1
|
Wang F, Wang M, Wang M, Xu L, Qian J, Guan G, Xu B. Clarification of Sugarcane Juice Catalyzed by Magnetic Immobilized Laccase Intensified by Alternating Magnetic Field. Foods 2025; 14:444. [PMID: 39942037 PMCID: PMC11817463 DOI: 10.3390/foods14030444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
In this study, Cu2+-chelated magnetic silicon dioxide nanoparticles were synthesized as carriers for laccase immobilization. The prepared magnetic immobilized laccase was applied in the clarification of sugarcane juice. The optimal conditions for the clarification of sugarcane juice with magnetic immobilized laccase in a shake flask were determined to be as follows: a temperature of 35 °C, pH of 5.5, rotation speed of 150 r/min, and immobilized laccase dosage of 1.0 mg/mL. The sucrose in the sugarcane juice inhibited both free and immobilized laccase. The inhibitory effect was characterized as mixed inhibition, wherein competitive inhibition played a dominant role. An alternating magnetic field was introduced into the catalysis process using magnetic immobilized laccase, and the catechin degradation rate was improved to 77.2% under a magnetic field intensity of 80 Gs and magnetic field frequency of 400 Hz. Under the optimal alternating magnetic field conditions, the treatment time of sugarcane juice was reduced to 20 min when catalyzed by the magnetic immobilized laccase, wherein a decolorization rate of 54.4%, reduction in turbidity of 89.7%, and total phenol degradation rate of 43.4% were achieved. Compared with the shaking condition, the assistance of alternating magnetic fields can shorten the clarifying time, increase the clarifying effect, and enhance the catalyst reusability. These results reveal useful information about the enzymatic treatment of high-sugar juice and provide a potential strategy for juice clarification with magnetic immobilized enzymes.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.W.); (M.W.); (L.X.); (J.Q.); (G.G.)
| | | | | | | | | | | | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.W.); (M.W.); (L.X.); (J.Q.); (G.G.)
| |
Collapse
|
2
|
Du M, Liu J, Wang Q, Wang F, Bi L, Ma C, Song M, Jiang G. Immobilization of laccase on magnetic PEGDA-CS inverse opal hydrogel for enhancement of bisphenol A degradation in aqueous solution. J Environ Sci (China) 2025; 147:74-82. [PMID: 39003085 DOI: 10.1016/j.jes.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 07/15/2024]
Abstract
Endocrine disruptors such as bisphenol A (BPA) adversely affect the environment and human health. Laccases are used for the efficient biodegradation of various persistent organic pollutants in an environmentally safe manner. However, the direct application of free laccases is generally hindered by short enzyme lifetimes, non-reusability, and the high cost of a single use. In this study, laccases were immobilized on a novel magnetic three-dimensional poly(ethylene glycol) diacrylate (PEGDA)-chitosan (CS) inverse opal hydrogel (LAC@MPEGDA@CS@IOH). The immobilized laccase showed significant improvement in the BPA degradation performance and superior storage stability compared with the free laccase. 91.1% of 100 mg/L BPA was removed by the LAC@MPEGDA@CS@IOH in 3 hr, whereas only 50.6% of BPA was removed by the same amount of the free laccase. Compared with the laccase, the outstanding BPA degradation efficiency of the LAC@MPEGDA@CS@IOH was maintained over a wider range of pH values and temperatures. Moreover, its relative activity of was maintained at 70.4% after 10 cycles, and the system performed well in actual water matrices. This efficient method for preparing immobilized laccases is simple and green, and it can be used to further develop ecofriendly biocatalysts to remove organic pollutants from wastewater.
Collapse
Affiliation(s)
- Mei Du
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzhang Liu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Moradpour H, Forootanfar H, Ameri A, Beitollahi H. Fabrication of the carbon paste electrode modified with Trametes versicolor laccase immobilized on carboxyl functionalized multi-walled carbon nanotubes and its application for measurement of dopamine. Int J Biol Macromol 2024; 283:137891. [PMID: 39571857 DOI: 10.1016/j.ijbiomac.2024.137891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/16/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Dopamine (DA) shows numerous roles in a wide range of physiological and pathological processes. In this study, an immobilized laccase-derived biosensor was developed for DA detection. The carboxyl functionalized multi-walled carbon nanotubes (MWCNTs-COOH) was applied for immobilization of laccase from Trametes versicolor (TvLac). According to Plackett-Burman statistical design, the optimum conditions showed at 5 mg/mL of MWCNTs-COOH, 25 mM phosphate buffer (pH 6.0), sonication time for 15 min, 2.5 U/mg of enzyme concentration, immobilization time for 4 h at 4 °C, and rotation at 100 rpm. At these conditions, the experimental and predicted specific activities were 14.19 ± 1.41 U/mg and 13.99 ± 1.54 U/mg, respectively. The activity of immobilized TvLac was >90 % at 60 °C and pH 7.0 as well as after 10 sets of uses. The carbon paste electrode (CPE) modified with the immobilized TvLac was then fabricated, characterized and applied as a biosensor (TvLac@MWCNTs-COOH/CPE) for determination of DA. The mean of diffusion coefficient for DA was considered to be 9.1 × 10-6 cm2/s. The TvLac@MWCNTs-COOH/CPE represented a linear dynamic range of 0.005-100.0 μM with detection limit of 1.0 nM. The TvLac@MWCNTs-COOH/CPE might be introduced as a suitable sensor for monitoring of DA in real specimens which merit further studies.
