, China; (X.S.); (H.W.); (W.S.); (C.S.); (C.M.); (C.W.)
| | - Yueyue Zhou
- Marine Economic Research Center, Donghai Academy, Ningbo University, No. 169, Qixing South Road, Meishan Port District, Beilun District, Ningbo 315000, China; (X.S.); (H.W.); (W.S.); (C.S.); (C.M.); (C.W.)
- Key Laboratory of Aquacultral Biotechnology, Chinese Ministry of Education, Ningbo University, No. 169, Qixing South Road, Meishan Port District, Beilun District, Ningbo 315000, China
| | - Weiwei Song
- Marine Economic Research Center, Donghai Academy, Ningbo University, No. 169, Qixing South Road, Meishan Port District, Beilun District, Ningbo 315000, China; (X.S.); (H.W.); (W.S.); (C.S.); (C.M.); (C.W.)
- Key Laboratory of Aquacultral Biotechnology, Chinese Ministry of Education, Ningbo University, No. 169, Qixing South Road, Meishan Port District, Beilun District, Ningbo 315000, China
| | - Ce Shi
- Marine Economic Research Center, Donghai Academy, Ningbo University, No. 169, Qixing South Road, Meishan Port District, Beilun District, Ningbo 315000, China; (X.S.); (H.W.); (W.S.); (C.S.); (C.M.); (C.W.)
- Key Laboratory of Aquacultral Biotechnology, Chinese Ministry of Education, Ningbo University, No. 169, Qixing South Road, Meishan Port District, Beilun District, Ningbo 315000, China
| | - Changkao Mu
- Marine Economic Research Center, Donghai Academy, Ningbo University, No. 169, Qixing South Road, Meishan Port District, Beilun District, Ningbo 315000, China; (X.S.); (H.W.); (W.S.); (C.S.); (C.M.); (C.W.)
- Key Laboratory of Aquacultral Biotechnology, Chinese Ministry of Education, Ningbo University, No. 169, Qixing South Road, Meishan Port District, Beilun District, Ningbo 315000, China
| | - Chunlin Wang
- Marine Economic Research Center, Donghai Academy, Ningbo University, No. 169, Qixing South Road, Meishan Port District, Beilun District, Ningbo 315000, China; (X.S.); (H.W.); (W.S.); (C.S.); (C.M.); (C.W.)
- Key Laboratory of Aquacultral Biotechnology, Chinese Ministry of Education, Ningbo University, No. 169, Qixing South Road, Meishan Port District, Beilun District, Ningbo 315000, China
| | - Xiaopeng Wang
- Marine Economic Research Center, Donghai Academy, Ningbo University, No. 169, Qixing South Road, Meishan Port District, Beilun District, Ningbo 315000, China; (X.S.); (H.W.); (W.S.); (C.S.); (C.M.); (C.W.)
- Key Laboratory of Aquacultral Biotechnology, Chinese Ministry of Education, Ningbo University, No. 169, Qixing South Road, Meishan Port District, Beilun District, Ningbo 315000, China
| |
Collapse
|
2
|
Ahmadi AN, Ganjeali A, Mohassel MHR, Mashreghi M. Controlled release of trifluralin herbicide using luminescent Vibrio-derived polyhydroxyalkanoate (PHA) microcapsules. Int J Biol Macromol 2025; 289:138845. [PMID: 39694375 DOI: 10.1016/j.ijbiomac.2024.138845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
The controlled release of herbicides using new and safe materials can mitigate environmental pollution. Polyhydroxyalkanoate (PHA) is a type of biopolymer that can be produced by various bacteria. It has properties that make it suitable for encapsulation and controlled release applications. A luminescent bacterium, Vibrio sp. VLC strain was used as the PHA producer in this study. Initially, the polymer was synthesized by the bacterium following optimization of the culture medium, resulting in an approximate yield of 25 %. Subsequently, the produced polymer was analyzed using TEM, FTIR, and H-NMR techniques. Microcapsules were produced using the emulsion method. FE-SEM imaging revealed spherical microcapsules with an average diameter of 0.5-2 μm. The herbicide loading content and encapsulation efficiency were determined to be 16.64 % and 66.56 %, respectively. The herbicidal effect of the microcapsules containing trifluralin was investigated using Amaranthus retroflexus and Setaria viridis plants, demonstrating a significant reduction in various parameters after application. Furthermore, the impact of encapsulated herbicide on soil microbial population was assessed, revealing a less negative effect compared to its free form. These findings suggest that the PHA from a luminescent vibrio holds promise as an eco-friendly, biodegradable, nontoxic material for the controlled release of herbicides.
Collapse
Affiliation(s)
- Arefe N Ahmadi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Ganjeali
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Nano Research Center, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
3
|
Hans M, Umrao D, Velusamy M, Kumar D, Kumar S. Biochemical conversion of municipal solid waste to biofuels and bioproducts: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35667-8. [PMID: 39725845 DOI: 10.1007/s11356-024-35667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/24/2024] [Indexed: 12/28/2024]
Abstract
The disposal of municipal solid waste (MSW) in urban areas is a big issue nowadays in most of the countries. Developing countries like India are struggling with the continuous indiscriminate disposal of MSW due to rapid increase in the urbanization, industrialization, and human population growth. The mismanagement of MSW causes adverse environmental impacts, public health risks, and other socio-economic problems. India, the second most populated country in the world, faces the problem of MSW and simultaneously grave the crisis of energy as management problems of MSW provide a platform to utilize it as a promising renewable energy source, thus resolving the related issues. The pressing need for the development of alternatives gave several different technological solutions; among them, Waste-to-Energy is being recognized as a renewable option for energy generation and waste remediation. The associated challenges of managing regularly generated MSW make it difficult to adopt the suitable technique/process to treat it. However, detailed information and discussion are needed to decide which strategy is to be adopted. Considering the large availability and potential of MSW, this article has been reviewed to collect and represent different strategies of using MSW for different products based on the requirements of society. The article reviews the up-to-date biochemical conversion strategies being employed to treat the MSW and simultaneously harness the energy, and other value-added products. Besides, the life cycle assessment highlights the futuristic scope for industrial growth to determine the environmental impact of using MSW as a renewable energy source and substrate for biopolymers.
Collapse
Affiliation(s)
- Meenu Hans
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144 603, India
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India
| | - Deepika Umrao
- Department of Food Engineering and Nutrition, Center of Innovative and Applied Bioprocessing, Mohali, 140 306, India
- Department of Biotechnology, Dr. BR, Ambedkar National Institute of Technology, Jalandhar, Punjab, 144 027, India
| | - Mozhiarasi Velusamy
- CLRI Regional Centre, CSIR-Central Leather Research Institute (CSIR-CLRI), Jalandhar, Punjab, 144 021, India
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144 603, India.
| |
Collapse
|
4
|
Unis R, Gnaim R, Kashyap M, Shamis O, Gnayem N, Gozin M, Liberzon A, Gnaim J, Golberg A. Bioconversion of bread waste into high-quality proteins and biopolymers by fermentation of archaea Haloferax mediterranei. Front Microbiol 2024; 15:1491333. [PMID: 39777146 PMCID: PMC11703665 DOI: 10.3389/fmicb.2024.1491333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 01/11/2025] Open
Abstract
The valorization of bread waste into high-quality protein and biopolymers using the halophilic microorganism Haloferax mediterranei presents a sustainable approach to food waste management and resource optimization. This study successfully coproduced protein and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biopolymer with a biomass content of 8.0 ± 0.1 g L-1 and a productivity of 11.1 mg L-1 h-1. The fermentation process employed 3.0% w/v of enzymatically hydrolyzed bread waste. The amino acid profile of the cell biomass revealed a total content of 358 g kg-1 of biomass dry weight (DW), including 147 g kg-1 DW of essential amino acids. The protein quality, assessed through in-vitro enzyme digestion, indicated a high-quality protein with a digestibility value of 0.91 and a protein digestibility-corrected amino acid score (PDCAAS) of 0.78. The PHBV biopolymer component (36.0 ± 6.3% w/w) consisted of a copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate in a 91:9 mol% ratio. This bioconversion process not only mitigates food waste but also generates valuable biomaterials.
Collapse
Affiliation(s)
- Razan Unis
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
- The Triangle Regional R&D Center (TRDC), Kfar Qari, Israel
| | - Rima Gnaim
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
- The Triangle Regional R&D Center (TRDC), Kfar Qari, Israel
| | - Mrinal Kashyap
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Olga Shamis
- Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Nabeel Gnayem
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
- The Triangle Regional R&D Center (TRDC), Kfar Qari, Israel
| | - Michael Gozin
- Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel
- Center for Advanced Combustion Science, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | | | - Jallal Gnaim
- The Triangle Regional R&D Center (TRDC), Kfar Qari, Israel
| | - Alexander Golberg
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Dey P, Haldar D, Sharma C, Chopra J, Chakrabortty S, Dilip KJ. Innovations in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and nanocomposites for sustainable food packaging via biochemical biorefinery platforms: A comprehensive review. Int J Biol Macromol 2024; 283:137574. [PMID: 39542313 DOI: 10.1016/j.ijbiomac.2024.137574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The substantial build-up of non-biodegradable plastic waste from packaging sector not only poses severe environmental threats but also hastens the depletion of natural petroleum-based resources. Presently, poly (3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV), received enormous attention as ideal alternatives for such traditional petroleum-derived plastics based on their biocompatibility and superior mechanical properties. However, high cost of such copolymer, due to expensive nature of feedstock, inefficient microbial processes and unfavorable downstream processing strategies restricts its large-scale commercial feasibility in the packaging sector. This review explores merits and challenges associated with using potent agricultural and industrial waste biomasses as sustainable feedstocks alongside improved fermentation and downstream processing strategies for the biopolymer in terms of biorefinery concept. Despite PHBV's attractive properties, its inherent shortcomings like weak thermal stability, poor mechanical properties, processability difficulty, substantial hydrophobicity and comparatively higher water vapor permeability (WVP) demand the development of its composites based on the application. Based on this fact, the review assessed properties and potential applications of PHBV-based composite materials having natural raw materials, nanomaterials and synthetic biodegradable polymers. Besides, the review also enlightens sustainability, future prospects, and challenges associated with PHBV-based composites in the field of food packaging while considering insights about economic evaluation and life cycle assessment.