Collapse
Affiliation(s)
- Hediyeh Moradpour
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Atefeh Ameri
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| |
Collapse
|
4
|
Yasmin HAN, Kunasundari B, Shuit SH, Tompang MF. Paddy straw saccharification using immobilized laccase on magnetized multiwall carbon nanotubes. Biotechnol Lett 2024; 46:559-569. [PMID: 38748066 DOI: 10.1007/s10529-024-03494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 07/03/2024]
Abstract
The effective recovery of the immobilized enzymes using magnetic carriers has led to growing interest in this technology. The objective of this research was to evaluate the efficiency of immobilized laccase on magnetized multiwall carbon nanotubes (m-MWCNTs) in terms of stability and reusability. Laccases were efficiently adsorbed onto magnetized multiwall carbon nanotubes (m-MWCNTs) synthesized using water. The concentration of 7 mg laccase/mL was found to be ideal for immobilization. The optimal activity of both free and immobilized laccases was observed at pH 5, while for the latter, the optimal temperature was shifted from 40 to 50 °C. Compared to the free laccase, the immobilized laccase exhibited a greater range of stability at more extreme temperatures. At the fourth cycle of reactions, the immobilized laccase exhibited more than 60% relative activity in terms of reusability. Based on the fourier-transform infrared spectroscopy (FTIR) peak at 2921 cm-1, saccharification of paddy straw using immobilized laccase verified lignin degradation. The easy recovery of the immobilized laccase on m-MWCNTs lends credence to its potential use in biomass hydrolysis.
Collapse
Affiliation(s)
| | - Balakrishnan Kunasundari
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia.
| | - Siew Hoong Shuit
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Mohamad Fahrurrazi Tompang
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| |
Collapse
|
5
|
Wang F, Zhang J, Xu L, Ma A, Zhuang G, Huo S, Zou B, Qian J, Cui Y, Zhang W. Magnetic field-assisted surface engineering technology for active regulation of Fe 3O 4 medium to enable the laccase electrochemical biosensing of catechol with visible stripe patterns. Anal Chim Acta 2024; 1311:342739. [PMID: 38816161 DOI: 10.1016/j.aca.2024.342739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Catechol (CC), a prevalent phenolic compound, is a byproduct in various agricultural, chemical, and industrial processes. CC detection is crucial for safeguarding water quality and plays a pivotal role in enhancing the overall quality of life of individuals. Electrochemical biosensors exhibit rapid responses, have small sizes, and can be used for real-time monitoring. Therefore, the development of a fast and sensitive electrochemical biosensor for CC detection is crucial. RESULT In this study, a laccase-based electrochemical biosensor for detection of CC is successfully developed using Fe3O4 nanoparticles as medium and optimized by applying a magnetic field. This research proposes a unique strategy for biosensor enhancement by actively controlling the distribution of magnetic materials on the electrode surface through the application of a magnetic field, resulting in a visibly alternating stripe pattern. This approach effectively disperses magnetic particles, preventing their aggregation and reducing the boundary layer thickness, enhancing the electrochemical response of the biosensor. After fabrication condition optimization, CC is successfully detected using this biosensor. The fabricated sensor exhibits excellent performance with a wide linear detection range of 10-1000 μM, a low detection limit of 1.25 μM, and a sensitivity of 7.9 μA/mM. The fabricated sensor exhibits good selectivity and reliable detection in real water samples. In addition, the laccase-based sensor has the potential for the fast and accurate monitoring of CC in olive oil. SIGNIFICANCE The magnetic field optimization in this study significantly improved the performance of the electrochemical biosensor for detecting CC in environmental samples. Overall, the sensor developed in this study has the potential for fast and accurate monitoring of CC in environmental samples, highlighting the potential importance of a magnetic field environment in improving the performance of catechol electrochemical biosensors.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Jie Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Anzhou Ma
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Wen Zhang
- College of Photoelectric Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
6
|
Yüksek G, Taş DO, Ubay-Cokgor E, Jones JP, Gosselin M, Cabana H. Effects of potential inducers to enhance laccase production and evaluating concomitant enzyme immobilisation. ENVIRONMENTAL TECHNOLOGY 2024; 45:3517-3532. [PMID: 37259795 DOI: 10.1080/09593330.2023.2219851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
This work investigated non-polar solvent hexane and polar solvents methanol and ethanol as inducers besides a well-known inducer, copper, for laccase production with and without mesoporous silica-covered plastic packing under sterilised and unsterilised conditions. The potential of waste-hexane water, which is generated during the mesoporous silica production process, was also investigated as a laccase inducer. During the study, the free and immobilised laccase activity on the packing was measured. The results showed that the highest total laccase activity, approximately 10,000 Units, was obtained under sterilised conditions with 0.5 mM copper concentration. However, no immobilised laccase activity was detected except in the copper and ethanol sets under unsterilised conditions. The maximum immobilised laccase activity of the sets that used waste hexane as an inducer was 1.25 U/mg packing. According to its significant performance, waste hexane can be an alternative inducer under sterilised conditions. Concomitant immobilised packing showed satisfactory laccase activities and could be a promising method to reduce operation costs and improve the cost-efficiency of enzymatic processes in wastewater treatment plants.
Collapse
Affiliation(s)
- Gülten Yüksek
- Sherbrooke University Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, Canada
- Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Didem Okutman Taş
- Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Emine Ubay-Cokgor
- Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
| | - J Peter Jones
- Department of Chemical and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Canada
| | | | - Hubert Cabana
- Sherbrooke University Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
7
|
Taher AY, Alizadeh M, Aslan Y. The covalent immobilization of β-galactosidase from Aspergillus oryzae and alkaline protease from Bacillus licheniformis on amino-functionalized multi-walled carbon nanotubes in milk. Heliyon 2024; 10:e32223. [PMID: 38873691 PMCID: PMC11170143 DOI: 10.1016/j.heliyon.2024.e32223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
This study aimed was to covalently immobilize β-galactosidase from Aspergillus oryzae and protease from Bacillus licheniformis on amino-functionalized multi-walled carbon nanotubes. In this study, a two-level factorial design was employed to investigate the impact of seven continuous variables (activation pH, glutaraldehyde molarity, activation time (0-8 h), buffer solution pH (8-0), buffer solution molarity, MWCNT-NH 2 -glutaraldehyde quantity, and stabilization time (0-180 h)) on the immobilization efficiency and enzymatic activity of protease and β-galactosidase. Furthermore, the effect of time on the percentage of enzymatic activity was examined during specific intervals (24, 48, 72, 96, and 120 h) of the immobilization process. The analysis of variance results for protease enzymatic activity revealed a notable influence of the seven variables on immobilization efficiency and enzymatic activity. Additionally, the findings indicate that activation time, buffer pH, MWCNT-NH 2 -glutaraldehyde quantity, and stabilization time significantly affect the activity of the protease enzyme. The interplay between buffer pH and stabilization time is also significant. Indeed, both activation time and the quantity of MWCNT-NH 2 -glutaraldehyde exert a reducing effect on enzyme activity. Notably, the influence of MWCNT-NH 2 -glutaraldehyde quantity is more significant (p < 0.05). In terms of beta-galactosidase enzymatic activity, the study results highlight that among the seven variables considered, only the glutaraldehyde molarity, activation time, and the interplay of activation time and the quantity of MWCNT-NH 2 -glutaraldehyde can exert a statistically significant positive impact on the enzyme's activity (p < 0.05). The combination of activation time and buffer solution molarity, as well as the interactive effect of buffer pH and MWCNT-NH2-glutaraldehyde, can lead to a significant improvement in the stabilization efficiency of the protease of carbon nanotubes. The analysis of variance results demonstrated that the efficiency of covalently immobilizing β-galactosidase from Aspergillus oryzae on amino-functionalized multi-walled carbon nanotubes is influenced by the molarity of glutaraldehyde, buffer pH, stabilization time, and the interplay of activation time + buffer pH, buffer pH + activation time, activation time + buffer molarity, and glutaraldehyde molarity + MWCNT-NH 2 -glutaraldehyde (p < 0.05). Through the optimization and selection of optimal formulations, the obtained results indicate enzyme activities and stabilization efficiencies of 64.09 % ± 72.63 % and 65.96 % ± 71.77 % for protease and beta-galactosidase, respectively. Moreover, increasing the enzyme stabilization time resulted in a reduction of enzyme activity. Furthermore, an increase in pH, temperature, and the duration of milk storage passing through the enzyme-immobilized carbon nanotubes led to a decrease in enzyme stabilization efficiency, and lactose hydrolysis declined progressively over 8-h. Hence, the covalent immobilization of β-galactosidase from Aspergillus oryzae and protease from Bacillus licheniformis onto amino-functionalized multi-walled carbon nanotubes is anticipated to be achievable for milk applications.