Collapse
Affiliation(s)
- Pinaki Dey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India
| | - Chhavi Sharma
- Department of Biotechnology, University Centre for Research and Development (UCRD), Chandigarh University, Mohali 140413, India
| | - Jayita Chopra
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani K.K. Birla Goa Campus, 403726, India
| | - Sankha Chakrabortty
- School of Chemical Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
| | | |
Collapse
|
6
|
Xue M, Huang R, Liu W, Cheng J, Liu Y, Zhang J, Wang L, Liu D, Jiang H. Identification and characterization of a potential strain for the production of polyhydroxyalkanoate from glycerol. Front Microbiol 2024; 15:1413120. [PMID: 38966388 PMCID: PMC11223650 DOI: 10.3389/fmicb.2024.1413120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
While poly (3-hydroxybutyrate) (PHB) holds promise as a bioplastic, its commercial utilization has been hampered by the high cost of raw materials. However, glycerol emerges as a viable feedstock for PHB production, offering a sustainable production approach and substantial cost reduction potential. Glycerol stands out as a promising feedstock for PHB production, offering a pathway toward sustainable manufacturing and considerable cost savings. The identification and characterization of strains capable of converting glycerol into PHB represent a pivotal strategy in advancing PHB production research. In this study, we isolated a strain, Ralstonia sp. RRA (RRA). The strain exhibits remarkable proficiency in synthesizing PHB from glycerol. With glycerol as the carbon source, RRA achieved a specific growth rate of 0.19 h-1, attaining a PHB content of approximately 50% within 30 h. Through third-generation genome and transcriptome sequencing, we elucidated the genome composition and identified a total of eight genes (glpR, glpD, glpS, glpT, glpP, glpQ, glpV, and glpK) involved in the glycerol metabolism pathway. Leveraging these findings, the strain RRA demonstrates significant promise in producing PHB from low-cost renewable carbon sources.
Collapse
Affiliation(s)
- Mengheng Xue
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Rong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Wei Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Jian Cheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Yuwan Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Jie Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Limei Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Dingyu Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Huifeng Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
7
|
Mozejko-Ciesielska J, Moraczewski K, Czaplicki S, Singh V. Production and characterization of polyhydroxyalkanoates by Halomonas alkaliantarctica utilizing dairy waste as feedstock. Sci Rep 2023; 13:22289. [PMID: 38097607 PMCID: PMC10721877 DOI: 10.1038/s41598-023-47489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Currently, the global demand for polyhydroxyalkanoates (PHAs) is significantly increasing. PHAs are produced by several bacteria that are an alternative source of synthetic polymers derived from petrochemical refineries. This study established a simple and more feasible process of PHA production by Halomonas alkaliantarctica using dairy waste as the only carbon source. The data confirmed that the analyzed halophile could metabolize cheese whey (CW) and cheese whey mother liquor (CWML) into biopolyesters. The highest yield of PHAs was 0.42 g/L in the cultivation supplemented with CWML. Furthermore, it was proved that PHA structure depended on the type of by-product from cheese manufacturing, its concentration, and the culture time. The results revealed that H. alkaliantarctica could produce P(3HB-co-3HV) copolymer in the cultivations with CW at 48 h and 72 h without adding of any precursors. Based on the data obtained from physicochemical and thermal analyses, the extracted copolymer was reported to have properties suitable for various applications. Overall, this study described a promising approach for valorizing of dairy waste as a future strategy of industrial waste management to produce high value microbial biopolymers.
Collapse
Affiliation(s)
- Justyna Mozejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10719, Olsztyn, Poland.
| | - Krzysztof Moraczewski
- Institute of Materials Engineering, Kazimierz Wielki University, 85064, Bydgoszcz, Poland
| | - Sylwester Czaplicki
- Department of Plant Food Chemistry and Processing, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10726, Olsztyn, Poland
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, India
| |
Collapse
|
8
|
Rodge SP, Shende KS, Patil NP. Polyhydroxyalkanoate biosynthesis and optimisation of thermophilic Geobacillus stearothermophilus strain K4E3_SPR_NPP. Extremophiles 2023; 27:13. [PMID: 37349574 DOI: 10.1007/s00792-023-01300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/04/2023] [Indexed: 06/24/2023]
Abstract
Polyhydroxyalkanoates (PHA) can be used to combat the challenges associated with plastic because it is biodegradable and can be produced from renewable resources. Extremophiles are considered to be potential PHA producers. An initial screening for the PHA synthesizing ability of a thermophilic bacteria Geobacillus stearothermophilus strain K4E3_SPR_NPP was carried out using Sudan black B staining. Nile red viable colony staining was used to further verify that the isolates produced PHA. Crotonic acid assays were used to determine the concentrations of PHA. The bacteria showed 31% PHA accumulation per dry cell weight (PHA/DCW) when glucose was used as a carbon source for growth. The molecule was identified to be medium chain length PHA, A copolymer of PHA containing poly(3-hydroxybutyrate)-poly(3-hydroxyvalerate)-poly(3-hydroxyhexanoate) (PHB-PHV-PHHX) using 1H-NMR. Six carbon sources and four nitrogen sources were screened for the synthesis of maximum PHA content, of which lactose and ammonium nitrate showed 45% and 53% PHA/DCW respectively. The important factors in the experiment are identified using the Plackett-Burman design, and optimization is performed using the response surface method. Response surface methodology was used to optimize the three important factors, and the maximum biomass and PHA productions were discovered. Optimal concentrations yielded a maximum of 0.48 g/l biomass and 0.32 g/l PHA, measuring 66.66% PHA accumulation. Dairy industry effluent was employed for the synthesis of PHA, yielding 0.73 g/l biomass and 0.33 g/l PHA, measuring 45% PHA accumulation. These findings add credibility to the possibility of adopting thermophilic isolates for PHA production using low-cost substrates.
Collapse
|
9
|
Aragosa A, Specchia V, Frigione M. Valorization of Waste from Argan Seeds for Polyhydroxybutyrate Production Using Bacterial Strains Isolated from Argan Soils. Polymers (Basel) 2023; 15:polym15081972. [PMID: 37112119 PMCID: PMC10141640 DOI: 10.3390/polym15081972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this work was to study the valorization of argan seed pulp, a waste material obtained from argan oil extraction, for the biosynthesis of polyhydroxybutyrate (PHB). A new species that showed the metabolic capacity for the conversion of argan waste into the bio-based polymer was isolated from an argan crop located in Teroudant, a southwestern region of Morocco, where the arid soil is exploited for goat grazing. The PHB accumulation efficiency of this new species was compared to the previously identified species 1B belonging to the genus Sphingomonas, and results were reported as dry cell weight residual biomass and PHB final yield measured. Temperature, incubation time, pH, NaCl concentration, nitrogen sources, residue concentrations, and culture medium volumes were analyzed with the aim of obtaining a maximum accumulation of PHB. UV-visible spectrophotometry and FTIR analysis confirmed that PHB was present in the material extracted from the bacterial culture. The results of this wide investigation indicated that the new isolated species 2D1 had a higher efficiency in PHB production compared to the previously identified strain 1B, which was isolated from a contaminated argan soil in Teroudant. PHB final yield of the two bacterial species, i.e., the new isolated and 1B, cultivated under optimal culture conditions, in 500 mL MSM enriched with 3% argan waste, were 21.40% (5.91 ± 0.16 g/L) and 8.16% (1.92 ± 0.23 g/L), respectively. For the new isolated strain, the result of the UV-visible spectrum indicates the absorbance at 248 nm, while the FTIR spectrum showed peaks at 1726 cm-1 and 1270 cm-1: these characteristic peaks indicated the presence of PHB in the extract. The data from the species 1B UV-visible and FTIR spectra were previously reported and were used in this study for a correlation analysis. Furthermore, additional peaks, uncharacteristic of standard PHB, suggest the presence of impurities (e.g., cell debris, solvent residues, biomass residues) that persisted after extraction. Therefore, a further enhancement of the sample purification during extraction is recommended for more accuracy in the chemical characterization. If 470,000 tons of argan fruit waste can be produced annually, and 3% of waste is consumed in 500 mL culture by 2D1 to produce 5.91 g/L (21.40%) of the bio-based polymer PHB, it can be estimated that the amount of putative PHB that can be extracted annually from the total argan fruit waste is about 2300 tons.