Collapse
Affiliation(s)
- Alan Yaseen Taher
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mohammad Alizadeh
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Yakup Aslan
- Siirt University, Faculty of Engineering, Department of Food Engineering, Turkey
| |
Collapse
|
8
|
Du M, Liu J, Huang B, Wang Q, Wang F, Bi L, Ma C, Song M, Jiang G. Spatial nanopores promote laccase degradation of bisphenol A and its analogs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166429. [PMID: 37619739 DOI: 10.1016/j.scitotenv.2023.166429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Bisphenol A (BPA) and its analogs are endocrine-disrupting chemicals that are frequently detected in environmental and human samples. However, the effective removal of BPA and its analogs has not yet been extensively studied. Herein, we introduce a novel enzyme reactor for the degradation of BPA and its analogs in water. The influence of pore size on the degradation efficiency of immobilized laccase in the spatial nanopores of hydrogel was investigated using BPA as a representative compound. This showed that nanopores enhance the activity of immobilized laccases in a pore size-dependent manner and increase their stability. Compared with the same amount of free laccase, the 50 mg/L BPA degradation performance of laccase immobilized in 76 nm nanopores increased to 300 %. Taking advantage of magnetic separation, this immobilized laccase can be reused, and its degradation capacity was maintained at over 73.7 % after ten reactions. Moreover, the degradation of seven BPA analogs was 1.03-5.88 times higher using laccase immobilized in nanopores compared with free laccase. Also, the biocatalyst could efficiently degrade BPA analogs in real water matrix. This study opens up a new avenue for the removal of BPA and its analogs by immobilizing laccase in nanopores, overcoming the key limitations introduced by the short enzyme life span and non-reusability.
Collapse
Affiliation(s)
- Mei Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzhang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bang Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Qiong Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Yang X, Shi F, Su X, Cavaco-Paulo A, Wang H, Su J. In-situ encapsulation and construction of Lac@HOFs/hydrogel composite for enhancing laccase stability and azo dyes decolorization efficiency. Carbohydr Polym 2023; 320:121157. [PMID: 37659832 DOI: 10.1016/j.carbpol.2023.121157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 09/04/2023]
Abstract
Enzymes with high catalytic activity and stability have been used for the sustainable development of green chemical applications, such as water remediation. Immobilized laccase can be used to construct a synergistic system for adsorption and degradation, which has great potential for water remediation. Herein, a hydrogen-bonded organic framework was installed onto laccase in-situ to form a net-carboxylate-arranged defective cage, which enhanced its catalytic stability. Thereafter, the CMC/PVA/Lac@HOF-101 hydrogel was fabricated by freeze-thaw cycles using sodium carboxymethylcellulose and polyvinyl alcohol as carriers and copper (II) as a cross-linker. Notably, the MOFs/hydrogel as a protective carrier of laccase maintain long-term recyclability and catalytic stability. After the fifth catalytic cycle, approximately 66.7 % activity of the CP-Lac@HOF-101 was retained. When both free laccase and CP-Lac@HOF-101 were used for decolorization of Acid Orange 7 (AO), the removal rates were 10.9 % and 82.5 % after 5 h, respectively. Furthermore, even in the presence of metal cations, almost 60.0 % of the AO removal efficiency was achieved. The relationship between the structure of the azo dyes and decolorization efficiency of the synergistic system was further investigated. This study offers a method for constructing enzyme@HOF-based composite hydrogels and provides a promising water remediation strategy.