Collapse
Affiliation(s)
- Amina Aragosa
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
- School of Science and Engineering, Al Akhawayn University, Ifrane 53000, Morocco
| | - Valeria Specchia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | | |
Collapse
|
10
|
Ray S, Jin JO, Choi I, Kim M. Recent trends of biotechnological production of polyhydroxyalkanoates from C1 carbon sources. Front Bioeng Biotechnol 2023; 10:907500. [PMID: 36686222 PMCID: PMC9852868 DOI: 10.3389/fbioe.2022.907500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
Growing concerns over the use of limited fossil fuels and their negative impacts on the ecological niches have facilitated the exploration of alternative routes. The use of conventional plastic material also negatively impacts the environment. One such green alternative is polyhydroxyalkanoates, which are biodegradable, biocompatible, and environmentally friendly. Recently, researchers have focused on the utilization of waste gases particularly those belonging to C1 sources derived directly from industries and anthropogenic activities, such as carbon dioxide, methane, and methanol as the substrate for polyhydroxyalkanoates production. Consequently, several microorganisms have been exploited to utilize waste gases for their growth and biopolymer accumulation. Methylotrophs such as Methylobacterium organophilum produced highest amount of PHA up to 88% using CH4 as the sole carbon source and 52-56% with CH3OH. On the other hand Cupriavidus necator, produced 71-81% of PHA by utilizing CO and CO2 as a substrate. The present review shows the potential of waste gas valorization as a promising solution for the sustainable production of polyhydroxyalkanoates. Key bottlenecks towards the usage of gaseous substrates obstructing their realization on a large scale and the possible technological solutions were also highlighted. Several strategies for PHA production using C1 gases through fermentation and metabolic engineering approaches are discussed. Microbes such as autotrophs, acetogens, and methanotrophs can produce PHA from CO2, CO, and CH4. Therefore, this article presents a vision of C1 gas into bioplastics are prospective strategies with promising potential application, and aspects related to the sustainability of the system.
Collapse
Affiliation(s)
- Subhasree Ray
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Myunghee Kim
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| |
Collapse
|
11
|
Elian C, Andaloussi SA, Moilleron R, Decousser JW, Boyer C, Versace DL. Biobased polymer resources and essential oils: a green combination for antibacterial applications. J Mater Chem B 2022; 10:9081-9124. [PMID: 36326108 DOI: 10.1039/d2tb01544g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To fight nosocomial infections, the excessive use of antibiotics has led to the emergence of multidrug-resistant microorganisms, which are now considered a relevant public health threat by the World Health Organization. To date, most antibacterial systems are based on the use of petro-sourced polymers, but the global supplies of these resources are depleting. Besides, silver NPs are widely accepted as the most active biocide against a wide range of bacterial strains but their toxicity is an issue. The growing interest in natural products has gained increasing interest in the last decade. Therefore, the design of functional antibacterial materials derived from biomass remains a significant challenge for the scientific community. Consequently, attention has shifted to naturally occurring substances such as essential oils (EOs), which are classified as Generally Recognized as Safe (GRAS). EOs can offer an alternative to the common antimicrobial agents as an inner solution or biocide agent to inhibit the resistance mechanism. Herein, this review not only aims at providing developments in the antibacterial modes of action of EOs against various bacterial strains and the recent advances in genomic and proteomic techniques for the elucidation of these mechanisms but also presents examples of biobased polymer resource-based EO materials and their antibacterial activities. Especially, we describe the antibacterial properties of biobased polymers, e.g. cellulose, starch, chitosan, PLA PHAs and proteins, associated with EOs (cinnamon (CEO), clove (CLEO), bergamot (BEO), ginger (GEO), lemongrass (LEO), caraway (CAEO), rosemary (REO), Eucalyptus globulus (EGEO), tea tree (TTEO), orange peel (OPEO) and apricot (Prunus armeniaca) kernel (AKEO) essential oils). Finally, we discuss the influence of EOs on the mechanical strength of bio-based materials.
Collapse
Affiliation(s)
- Christine Elian
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) - UMR7182-CNRS-UPEC, Department C3M, Team BioM&M's, 2-8 rue Henri Dunant, 94320 Thiais, France. .,Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France
| | - Samir Abbad Andaloussi
- Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France
| | - Régis Moilleron
- Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France
| | - Jean-Winoc Decousser
- Department of Bacteriology and Infection Control, University Hospital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France.,EA 7380 Dynamyc Université Paris - Est Créteil (UPEC), Ecole nationale vétérinaire d'Alfort (EnvA), Faculté de Médecine de Créteil, Créteil, 1 rue Gustave Eiffel, 94000 Créteil, France
| | - Cyrille Boyer
- Australian Center for Nanomedicine (ACN), Cluster for Advanced Macromolecular Design, School of Chemical Engineering, UNSW Sydney, Australia
| | - Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) - UMR7182-CNRS-UPEC, Department C3M, Team BioM&M's, 2-8 rue Henri Dunant, 94320 Thiais, France.
| |
Collapse
|
12
|
Binhweel F, Ahmad MI, Zaki SA. Utilization of Polymeric Materials toward Sustainable Biodiesel Industry: A Recent Review. Polymers (Basel) 2022; 14:3950. [PMID: 36235898 PMCID: PMC9572429 DOI: 10.3390/polym14193950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The biodiesel industry is expanding rapidly in accordance with the high energy demand and environmental deterioration related to the combustion of fossil fuel. However, poor physicochemical properties and the malperformance of biodiesel fuel still concern the researchers. In this flow, polymers were introduced in biodiesel industry to overcome such drawbacks. This paper reviewed the current utilizations of polymers in biodiesel industry. Hence, four utilizing approaches were discussed, namely polymeric biodiesel, polymeric catalysts, cold-flow improvers (CFIs), and stabilized exposure materials. Hydroxyalkanoates methyl ester (HAME) and hydroxybutyrate methyl ester (HBME) are known as polymeric biodiesel sourced from carbon-enriched polymers with the help of microbial activity. Based on the literature, the highest HBME yield was 70.7% obtained at 10% H2SO4 ratio in methanol, 67 °C, and 50 h. With increasing time to 60 h, HAME highest yield was reported as 68%. In addition, polymers offer wide range of esterification/transesterification catalysts. Based on the source, this review classified polymeric catalysts as chemically, naturally, and waste derived polymeric catalysts. Those catalysts proved efficiency, non-toxicity, economic feasibility, and reusability till the 10th cycle for some polymeric composites. Besides catalysis, polymers proved efficiency to enhance the biodiesel flow-properties. The best effect reported in this review was an 11 °C reduction for the pour point (PP) of canola biodiesel at 1 wt% of ethylene/vinyl acetate copolymers and cold filter plugging point (CFPP) of B20 waste oil biodiesel at 0.08 wt% of EVA copolymer. Polymeric CFIs have the capability to modify biodiesel agglomeration and facilitate flowing. Lastly, polymers are utilized for storage tanks and auto parts products in direct contact with biodiesel. This approach is completely exclusive for polymers that showed stability toward biodiesel exposure, such as polyoxymethylene (POM) that showed insignificant change during static immersion test for 98 days at 55 °C. Indeed, the introduction of polymers has expanded in the biodiesel industry to promote green chemistry.
Collapse
Affiliation(s)
- Fozy Binhweel
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mardiana Idayu Ahmad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Sheikh Ahmad Zaki
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
| |
Collapse
|
13
|
Tan FHP, Nadir N, Sudesh K. Microalgal Biomass as Feedstock for Bacterial Production of PHA: Advances and Future Prospects. Front Bioeng Biotechnol 2022; 10:879476. [PMID: 35646848 PMCID: PMC9133917 DOI: 10.3389/fbioe.2022.879476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
The search for biodegradable plastics has become the focus in combating the global plastic pollution crisis. Polyhydroxyalkanoates (PHAs) are renewable substitutes to petroleum-based plastics with the ability to completely mineralize in soil, compost, and marine environments. The preferred choice of PHA synthesis is from bacteria or archaea. However, microbial production of PHAs faces a major drawback due to high production costs attributed to the high price of organic substrates as compared to synthetic plastics. As such, microalgal biomass presents a low-cost solution as feedstock for PHA synthesis. Photoautotrophic microalgae are ubiquitous in our ecosystem and thrive from utilizing easily accessible light, carbon dioxide and inorganic nutrients. Biomass production from microalgae offers advantages that include high yields, effective carbon dioxide capture, efficient treatment of effluents and the usage of infertile land. Nevertheless, the success of large-scale PHA synthesis using microalgal biomass faces constraints that encompass the entire flow of the microalgal biomass production, i.e., from molecular aspects of the microalgae to cultivation conditions to harvesting and drying microalgal biomass along with the conversion of the biomass into PHA. This review discusses approaches such as optimization of growth conditions, improvement of the microalgal biomass manufacturing technologies as well as the genetic engineering of both microalgae and PHA-producing bacteria with the purpose of refining PHA production from microalgal biomass.
Collapse
Affiliation(s)
| | | | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
14
|
Matsumoto A, Kawai SJ, Yamada M. Utilization of various carbon sources for poly(3-hydroxybutyrate) [P(3HB)] production by Cobetia sp. IU180733JP01 (5-11-6-3) which is capable of producing P(3HB) from alginate and waste seaweed. J GEN APPL MICROBIOL 2022; 68:207-211. [PMID: 35418539 DOI: 10.2323/jgam.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The marine bacterium Cobetia sp. IU180733JP01 (5-11-6-3) can accumulate poly(3- hydroxybutyrate) [P(3HB)] during cultivation on alginate or waste Laminaria sp. Here, we examined this strain's ability to utilize various carbon sources for P(3HB) production. When cultured in mineral salt medium containing 1% (w/v) glucose, fructose, glycerol, or gluconic acid, the strain showed better growth and higher P(3HB) production than on alginate, with fructose enabling the highest P(3HB) yield (0.8 ± 0.06 g/L). We also predicted metabolic pathways for P(3HB) synthesis based on draft genome sequence analysis, in which carbon sources are assimilated through Entner-Doudoroff and Embden-Meyerhof pathways, and the resultant acetyl-CoA is converted into P(3HB). Our findings reveal the potential of the 5-11-6-3 strain for application in bioplastic production from not only marine biomass but also other biomass and industrial wastes.
Collapse
Affiliation(s)
- Akira Matsumoto
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University
| | | | - Miwa Yamada
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University
| |
Collapse
|
15
|
Sar T, Harirchi S, Ramezani M, Bulkan G, Akbas MY, Pandey A, Taherzadeh MJ. Potential utilization of dairy industries by-products and wastes through microbial processes: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152253. [PMID: 34902412 DOI: 10.1016/j.scitotenv.2021.152253] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
The dairy industry generates excessive amounts of waste and by-products while it gives a wide range of dairy products. Alternative biotechnological uses of these wastes need to be determined to aerobic and anaerobic treatment systems due to their high chemical oxygen demand (COD) levels and rich nutrient (lactose, protein and fat) contents. This work presents a critical review on the fermentation-engineering aspects based on defining the effective use of dairy effluents in the production of various microbial products such as biofuel, enzyme, organic acid, polymer, biomass production, etc. In addition to microbial processes, techno-economic analyses to the integration of some microbial products into the biorefinery and feasibility of the related processes have been presented. Overall, the inclusion of dairy wastes into the designed microbial processes seems also promising for commercial approaches. Especially the digestion of dairy wastes with cow manure and/or different substrates will provide a positive net present value (NPV) and a payback period (PBP) less than 10 years to the plant in terms of biogas production.
Collapse
Affiliation(s)
- Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran
| | - Gülru Bulkan
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli 41400, Turkey
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | | |
Collapse
|
16
|
Chavan S, Yadav B, Tyagi RD, Drogui P. A review on production of polyhydroxyalkanoate (PHA) biopolyesters by thermophilic microbes using waste feedstocks. BIORESOURCE TECHNOLOGY 2021; 341:125900. [PMID: 34523565 DOI: 10.1016/j.biortech.2021.125900] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 05/26/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are produced by numerous microbes as a subcellular energy source. Despite of their diverse applications, exorbitant production cost limits their commercial synthesis. Apart from various cost determining factors such as cost-effective feedstocks or economic recovery methods, the use of appropriate bacteria holds the key to reduce the fermentation economics. Extremophiles, especially thermophilic PHA producers, could make the bioprocess economically viable by reducing the production cost in several aspects. Using variety of waste feedstocks as carbon substrates could open the way for the valorisation of industrial waste streams and cost-effective PHA production. Therefore, the article critically reviews the current knowledge of the synthesis of PHA polyesters in thermophilic conditions. Additionally, it summarises several studies on thermophilic PHA producing bacteria grown on various waste substrates. To conclude, the paper focuses on screening and recovery methods as well as technical challenges in thermophilic PHA production.
Collapse
Affiliation(s)
- Shraddha Chavan
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Bhoomika Yadav
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- School of Technology, Huzhou University, China; BOSK-Bioproducts, 100-399 rue Jacquard, Québec (QC) G1N 4J6, Canada.
| | - Patrick Drogui
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
17
|
Martinez-Burgos WJ, Bittencourt Sydney E, Bianchi Pedroni Medeiros A, Magalhães AI, de Carvalho JC, Karp SG, Porto de Souza Vandenberghe L, Junior Letti LA, Thomaz Soccol V, de Melo Pereira GV, Rodrigues C, Lorenci Woiciechowski A, Soccol CR. Agro-industrial wastewater in a circular economy: Characteristics, impacts and applications for bioenergy and biochemicals. BIORESOURCE TECHNOLOGY 2021; 341:125795. [PMID: 34523570 DOI: 10.1016/j.biortech.2021.125795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The generation of agroindustrial byproducts is rising fast worldwide. The slaughter of animals, the production of bioethanol, and the processing of oil palm, cassava, and milk are industrial activities that, in 2019, generated huge amounts of wastewaters, around 2448, 1650, 256, 85, and 0.143 billion liters, respectively. Thus, it is urgent to reduce the environmental impact of these effluents through new integrated processes applying biorefinery and circular economy concepts to produce energy or new products. This review provides the characteristics of some of the most important agro-industrial wastes, including their physicochemical composition, worldwide average production, and possible environmental impacts. In addition, some alternatives for reusing these materials are addressed, focusing mainly on energy savings and the possibilities of generating value-added products. Finally, this review considers recent research and technological innovations and perspectives for the future.
Collapse
Affiliation(s)
- Walter José Martinez-Burgos
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Eduardo Bittencourt Sydney
- Federal University of Technology - Paraná, Department of Bioprocess Engineering and Biotechnology, 84016-210, Ponta Grossa Paraná, Brazil
| | - Adriane Bianchi Pedroni Medeiros
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Antonio Irineudo Magalhães
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Júlio Cesar de Carvalho
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Susan Grace Karp
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil; Federal University of Technology - Paraná, Department of Bioprocess Engineering and Biotechnology, 84016-210, Ponta Grossa Paraná, Brazil
| | - Luiz Alberto Junior Letti
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Vanete Thomaz Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Gilberto Vinícius de Melo Pereira
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Cristine Rodrigues
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Adenise Lorenci Woiciechowski
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil
| | - Carlos Ricardo Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990, Curitiba Paraná, Brazil.
| |
Collapse
|
18
|
Bosco F, Cirrincione S, Carletto R, Marmo L, Chiesa F, Mazzoli R, Pessione E. PHA Production from Cheese Whey and "Scotta": Comparison between a Consortium and a Pure Culture of Leuconostoc mesenteroides. Microorganisms 2021; 9:2426. [PMID: 34946028 PMCID: PMC8704080 DOI: 10.3390/microorganisms9122426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
It is urgent to expand the market of biodegradable alternatives to oil-derived plastics owing to (i) increasingly limited oil availability/accessibility, and (ii) the dramatic impact of traditional plastics on aquatic life, the food chain, all Earth ecosystems, and ultimately, human health. Polyhydroxyalkanoates (PHAs) are promising biodegradable polymers that can be obtained through microbial fermentation of agro-industrial byproducts, e.g., milk and cheese whey. Here, the PHA-accumulating efficiency of a mixed microbial culture (MMC, derived from activated sludges) grown on dairy byproducts (cheese and scotta whey) was measured. Bioreactor tests featuring temperature and pH control showed that both scotta and pre-treated Toma cheese whey could be used for PHA production by MMC, although scotta cheese whey supported higher PHA yield and productivity. The advantages of open MMCs include their plasticity and versatility to fast changing conditions; furthermore, no growth-medium sterilization is needed prior to fermentation. However, the use of pure cultures of efficient PHA producers may support better metabolic performances. Therefore, PHA-producing strains were isolated from a MMC, leading to the satisfactory identification of two bacterial strains, Citrobacter freundii and Leuconostoc spp., whose ability to accumulate PHAs in synthetic media was confirmed. A more detailed investigation by mass spectrometry revealed that the strain was L. mesenteroides. Although the validation of L. mesenteroides potential to produce PHA through fermentation of agro-industrial byproducts requires further investigations, this is the first study reporting PHA production with the Leuconostoc genus.
Collapse
Affiliation(s)
- Francesca Bosco
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy;
| | - Simona Cirrincione
- Structural and Functional Biochemistry, Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, Università di Torino, 10123 Torino, Italy; (S.C.); (R.M.); (E.P.)
| | - Riccardo Carletto
- CNR-STIIMA, Consiglio Nazionale delle Ricerche- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, 13900 Biella, Italy;
| | - Luca Marmo
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy;
| | - Francesco Chiesa
- Department of Veterinary Science (DSV), Università degli Studi di Torino, 10095 Grugliasco, Italy;
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, Università di Torino, 10123 Torino, Italy; (S.C.); (R.M.); (E.P.)
| | - Enrica Pessione
- Structural and Functional Biochemistry, Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, Università di Torino, 10123 Torino, Italy; (S.C.); (R.M.); (E.P.)
| |
Collapse
|
19
|
Lhamo P, Behera SK, Mahanty B. Process optimization, metabolic engineering interventions and commercialization of microbial polyhydroxyalkanoates production - A state-of-the art review. Biotechnol J 2021; 16:e2100136. [PMID: 34132046 DOI: 10.1002/biot.202100136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022]
Abstract
Microbial polyhydroxyalkanoates (PHAs) produced using renewable resources could be the best alternative for conventional plastics. Despite their incredible potential, commercial production of PHAs remains very low. Nevertheless, sincere attempts have been made by researchers to improve the yield and economic viability of PHA production by utilizing low-cost agricultural or industrial wastes. In this context, the use of efficient microbial culture or consortia, adoption of experimental design to trace ideal growth conditions, nutritional requirements, and intervention of metabolic engineering tools have gained significant attention. This review has been structured to highlight the important microbial sources for PHA production, use of conventional and non-conventional substrates, product optimization using experimental design, metabolic engineering strategies, and global players in the commercialization of PHA in the past two decades. The challenges about PHA recovery and analysis have also been discussed which possess indirect hurdle while expanding the horizon of PHA-based bioplastics. Selection of appropriate microorganism and substrate plays a vital role in improving the productivity and characteristics of PHAs. Experimental design-based bioprocess, use of metabolic engineering tools, and optimal product recovery techniques are invaluable in this dimension. Optimization strategies, which are being explored in isolation, need to be logically integrated for the successful commercialization of microbial PHAs.