Collapse
Affiliation(s)
- Xue Yang
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Fei Shi
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Xiaolei Su
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Artur Cavaco-Paulo
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China; Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Hongbo Wang
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China.
| | - Jing Su
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Ramya RK, Theraka K, Ramprasadh SV, Bharathi SV, Srinivasan S, Jacob S, Kuila A. Pragmatic Treatment Strategies for Polyaromatic Hydrocarbon Remediation and Anti-biofouling from Surfaces Using Nano-enzymes: a Review. Appl Biochem Biotechnol 2023; 195:5479-5496. [PMID: 35138553 DOI: 10.1007/s12010-022-03848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 11/02/2022]
Abstract
In this review, two important environmental pollutants have been considered for its potential remediation using microbial-derived nano-enzymes. Firstly, polyaromatic hydrocarbons (PAHs) are one of the major industrial contaminants in the environment due to their ubiquitous occurrence, toxicity, and proclivity for bioaccumulation. Secondly, biofouling due to biofilm-forming organisms that impact tremendous economic and environmental consequences in many industries, especially marine vessels where it causes an increase in hydrodynamic drag, which results in a loss of ship speed at constant power or a power increase to maintain the same speed with higher fuel consumption and emissions into the atmosphere, particularly Green House Gases (GHGs). Among the remediation strategies, biological routes are found to be promising, efficient, and sustainable. Natural ligninolytic enzymes such as MnP, LiP, laccase, peroxidases, and polysaccharide and protein degradative enzymes are found to be highly efficient for PAH degradation and antifouling respectively. However, large-scale usage of these enzymes is difficult due to various reasons like their poor stability, adaptation, and high-cost production of these enzymes. In recent years, the use of nanoparticles, particularly nano-enzymes, is found to be an innovative and synergistic approach to detoxify contaminated areas with concomitant maintenance of enzyme stability.
Collapse
Affiliation(s)
- Rajesh Khanna Ramya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu Dist, SRM Nagar, Kattankulathur, 603203, Tamil Nadu, India
| | - Karthikeyan Theraka
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu Dist, SRM Nagar, Kattankulathur, 603203, Tamil Nadu, India
| | - Swaminathan Viji Ramprasadh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu Dist, SRM Nagar, Kattankulathur, 603203, Tamil Nadu, India
| | - Sundaramoorthy Vijaya Bharathi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu Dist, SRM Nagar, Kattankulathur, 603203, Tamil Nadu, India
| | - S Srinivasan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu Dist, SRM Nagar, Kattankulathur, 603203, Tamil Nadu, India
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu Dist, SRM Nagar, Kattankulathur, 603203, Tamil Nadu, India.
| | - Arindam Kuila
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India.
| |
Collapse
|
11
|
Kyomuhimbo HD, Feleni U, Haneklaus NH, Brink H. Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers (Basel) 2023; 15:3492. [PMID: 37631549 PMCID: PMC10460086 DOI: 10.3390/polym15163492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidase and peroxidase enzymes have attracted attention in various biotechnological industries due to their ease of synthesis, wide range of applications, and operation under mild conditions. Their applicability, however, is limited by their poor stability in harsher conditions and their non-reusability. As a result, several approaches such as enzyme engineering, medium engineering, and enzyme immobilization have been used to improve the enzyme properties. Several materials have been used as supports for these enzymes to increase their stability and reusability. This review focusses on the immobilization of oxidase and peroxidase enzymes on metal and metal oxide nanoparticle-polymer composite supports and the different methods used to achieve the immobilization. The application of the enzyme-metal/metal oxide-polymer biocatalysts in biosensing of hydrogen peroxide, glucose, pesticides, and herbicides as well as blood components such as cholesterol, urea, dopamine, and xanthine have been extensively reviewed. The application of the biocatalysts in wastewater treatment through degradation of dyes, pesticides, and other organic compounds has also been discussed.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, Johannesburg 1710, South Africa;
| | - Nils H. Haneklaus
- Transdisciplinarity Laboratory Sustainable Mineral Resources, University for Continuing Education Krems, 3500 Krems, Austria;
| | - Hendrik Brink
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| |
Collapse
|
12
|
Al-Sareji OJ, Meiczinger M, Al-Juboori RA, Grmasha RA, Andredaki M, Somogyi V, Idowu IA, Stenger-Kovács C, Jakab M, Lengyel E, Hashim KS. Efficient removal of pharmaceutical contaminants from water and wastewater using immobilized laccase on activated carbon derived from pomegranate peels. Sci Rep 2023; 13:11933. [PMID: 37488185 PMCID: PMC10366155 DOI: 10.1038/s41598-023-38821-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023] Open
Abstract
In this study, pomegranate peels (PPs) as an abundant fruit processing waste was used to produce cost-effective, eco-friendly, and high-quality activated carbon. The produced carbon (fossil free activated carbon) was used for immobilizing laccase to remove a range of emerging pollutants namely diclofenac, amoxicillin, carbamazepine, and ciprofloxacin from water and wastewater. The loaded activated carbon by laccase (LMPPs) and the unloaded one (MPPs) were characterized using advanced surface chemistry analysis techniques. MPPs was found to have a porous structure with a large surface area and an abundance of acidic functional groups. Laccase immobilization reduced surface area but added active degradation sites. The optimal immobilization parameters were determined as pH 4, 35 °C, and a laccase concentration of 2.5 mg/mL resulting in a 69.8% immobilization yield. The adsorption of the emerging pollutant onto MPPs is best characterized as a spontaneous endothermic process that adheres to the Langmuir isotherm and first-order kinetics. Using synergistic adsorption and enzymatic degradation, the target pollutants (50 mg/L) were eliminated in 2 h. In both water types, LMPPs outperformed MPPs. This study shows that pomegranate peels can effectively be harnessed as an enzyme carrier and adsorbent for the removal of emerging pollutants even from a complex sample matrix. The removal of contaminants from wastewater lasted five cycles, whereas it continued up to six cycles for water.