Collapse
Affiliation(s)
- Pema Lhamo
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Shishir Kumar Behera
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Biswanath Mahanty
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| |
Collapse
|
20
|
Riaz S, Rhee KY, Park SJ. Polyhydroxyalkanoates (PHAs): Biopolymers for Biofuel and Biorefineries. Polymers (Basel) 2021; 13:253. [PMID: 33451137 PMCID: PMC7828617 DOI: 10.3390/polym13020253] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Fossil fuels are energy recourses that fulfill most of the world's energy requirements. However, their production and use cause severe health and environmental problems including global warming and pollution. Consequently, plant and animal-based fuels (also termed as biofuels), such as biogas, biodiesel, and many others, have been introduced as alternatives to fossil fuels. Despite the advantages of biofuels, such as being renewable, environmentally friendly, easy to source, and reducing the dependency on foreign oil, there are several drawbacks of using biofuels including high cost, and other factors discussed in the fuel vs. food debate. Therefore, it is imperative to produce novel biofuels while also developing suitable manufacturing processes that ease the aforementioned problems. Polyhydroxyalkanoates (PHAs) are structurally diverse microbial polyesters synthesized by numerous bacteria. Moreover, this structural diversity allows PHAs to readily undergo methyl esterification and to be used as biofuels, which further extends the application value of PHAs. PHA-based biofuels are similar to biodiesel except for having a high oxygen content and no nitrogen or sulfur. In this article, we review the microbial production of PHAs, biofuel production from PHAs, parameters affecting the production of fuel from PHAs, and PHAs biorefineries. In addition, future work on the production of biofuels from PHAs is also discussed.
Collapse
Affiliation(s)
- Shahina Riaz
- Department of Chemistry, Inha University, Incheon 22212, Korea;
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK PLUS), College of Engineering, Kyung Hee University, Yongin 17104, Korea
| | - Soo Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Korea;
| |
Collapse
|
21
|
Khatami K, Perez-Zabaleta M, Owusu-Agyeman I, Cetecioglu Z. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production? WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 119:374-388. [PMID: 33139190 DOI: 10.1016/j.wasman.2020.10.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Increased awareness of environmental sustainability with associated strict environmental regulations has incentivized the pursuit of novel materials to replace conventional petroleum-derived plastics. Polyhydroxyalkanoates (PHAs) are appealing intracellular biopolymers and have drawn significant attention as a viable alternative to petrochemical based plastics not only due to their comparable physiochemical properties but also, their outstanding characteristics such as biodegradability and biocompatibility. This review provides a comprehensive overview of the recent developments on the involved PHA producer microorganisms, production process from different waste streams by both pure and mixed microbial cultures (MMCs). Bio-based PHA production, particularly using cheap carbon sources with MMCs, is getting more attention. The main bottlenecks are the low production yield and the inconsistency of the biopolymers. Bioaugmentation and metabolic engineering together with cost effective downstream processing are promising approaches to overcome the hurdles of commercial PHA production from waste streams.
Collapse
Affiliation(s)
- Kasra Khatami
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mariel Perez-Zabaleta
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Isaac Owusu-Agyeman
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
22
|
Asunis F, De Gioannis G, Dessì P, Isipato M, Lens PNL, Muntoni A, Polettini A, Pomi R, Rossi A, Spiga D. The dairy biorefinery: Integrating treatment processes for cheese whey valorisation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111240. [PMID: 32866754 DOI: 10.1016/j.jenvman.2020.111240] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
With an estimated worldwide production of 190 billion kg per year, and due to its high organic load, cheese whey represents a huge opportunity for bioenergy and biochemicals production. Several physical, chemical and biological processes have been proposed to valorise cheese whey by producing biofuels (methane, hydrogen, and ethanol), electric energy, and/or chemical commodities (carboxylic acids, proteins, and biopolymers). A biorefinery concept, in which several value-added products are obtained from cheese whey through a cascade of biotechnological processes, is an opportunity for increasing the product spectrum of dairy industries while allowing for sustainable management of the residual streams and reducing disposal costs for the final residues. This review critically analyses the different treatment options available for energy and materials recovery from cheese whey, their combinations and perspectives for implementation. Thus, instead of focusing on a specific valorisation platform, in the present review the most relevant aspects of each strategy are analysed to support the integration of different routes, in order to identify the most appropriate treatment train.
Collapse
Affiliation(s)
- Fabiano Asunis
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Giorgia De Gioannis
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council - Piazza D'Armi 1, 09123, Cagliari, Italy
| | - Paolo Dessì
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| | - Marco Isipato
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Piet N L Lens
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Aldo Muntoni
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council - Piazza D'Armi 1, 09123, Cagliari, Italy
| | - Alessandra Polettini
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184, Rome, Italy
| | - Raffaella Pomi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184, Rome, Italy
| | - Andreina Rossi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184, Rome, Italy
| | - Daniela Spiga
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy
| |
Collapse
|
23
|
Polyhydroxyalkanoate and its efficient production: an eco-friendly approach towards development. 3 Biotech 2020; 10:549. [PMID: 33269183 DOI: 10.1007/s13205-020-02550-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Polyhydroxyalkanoate (PHA) is the most promising solution to major ecological problem of plastic accumulation. The biodegradable and biocompatible properties of PHA make it highly demanding in the biomedical and agricultural field. The limited market share of PHA industries despite having tremendous demand as concerned with environment has led to knock the doors of scientific research for finding ways for the economic production of PHA. Therefore, new methods of its production have been applied such as using a wide variety of feedstock like organic wastes and modifying PHA synthesizing enzyme at molecular level. Modifying metabolic pathways for PHA production using new emerging techniques like CRISPR/Cas9 technology has simplified the process spending less amount of time. Using green solvents under pressurized conditions, ionic liquids, supercritical solvents, hypotonic cell disintegration for release of PHA granules, switchable anionic surfactants and even digestion of non-PHA biomass by animals are some novel strategies for PHA recovery which play an important role in sustainable production of PHA. Hence, this review provides a view of recent applications, significance of PHA and new methods used for its production which are missing in the available literature.
Collapse
|
24
|
Mobayed FH, Nunes JC, Gennari A, de Andrade BC, Ferreira MLV, Pauli P, Renard G, Chies JM, Volpato G, Volken de Souza CF. Effect of by-products from the dairy industry as alternative inducers of recombinant β-galactosidase expression. Biotechnol Lett 2020; 43:589-599. [PMID: 33052483 DOI: 10.1007/s10529-020-03028-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate the efficiency of lactose derived from cheese whey and cheese whey permeate as inducer of recombinant Kluyveromyces sp. β-galactosidase enzyme produced in Escherichia coli. Two E. coli strains, BL21(DE3) and Rosetta (DE3), were used in order to produce the recombinant enzyme. Samples were evaluated for enzyme activity, total protein content, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis after induction with isopropyl-β-D-1-thiogalactoside (IPTG) (0.05 and 1 mM) and lactose, cheese whey, and cheese whey permeate solutions (1, 10, and 20 g/L lactose) at shake-flask cultivation, and whey permeate solution (10 g/L lactose) at bioreactor scale. RESULTS The highest specific activities obtained with IPTG as inducer (0.05 mM) after 9 h of induction, were 23 and 33 U/mgprotein with BL21(DE3) and Rosetta(DE3) strains, respectively. Inductions performed with lactose and cheese whey permeate (10 and 20 g/L lactose) showed the highest specific activities at the evaluated hours, exhibiting better results than those obtained with IPTG. Specific activity of recombinant β-galactosidase using whey permeate (10 g/L lactose) showed values of approximately 46 U/mgprotein after 24-h induction at shake-flask study, and approximately 26 U/mgprotein after 16-h induction at bench bioreactor. CONCLUSIONS The induction with cheese whey permeate was more efficient for recombinant β-galactosidase expression than the other inducers tested, and thus, represents an alternative form to reduce costs in recombinant protein production.
Collapse
Affiliation(s)
- Francielle Herrmann Mobayed
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Av. Avelino Tallini, 171, ZC, Lajeado, RS, 95914-014, Brazil
| | - Juliane Carraro Nunes
- Curso de Biotecnologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Av. Avelino Tallini, 171, ZC, Lajeado, RS, 95914-014, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Bruna Coelho de Andrade
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Av. Avelino Tallini, 171, ZC, Lajeado, RS, 95914-014, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Matheus Loch Velvites Ferreira
- Curso de Biotecnologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Paolla Pauli
- Curso de Biotecnologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Gaby Renard
- Centro de Pesquisa em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Giandra Volpato
- Curso de Biotecnologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Av. Avelino Tallini, 171, ZC, Lajeado, RS, 95914-014, Brazil.
- Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
25
|
Adeleye AT, Odoh CK, Enudi OC, Banjoko OO, Osiboye OO, Toluwalope Odediran E, Louis H. Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Sirohi R, Prakash Pandey J, Kumar Gaur V, Gnansounou E, Sindhu R. Critical overview of biomass feedstocks as sustainable substrates for the production of polyhydroxybutyrate (PHB). BIORESOURCE TECHNOLOGY 2020; 311:123536. [PMID: 32448640 DOI: 10.1016/j.biortech.2020.123536] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 05/23/2023]
Abstract
Polyhydroxybutyrates (PHBs) are a class of biopolymers produced by different microbial species and are biodegradable and biocompatible in nature as opposed to petrochemically derived plastics. PHBs have advanced applications in medical sector, packaging industries, nanotechnology and agriculture, among others. PHB is produced using various feedstocks such as glycerol, dairy wastes, agro-industrial wastes, food industry waste and sugars. Current focus on PHB research has been primarily on reducing the cost of production and, on downstream processing to isolate PHB from cells. Recent advancements to improve the productivity and quality of PHB include genetic modification of producer strain and modification of PHB by blending to develop desirable properties suited to diversified applications. Selection of feedstock plays a critical role in determining the economic feasibility and sustainability of the process. This review provides a bird's eye view of the suitability of different waste resources for producing polyhydroxybutyrate; providing state-of the art information and analysis.
Collapse
Affiliation(s)
- Ranjna Sirohi
- Department of Post Harvest Process and Food Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar 263 145, India.
| | - Jai Prakash Pandey
- Department of Post Harvest Process and Food Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar 263 145, India
| | - Vivek Kumar Gaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226010, India
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India
| |
Collapse
|
27
|
Mahansaria R, Bhowmik S, Dhara A, Saha A, Mandal MK, Ghosh R, Mukherjee J. Production enhancement of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Halogeometricum borinquense, characterization of the bioplastic and desalination of the bioreactor effluent. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Biosynthesis of functional polyhydroxyalkanoates by engineered Halomonas bluephagenesis. Metab Eng 2020; 59:119-130. [DOI: 10.1016/j.ymben.2020.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/07/2020] [Accepted: 02/25/2020] [Indexed: 11/23/2022]
|
29
|
Thomas T, Sudesh K, Bazire A, Elain A, Tan HT, Lim H, Bruzaud S. PHA Production and PHA Synthases of the Halophilic Bacterium Halomonas sp. SF2003. Bioengineering (Basel) 2020; 7:bioengineering7010029. [PMID: 32244900 PMCID: PMC7175313 DOI: 10.3390/bioengineering7010029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 01/18/2023] Open
Abstract
Among the different tools which can be studied and managed to tailor-make polyhydroxyalkanoates (PHAs) and enhance their production, bacterial strain and carbon substrates are essential. The assimilation of carbon sources is dependent on bacterial strain’s metabolism and consequently cannot be dissociated. Both must wisely be studied and well selected to ensure the highest production yield of PHAs. Halomonas sp. SF2003 is a marine bacterium already identified as a PHA-producing strain and especially of poly-3-hydroxybutyrate (P-3HB) and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P-3HB-co-3HV). Previous studies have identified different genes potentially involved in PHA production by Halomonas sp. SF2003, including two phaC genes with atypical characteristics, phaC1 and phaC2. At the same time, an interesting adaptability of the strain in front of various growth conditions was highlighted, making it a good candidate for biotechnological applications. To continue the characterization of Halomonas sp. SF2003, the screening of carbon substrates exploitable for PHA production was performed as well as production tests. Additionally, the functionality of both PHA synthases PhaC1 and PhaC2 was investigated, with an in silico study and the production of transformant strains, in order to confirm and to understand the role of each one on PHA production. The results of this study confirm the adaptability of the strain and its ability to exploit various carbon substrates, in pure or mixed form, for PHA production. Individual expression of PhaC1 and PhaC2 synthases in a non-PHA-producing strain, Cupriavidus necator H16 PHB¯4 (DSM 541), allows obtaining PHA production, demonstrating at the same time, functionality and differences between both PHA synthases. All the results of this study confirm the biotechnological interest in Halomonas sp. SF2003.
Collapse
Affiliation(s)
- Tatiana Thomas
- Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne Sud (UBS), EA 3884 Lorient, France;
- Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne Sud (UBS), 56300 Pontivy, France;
- Correspondence: ; Tel.: +33-661-730-222
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (K.S.); (H.T.T.); (H.L.)
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), IUEM, Université de Bretagne-Sud (UBS), EA 3884 Lorient, France;
| | - Anne Elain
- Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne Sud (UBS), 56300 Pontivy, France;
| | - Hua Tiang Tan
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (K.S.); (H.T.T.); (H.L.)
| | - Hui Lim
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (K.S.); (H.T.T.); (H.L.)
| | - Stéphane Bruzaud
- Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne Sud (UBS), EA 3884 Lorient, France;
| |
Collapse
|
30
|
Industrial Production of Poly-β-hydroxybutyrate from CO2: Can Cyanobacteria Meet this Challenge? Processes (Basel) 2020. [DOI: 10.3390/pr8030323] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The increasing impact of plastic materials on the environment is a growing global concern. In regards to this circumstance, it is a major challenge to find new sources for the production of bioplastics. Poly-β-hydroxybutyrate (PHB) is characterized by interesting features that draw attention for research and commercial ventures. Indeed, PHB is eco-friendly, biodegradable, and biocompatible. Bacterial fermentation processes are a known route to produce PHB. However, the production of PHB through the chemoheterotrophic bacterial system is very expensive due to the high costs of the carbon source for the growth of the organism. On the contrary, the production of PHB through the photoautotrophic cyanobacterium system is considered an attractive alternative for a low-cost PHB production because of the inexpensive feedstock (CO2 and light). This paper regards the evaluation of four independent strategies to improve the PHB production by cyanobacteria: (i) the design of the medium; (ii) the genetic engineering to improve the PHB accumulation; (iii) the development of robust models as a tool to identify the bottleneck(s) of the PHB production to maximize the production; and (iv) the continuous operation mode in a photobioreactor for PHB production. The synergic effect of these strategies could address the design of the optimal PHB production process by cyanobacteria. A further limitation for the commercial production of PHB via the biotechnological route are the high costs related to the recovery of PHB granules. Therefore, a further challenge is to select a low-cost and environmentally friendly process to recover PHB from cyanobacteria.
Collapse
|
31
|
Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng 2020; 58:47-81. [DOI: 10.1016/j.ymben.2019.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/04/2019] [Accepted: 05/26/2019] [Indexed: 11/16/2022]
|
32
|
Peña-Jurado E, Pérez-Vega S, Zavala-Díaz de la Serna FJ, Pérez-Reyes I, Gutiérrez-Méndez N, Vazquez-Castillo J, Salmerón I. Production of poly (3-hydroxybutyrate) from a dairy industry wastewater using Bacillus subtilis EPAH18: Bioprocess development and simulation. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107324] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Winnacker M. Polyhydroxyalkanoates: Recent Advances in Their Synthesis and Applications. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900101] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Malte Winnacker
- WACKER‐Chair of Macromolecular ChemistryTechnical University of Munich Lichtenbergstraße 4 85747 Garching bei München Germany
- Catalysis Research Center Ernst‐Otto‐Fischer Straße 1 85748 Garching bei München Germany
| |
Collapse
|
34
|
|
35
|
Volova T, Kiselev E, Zhila N, Shishatskaya E. Synthesis of Polyhydroxyalkanoates by Hydrogen-Oxidizing Bacteria in a Pilot Production Process. Biomacromolecules 2019; 20:3261-3270. [DOI: 10.1021/acs.biomac.9b00295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tatiana Volova
- Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk
Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia
| | - Evgeniy Kiselev
- Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk
Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia
| | - Natalia Zhila
- Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk
Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia
| | - Ekaterina Shishatskaya
- Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk
Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia
| |
Collapse
|
36
|
Amaro TMMM, Rosa D, Comi G, Iacumin L. Prospects for the Use of Whey for Polyhydroxyalkanoate (PHA) Production. Front Microbiol 2019; 10:992. [PMID: 31143164 PMCID: PMC6520646 DOI: 10.3389/fmicb.2019.00992] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Plastic production and accumulation have devastating environmental effects, and consequently, the world is in need of environmentally friendly plastic substitutes. In this context, polyhydroxyalkanoates (PHAs) appear to be true alternatives to common plastics because they are biodegradable and biocompatible and can be biologically produced. Despite having comparable characteristics to common plastics, extensive PHA use is still hampered by its high production cost. PHAs are bacterial produced, and one of the major costs associated with their production derives from the carbon source used for bacterial fermentation. Thus, several industrial waste streams have been studied as candidate carbon sources for bacterial PHA production, including whey, an environmental contaminant by-product from the dairy industry. The use of whey for PHA production could transform PHA production into a less costly and more environmentally friendly process. However, the efficient use of whey as a carbon source for PHA production is still hindered by numerous issues, including whey pre-treatments and PHA producing strain choice. In this review, current knowledge on using whey for PHA production were summarized and new ways to overcome the challenges associated with this production process were proposed.