Collapse
Affiliation(s)
- Osamah J Al-Sareji
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary.
- Environmental Research and Studies Center, University of Babylon, Al-Hillah, Babylon, Iraq.
| | - Mónika Meiczinger
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University-Abu Dhabi Campus, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, Aalto, P.O. Box 15200, 00076, Espoo, Finland
| | - Ruqayah Ali Grmasha
- Environmental Research and Studies Center, University of Babylon, Al-Hillah, Babylon, Iraq
- Research Group of Limnology, Faculty of Engineering, Center for Natural Science, University of Pannonia, Egyetem u. 10, Veszprém, 8200, Hungary
| | - Manolia Andredaki
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, UK
| | - Viola Somogyi
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary
| | - Ibijoke A Idowu
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, UK
| | - Csilla Stenger-Kovács
- Research Group of Limnology, Faculty of Engineering, Center for Natural Science, University of Pannonia, Egyetem u. 10, Veszprém, 8200, Hungary
- ELKH-PE Limnoecology Research Group, Egyetem utca 10, Veszprém, 8200, Hungary
| | - Miklós Jakab
- Department of Materials Sciences and Engineering, Research Centre of Engineering Sciences, University of Pannonia, P.O. Box 158, Veszprém, 8201, Hungary
| | - Edina Lengyel
- Research Group of Limnology, Faculty of Engineering, Center for Natural Science, University of Pannonia, Egyetem u. 10, Veszprém, 8200, Hungary
- ELKH-PE Limnoecology Research Group, Egyetem utca 10, Veszprém, 8200, Hungary
| | - Khalid S Hashim
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, UK
- Department of Environmental Engineering, College of Engineering, University of Babylon, Al-Hillah, Babylon, Iraq
| |
Collapse
|
13
|
Ghalkhani M, Teymourinia H, Ebrahimi F, Irannejad N, Karimi-Maleh H, Karaman C, Karimi F, Dragoi EN, Lichtfouse E, Singh J. Engineering and application of polysaccharides and proteins-based nanobiocatalysts in the recovery of toxic metals, phosphorous, and ammonia from wastewater: A review. Int J Biol Macromol 2023; 242:124585. [PMID: 37105252 DOI: 10.1016/j.ijbiomac.2023.124585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Global waste production is anticipated reach to 2.59 billion tons in 2030, thus accentuating issues of environmental pollution and health security. 37 % of waste is landfilled, 33 % is discharged or burned in open areas, and only 13.5 % is recycled, which makes waste management poorly efficient in the context of the circular economy. There is therefore a need for methods to recycle waste into valuable materials through resource recovery process. Progress in the field of recycling is strongly dependent on the development of efficient, stable, and reusable, yet inexpensive catalysts. In this case, a growing attention has been paid to development and application of nanobiocatalysts with promising features. The main purpose of this review paper is to: (i) introduce nanobiomaterials and describe their effective role in the preparation of functional nanobiocatalysts for the recourse recovery aims; (ii) provide production methods and the efficiency improvement of nanobaiocatalysts; (iii) give comprehensive description of valued resource recovery for reducing toxic chemicals from the contaminated environment; (iv) describe various technologies for the valued resource recovery; (v) state the limitation of the valued resource recovery; (vi) and finally economic importance and current scenario of nanobiocatalysts strategies applicable for the resource recovery processes.