Collapse
Affiliation(s)
| | | | | | - Lucilla Iacumin
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
37
|
Bustamante D, Segarra S, Tortajada M, Ramón D, del Cerro C, Auxiliadora Prieto M, Iglesias JR, Rojas A. In silico prospection of microorganisms to produce polyhydroxyalkanoate from whey: Caulobacter segnis DSM 29236 as a suitable industrial strain. Microb Biotechnol 2019; 12:487-501. [PMID: 30702206 PMCID: PMC6465232 DOI: 10.1111/1751-7915.13371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 11/29/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are polyesters of microbial origin that can be synthesized by prokaryotes from noble sugars or lipids and from complex renewable substrates. They are an attractive alternative to conventional plastics because they are biodegradable and can be produced from renewable resources, such as the surplus of whey from dairy companies. After an in silico screening to search for ß-galactosidase and PHA polymerase genes, several bacteria were identified as potential PHA producers from whey based on their ability to hydrolyse lactose. Among them, Caulobacter segnis DSM 29236 was selected as a suitable strain to develop a process for whey surplus valorization. This microorganism accumulated 31.5% of cell dry weight (CDW) of poly(3-hydroxybutyrate) (PHB) with a titre of 1.5 g l-1 in batch assays. Moreover, the strain accumulated 37% of CDW of PHB and 9.3 g l-1 in fed-batch mode of operation. This study reveals this species as a PHA producer and experimentally validates the in silico bioprospecting strategy for selecting microorganisms for waste re-valorization.
Collapse
Affiliation(s)
- Daniel Bustamante
- Biopolis, S.L. Parque Científico Universidad de Valenciaedf. 2 C/Catedrático Agustín Escardino, 946980PaternaValenciaSpain
| | - Silvia Segarra
- Biopolis, S.L. Parque Científico Universidad de Valenciaedf. 2 C/Catedrático Agustín Escardino, 946980PaternaValenciaSpain
| | - Marta Tortajada
- Biopolis, S.L. Parque Científico Universidad de Valenciaedf. 2 C/Catedrático Agustín Escardino, 946980PaternaValenciaSpain
| | - Daniel Ramón
- Biopolis, S.L. Parque Científico Universidad de Valenciaedf. 2 C/Catedrático Agustín Escardino, 946980PaternaValenciaSpain
| | - Carlos del Cerro
- Microbial and Plant Biotechnology DepartmentCentro de Investigaciones BiológicasMadridSpain
- Present address:
National Renewable Energy Laboratory (NREL)15013 Denver West ParkwayGoldenCO80401USA
| | | | - José Ramón Iglesias
- Corporación Alimentaria Peñasanta (CAPSA) Polígono Industrial0, 33199Granda, AsturiasSpain
| | - Antonia Rojas
- Biopolis, S.L. Parque Científico Universidad de Valenciaedf. 2 C/Catedrático Agustín Escardino, 946980PaternaValenciaSpain
| |
Collapse
|
38
|
Foong CP, Higuchi-Takeuchi M, Numata K. Optimal iron concentrations for growth-associated polyhydroxyalkanoate biosynthesis in the marine photosynthetic purple bacterium Rhodovulum sulfidophilum under photoheterotrophic condition. PLoS One 2019; 14:e0212654. [PMID: 31034524 PMCID: PMC6488045 DOI: 10.1371/journal.pone.0212654] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/17/2019] [Indexed: 01/02/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are a group of natural biopolyesters that resemble petroleum-derived plastics in terms of physical properties but are less harmful biologically to the environment and humans. Most of the current PHA producers are heterotrophs, which require expensive feeding materials and thus contribute to the high price of PHAs. Marine photosynthetic bacteria are promising alternative microbial cell factories for cost-effective, carbon neutral and sustainable production of PHAs. In this study, Rhodovulum sulfidophilum, a marine photosynthetic purple nonsulfur bacterium with a high metabolic versatility, was evaluated for cell growth and PHA production under the influence of various media components found in previous studies. We evaluated iron, using ferric citrate, as another essential factor for cell growth and efficient PHA production and confirmed that PHA production in R. sulfidophilum was growth-associated under microaerobic and photoheterotrophic conditions. In fact, a subtle amount of iron (1 to 2 μM) was sufficient to promote rapid cell growth and biomass accumulation, as well as a high PHA volumetric productivity during the logarithmic phase. However, an excess amount of iron did not enhance the growth rate or PHA productivity. Thus, we successfully confirmed that an optimum concentration of iron, an essential nutrient, promotes cell growth in R. sulfidophilum and also enhances PHA utilization.
Collapse
Affiliation(s)
- Choon Pin Foong
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Mieko Higuchi-Takeuchi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
39
|
Application of whey retentate as complex nitrogen source for growth of the polyhydroxyalkanoate producer Hydrogenophaga pseudoflava strain DSM1023. THE EUROBIOTECH JOURNAL 2019. [DOI: 10.2478/ebtj-2019-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Polyhydroxyalkanoates, microbial polyesters produced in vivo starting from renewable resources, are considered the future materials of choice to compete recalcitrant petro-chemical plastic on the polymer market. In order to make polyhydroxyalkanoates market-fit, (techno)economics of their production need to be improved. Among the multifarious factors affecting costs of polyhydroxyalkanoate production, increased volumetric productivity is of utmost importance. Improving microbial growth kinetics and increasing cell density are strategies leading to a high concentration of catalytically active biomass within a short time; after changing cultivation conditions, these cells can accumulate polyhydroxyalkanoates as intracellular products. The resulting increase of volumetric productivity for polyhydroxyalkanoates can be realized by supplying complex nitrogen sources to growing microbial cultures. In the present study, the impact of different expensive and inexpensive complex nitrogen sources, in particular whey retentate, on the growth and specific growth rates of Hydrogenophaga pseudoflava was tested.
Based on a detailed kinetic process analysis, the study demonstrates that especially whole (not hydrolyzed) whey retentate, an amply available surplus material from dairy industry, displays positive effects on cultivations of H. pseudoflava in defined media (increase of concentration of catalytically active biomass after 26.25 h of cultivation by about 50%, increase of specific growth rate μ from 0.28 to 0.41 1/h during exponential growth), while inhibiting effects (inhibition constant K i
= 6.1 g/L) of acidically hydrolyzed whey retentate need to be overcome. Considering the huge amounts of surplus whey accruing especially in Europe, the combined utilization of whey permeate (carbon source) and whey retentate (complex nitrogen source) for biopolyester production can be considered a viable bioeconomic strategy for the next future.
Collapse
|
40
|
Raza ZA, Tariq MR, Majeed MI, Banat IM. Recent developments in bioreactor scale production of bacterial polyhydroxyalkanoates. Bioprocess Biosyst Eng 2019; 42:901-919. [PMID: 30810810 DOI: 10.1007/s00449-019-02093-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/17/2019] [Indexed: 12/21/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biological plastics that are sustainable alternative to synthetic ones. Numerous microorganisms have been identified as PHAs producers. They store PHAs as cellular inclusions to use as an energy source backup. They can be produced in shake flasks and in bioreactors under defined fermentation and physiological culture conditions using suitable nutrients. Their production at bioreactor scale depends on various factors such as carbon source, nutrients supply, temperature, dissolved oxygen level, pH, and production modes. Once produced, PHAs find diverse applications in multiple fields of science and technology particularly in the medical sector. The present review covers some recent developments in sustainable bioreactor scale production of PHAs and identifies some areas in which future research in this field might be focused.
Collapse
Affiliation(s)
- Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan.
| | - Muhammad Rizwan Tariq
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan.,Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | | | - Ibrahim M Banat
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
41
|
Switching from petro-plastics to microbial polyhydroxyalkanoates (PHA): the biotechnological escape route of choice out of the plastic predicament? EUROBIOTECH JOURNAL 2019. [DOI: 10.2478/ebtj-2019-0004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
The benefit of biodegradable “green plastics” over established synthetic plastics from petro-chemistry, namely their complete degradation and safe disposal, makes them attractive for use in various fields, including agriculture, food packaging, and the biomedical and pharmaceutical sector. In this context, microbial polyhydroxyalkanoates (PHA) are auspicious biodegradable plastic-like polyesters that are considered to exert less environmental burden if compared to polymers derived from fossil resources.
The question of environmental and economic superiority of bio-plastics has inspired innumerable scientists during the last decades. As a matter of fact, bio-plastics like PHA have inherent economic drawbacks compared to plastics from fossil resources; they typically have higher raw material costs, and the processes are of lower productivity and are often still in the infancy of their technical development. This explains that it is no trivial task to get down the advantage of fossil-based competitors on the plastic market. Therefore, the market success of biopolymers like PHA requires R&D progress at all stages of the production chain in order to compensate for this disadvantage, especially as long as fossil resources are still available at an ecologically unjustifiable price as it does today.
Ecological performance is, although a logical argument for biopolymers in general, not sufficient to make industry and the society switch from established plastics to bio-alternatives. On the one hand, the review highlights that there’s indeed an urgent necessity to switch to such alternatives; on the other hand, it demonstrates the individual stages of the production chain, which need to be addressed to make PHA competitive in economic, environmental, ethical, and performance-related terms. In addition, it is demonstrated how new, smart PHA-based materials can be designed, which meet the customer’s expectations when applied, e.g., in the biomedical or food packaging sector.
Collapse
|
42
|
Poly(3-hydroxybutyrate) accumulation by Azotobacter vinelandii under different oxygen transfer strategies. J Ind Microbiol Biotechnol 2019; 46:13-19. [PMID: 30357504 DOI: 10.1007/s10295-018-2090-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
Abstract
Azotobacter vinelandii OP is a bacterium that produces poly(3-hydroxybutyrate) (PHB). PHB production in a stirred bioreactor, at different oxygen transfer strategies, was evaluated. By applying different oxygen contents in the inlet gas, the oxygen transfer rate (OTR) was changed under a constant agitation rate. Batch cultures were performed without dissolved oxygen tension (DOT) control (using 9% and 21% oxygen in the inlet gas) and under DOT control (4%) using gas blending. The cultures that developed without DOT control were limited by oxygen. As result of varying the oxygen content in the inlet gas, a lower OTR (4.6 mmol L-1 h-1) and specific oxygen uptake rate (11.6 mmol g-1 h-1) were obtained using 9% oxygen in the inlet gas. The use of 9% oxygen in the inlet gas was the most suitable for improving the intracellular PHB content (56 ± 6 w w-1). For the first time, PHB accumulation in A. vinelandii OP cultures, developed with different OTRs, was compared under homogeneous mixing conditions, demonstrating that bacterial respiration affects PHB synthesis. These results can be used to design new oxygen transfer strategies to produce PHB under productive conditions.
Collapse
|
43
|
Debuissy T, Pollet E, Avérous L. Biotic and Abiotic Synthesis of Renewable Aliphatic Polyesters from Short Building Blocks Obtained from Biotechnology. CHEMSUSCHEM 2018; 11:3836-3870. [PMID: 30203918 DOI: 10.1002/cssc.201801700] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Biobased polymers have seen their attractiveness increase in recent decades thanks to the significant development of biorefineries to allow access to a wide variety of biobased building blocks. Polyesters are one of the best examples of the development of biobased polymers because most of them now have their monomers produced from renewable resources and are biodegradable. Currently, these polyesters are mainly produced by using traditional chemical catalysts and harsh conditions, but recently greener pathways with nontoxic enzymes as biocatalysts and mild conditions have shown great potential. Bacterial polyesters, such as poly(hydroxyalkanoate)s (PHA), are the best example of the biotic production of high molar mass polymers. PHAs display a wide variety of macromolecular architectures, which allow a large range of applications. The present contribution aims to provide an overview of recent progress in studies on biobased polyesters, especially those made from short building blocks, synthesized through step-growth polymerization. In addition, some important technical aspects of their syntheses through biotic or abiotic pathways have been detailed.
Collapse
Affiliation(s)
- Thibaud Debuissy
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
44
|
Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. EUROBIOTECH JOURNAL 2018. [DOI: 10.2478/ebtj-2018-0013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Polyhydroxyalkanoates (PHA), the only group of “bioplastics” sensu stricto, are accumulated by various prokaryotes as intracellular “carbonosomes”. When exposed to exogenous stress or starvation, presence of these microbial polyoxoesters of hydroxyalkanoates assists microbes to survive.
“Bioplastics” such as PHA must be competitive with petrochemically manufactured plastics both in terms of material quality and manufacturing economics. Cost-effectiveness calculations clearly show that PHA production costs, in addition to bioreactor equipment and downstream technology, are mainly due to raw material costs. The reason for this is PHA production on an industrial scale currently relying on expensive, nutritionally relevant “1st-generation feedstocks”, such as like glucose, starch or edible oils. As a way out, carbon-rich industrial waste streams (“2nd-generation feedstocks”) can be used that are not in competition with the supply of food; this strategy not only reduces PHA production costs, but can also make a significant contribution to safeguarding food supplies in various disadvantaged parts of the world. This approach increases the economics of PHA production, improves the sustainability of the entire lifecycle of these materials, and makes them unassailable from an ethical perspective.
In this context, our EU-funded projects ANIMPOL and WHEYPOL, carried out by collaborative consortia of academic and industrial partners, successfully developed PHA production processes, which resort to waste streams amply available in Europe. As real 2nd-generation feedstocks”, waste lipids and crude glycerol from animal-processing and biodiesel industry, and surplus whey from dairy and cheese making industry were used in these processes. Cost estimations made by our project partners determine PHA production prices below 3 € (WHEYPOL) and even less than 2 € (ANIMPOL), respectively, per kg; these values already reach the benchmark of economic feasibility.
The presented studies clearly show that the use of selected high-carbon waste streams of (agro)industrial origin contributes significantly to the cost-effectiveness and sustainability of PHA biopolyester production on an industrial scale.
Collapse
|
45
|
A Review on Established and Emerging Fermentation Schemes for Microbial Production of Polyhydroxyalkanoate (PHA) Biopolyesters. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4020030] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Koller M. Biodegradable and Biocompatible Polyhydroxy-alkanoates (PHA): Auspicious Microbial Macromolecules for Pharmaceutical and Therapeutic Applications. Molecules 2018; 23:E362. [PMID: 29419813 PMCID: PMC6017587 DOI: 10.3390/molecules23020362] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/16/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are bio-based microbial biopolyesters; their stiffness, elasticity, crystallinity and degradability are tunable by the monomeric composition, selection of microbial production strain, substrates, process parameters during production, and post-synthetic processing; they display biological alternatives for diverse technomers of petrochemical origin. This, together with the fact that their monomeric and oligomeric in vivo degradation products do not exert any toxic or elsewhere negative effect to living cells or tissue of humans or animals, makes them highly stimulating for various applications in the medical field. This article provides an overview of PHA application in the therapeutic, surgical and tissue engineering area, and reviews strategies to produce PHA at purity levels high enough to be used in vivo. Tested applications of differently composed PHA and advanced follow-up products as carrier materials for controlled in vivo release of anti-cancer drugs or antibiotics, as scaffolds for tissue engineering, as guidance conduits for nerve repair or as enhanced sutures, implants or meshes are discussed from both a biotechnological and a material-scientific perspective. The article also describes the use of traditional processing techniques for production of PHA-based medical devices, such as melt-spinning, melt extrusion, or solvent evaporation, and emerging processing techniques like 3D-printing, computer-aided wet-spinning, laser perforation, and electrospinning.
Collapse
Affiliation(s)
- Martin Koller
- Office of Research Management and Service, c/o Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28/III, 8010 Graz, Austria.
- Association for Resource Efficient and Sustainable Technologies-ARENA, Inffeldgasse 21b, 8010 Graz, Austria.
| |
Collapse
|
47
|
Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. Int J Biol Macromol 2018; 107:762-778. [DOI: 10.1016/j.ijbiomac.2017.09.054] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/30/2017] [Accepted: 09/15/2017] [Indexed: 11/18/2022]
|
48
|
Production of the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with varied composition using different nitrogen sources with Haloferax mediterranei. Extremophiles 2017; 21:1037-1047. [DOI: 10.1007/s00792-017-0964-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/14/2017] [Indexed: 01/22/2023]
|
49
|
Alves MI, Macagnan KL, Rodrigues AA, de Assis DA, Torres MM, de Oliveira PD, Furlan L, Vendruscolo CT, Moreira ADS. Poly(3-hydroxybutyrate)-P(3HB): Review of Production Process Technology. Ind Biotechnol (New Rochelle N Y) 2017. [DOI: 10.1089/ind.2017.0013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mariane I. Alves
- Department of Food Science and Technology, Faculty of Agronomy Eliseu Maciel, Federal University of Pelotas, Pelotas, Brazil
| | - Karine L. Macagnan
- Technological Development Center, Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - Amanda A. Rodrigues
- Technological Development Center, Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - Dener A. de Assis
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil
| | - Matheus M. Torres
- Technological Development Center, Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - Patrícia D. de Oliveira
- Technological Development Center, Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - Lígia Furlan
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil
| | - Claire T. Vendruscolo
- Technological Development Center, Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - Angelita da S. Moreira
- Department of Food Science and Technology, Faculty of Agronomy Eliseu Maciel, Federal University of Pelotas, Pelotas, Brazil
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
50
|
Fed-Batch Synthesis of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) from Sucrose and 4-Hydroxybutyrate Precursors by Burkholderia sacchari Strain DSM 17165. Bioengineering (Basel) 2017; 4:bioengineering4020036. [PMID: 28952515 PMCID: PMC5590455 DOI: 10.3390/bioengineering4020036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 11/22/2022] Open
Abstract
Based on direct sucrose conversion, the bacterium Burkholderia sacchari is an excellent producer of the microbial homopolyester poly(3-hydroxybutyrate) (PHB). Restrictions of the strain’s wild type in metabolizing structurally related 3-hydroxyvalerate (3HV) precursors towards 3HV-containing polyhydroxyalkanoate (PHA) copolyester calls for alternatives. We demonstrate the highly productive biosynthesis of PHA copolyesters consisting of 3-hydroxybuytrate (3HB) and 4-hydroxybutyrate (4HB) monomers. Controlled bioreactor cultivations were carried out using saccharose from the Brazilian sugarcane industry as the main carbon source, with and without co-feeding with the 4HB-related precursor γ-butyrolactone (GBL). Without GBL co-feeding, the homopolyester PHB was produced at a volumetric productivity of 1.29 g/(L·h), a mass fraction of 0.52 g PHB per g biomass, and a final PHB concentration of 36.5 g/L; the maximum specific growth rate µmax amounted to 0.15 1/h. Adding GBL, we obtained 3HB and 4HB monomers in the polyester at a volumetric productivity of 1.87 g/(L·h), a mass fraction of 0.72 g PHA per g biomass, a final PHA concentration of 53.7 g/L, and a µmax of 0.18 1/h. Thermoanalysis revealed improved material properties of the second polyester in terms of reduced melting temperature Tm (161 °C vs. 178 °C) and decreased degree of crystallinity Xc (24% vs. 71%), indicating its enhanced suitability for polymer processing.
Collapse
|