Collapse
Affiliation(s)
- Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran.
| | | | - Fatemeh Ebrahimi
- Thin Layer and Nanotechnology Laboratory, Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Neda Irannejad
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, Akdeniz University, Antalya 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld. D. Mangeron no 73, 700050, Iasi, Romania
| | - Eric Lichtfouse
- Tate Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China.
| | - Jagpreet Singh
- Department of Chemical Engineering, University Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| |
Collapse
|
14
|
Venkataraman S, Vaidyanathan VK. Synthesis of magnetically recyclable porous cross-linked aggregates of Tramates versicolor MTCC 138 laccase for the efficient removal of pentachlorophenol from aqueous solution. ENVIRONMENTAL RESEARCH 2023; 229:115899. [PMID: 37076027 DOI: 10.1016/j.envres.2023.115899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/14/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The primary objective of this study is to synthesize the magnetically separable highly active porous immobilized laccase for the removal of pentachlorophenol (PCP) in an aqueous solution. Magnetic porous cross-linked enzyme aggregates (Mp-CLEAs) of laccase were synthesized using 1% starch solution with 5 mM glutaraldehyde followed by 10 h of cross-linking time with an activity recovery of 90.85 ± 0.2%. The biocatalytic efficiency of magnetic porous CLEAs (Mp-CLEAs) was 2-fold higher than that of magnetic CLEAs. The synthesized Mp-CLEAs were mechanically stable with enhanced catalytic efficiency, and reusability thus overcoming the mass transfer limitations and enzyme loss. At 40 °C, the thermal stability of the magnetic porous immobilized laccase was improved, with a 602 min half-life compared to 207 min half-life for the free enzyme. Using 40 U/mL of laccase for the removal of 100 ppm of PCP, M-CLEAs, and Mp-CLEAs removed 60.44% and 65.53% of PCP, respectively. Furthermore, to enhance PCP removal, a laccase-aided system was harnessed by optimizing various surfactants and mediators. Of these, 0.1 mM of rhamnolipid and 2,3 dimethoxy phenol had the highest PCP removal rates of 95.12% and 99.41%, respectively, for Mp-CLEAs. This study demonstrates the efficacy of the laccase-surfactant-mediator system for the removal of PCP from the aqueous solution, which can also be proposed for real-time application.
Collapse
Affiliation(s)
- Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science, And Technology, Chennai, Tamil Nadu, 603203, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science, And Technology, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
15
|
Sharma K, Tewatia P, Kaur M, Pathania D, Banat F, Rattan G, Singhal S, Kaushik A. Bioremediation of multifarious pollutants using laccase immobilized on magnetized and carbonyldiimidazole-functionalized cellulose nanofibers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161137. [PMID: 36566870 DOI: 10.1016/j.scitotenv.2022.161137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
An easily recyclable biocatalyst (Lac@CDI-MCNFs) was synthesized by immobilizing laccase on rice straw-derived carbonyldiimidazole mediated magnetized cellulose nanofibers (MCNFs). Lac@CDI-MCNFs were utilized for bioremediation of cefixime antibiotic (CT), carbofuran pesticide (CF) and safranin O dye (SO) via oxidation-reduction reactions in wastewater. MCNFs provided enhanced pH, temperature and storage stability to laccase and allowed reusability for up to 25 cycles with mere 20 % decline in efficacy. The Lac@CDI-MCNFs effectively degraded 98.2 % CT and 96.8 % CF into benign metabolites within 20 h and completely degraded SO in just 7 h. Response surface modelling (RSM) was employed based on the Box Behnken Design to evaluate the effect of various parameters i.e. pH, catalyst dosage and the pollutants concentration which was further validated with experimental studies. The degradation products were identified using LCMS, which allowed the degradation pathway of the pollutants to be determined. The degradation of all pollutants followed first- order kinetics with rate constants of 0.1775, 0.0832 and 0.958 h-1 and half-life of 3.9, 5.0 and 0.723 h for CT, CF and SO, respectively. Lac@CDI-MCNFs was demonstrated to be an effective catalyst for the degradation of multifarious pollutants.
Collapse
Affiliation(s)
- Kavita Sharma
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Preeti Tewatia
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Manpreet Kaur
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, J&K, India; Department of Chemistry, Sardar Patel University Mandi, Himachal Pradesh 175001, India
| | - Fawzi Banat
- Dept of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Gaurav Rattan
- Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India
| | - Sonal Singhal
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Anupama Kaushik
- Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
16
|
El Salamony DH, El Gayar DA, El Mahdy AR, Zaghloul TI. Preparation and characterization of silica nanoparticles as an efficient carrier for two bio‐detergents based enzymes. J SURFACTANTS DETERG 2023. [DOI: 10.1002/jsde.12663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Dina H. El Salamony
- Department of Biotechnology Institute of Graduate Studies and Research, Alexandria University Alexandria Egypt
| | - Dina A. El Gayar
- Chemical Engineering Department, Faculty of Engineering Alexandria University Alexandria Egypt
| | - Ahmed R. El Mahdy
- Food Science and Technology Department, Faculty of Agriculture Alexandria University Alexandria Egypt
| | - Taha I. Zaghloul
- Department of Biotechnology Institute of Graduate Studies and Research, Alexandria University Alexandria Egypt
| |
Collapse
|
17
|
Kyomuhimbo HD, Brink HG. Applications and immobilization strategies of the copper-centred laccase enzyme; a review. Heliyon 2023; 9:e13156. [PMID: 36747551 PMCID: PMC9898315 DOI: 10.1016/j.heliyon.2023.e13156] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Laccase is a multi-copper enzyme widely expressed in fungi, higher plants, and bacteria which facilitates the direct reduction of molecular oxygen to water (without hydrogen peroxide production) accompanied by the oxidation of an electron donor. Laccase has attracted attention in biotechnological applications due to its non-specificity and use of molecular oxygen as secondary substrate. This review discusses different applications of laccase in various sectors of food, paper and pulp, waste water treatment, pharmaceuticals, sensors, and fuel cells. Despite the many advantages of laccase, challenges such as high cost due to its non-reusability, instability in harsh environmental conditions, and proteolysis are often encountered in its application. One of the approaches used to minimize these challenges is immobilization. The various methods used to immobilize laccase and the different supports used are further extensively discussed in this review.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| | - Hendrik G. Brink
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| |
Collapse
|
18
|
Rodrigues AF, da Silva AF, da Silva FL, dos Santos KM, de Oliveira MP, Nobre MM, Catumba BD, Sales MB, Silva AR, Braz AKS, Cavalcante AL, Alexandre JY, Junior PG, Valério RB, de Castro Bizerra V, do Santos JC. A scientometric analysis of research progress and trends in the design of laccase biocatalysts for the decolorization of synthetic dyes. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Budhiraja M, Chudasama B, Ali A, Tyagi V. Production of a recyclable nanobiocatalyst to synthesize quinazolinone derivatives. RSC Adv 2022; 12:31734-31746. [PMID: 36425315 PMCID: PMC9667765 DOI: 10.1039/d2ra04405f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/06/2022] [Indexed: 09/08/2024] Open
Abstract
Nanobiocatalysts (NBCs) are an emerging innovation that paves the way toward sustainable and eco-friendly endeavors. In the quest for a robust and reusable nanobiocatalyst, herein, we report a nanobiocatalyst, namely CALB@MrGO, developed via immobilizing Candida antarctica lipase B onto the surface of Fe3O4-decorated reduced graphene oxide (MrGO). Next, the enormous potential of the NBC (CALB@MrGO) was checked by employing it to synthesize clinically important quinazolinone derivatives in good to excellent yield (70-95%) using differently substituted aryl aldehydes with 2-aminobenzamide. Further, the synthetic utility and generality of this protocol was proved by setting up a gram-scale reaction, which afforded the product in 87% yield. The green chemistry metrics calculated for the gram-scale reaction those prove the greenness of this protocol.
Collapse
Affiliation(s)
- Meenakshi Budhiraja
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology (TIET) Patiala Punjab India
| | - Bhupendra Chudasama
- Center of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology Patiala-147004 India
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Amjad Ali
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology (TIET) Patiala Punjab India
- Center of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Vikas Tyagi
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology (TIET) Patiala Punjab India
- Center of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology Patiala-147004 India
| |
Collapse
|
20
|
Immobilization of laccase on chitosan functionalized halloysite nanotubes for degradation of Bisphenol A in aqueous solution: degradation mechanism and mineralization pathway. Heliyon 2022; 8:e09919. [PMID: 35865982 PMCID: PMC9294056 DOI: 10.1016/j.heliyon.2022.e09919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/19/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
As a hazardous organic chemical raw material, Bisphenol A (BPA) has attracted a great deal of scientific and public attention. In this study, the chitosan functionalized halloysite nanotubes immobilized laccase (lac@CS-HNTs) was prepared by simultaneous adsorption-covalent binding method to remove BPA for the first time. We optimized the preparation of lac@CS-NHTs by controlling one-factor variable method and response surface methodology (RSM). The cubic polynomial regression model via Design-Expert 12 was developed to describe the optimal preparation conditions of immobilized laccase. Under the optimal conditions, lac@CS-NHTs obtained the maximum enzyme activity, and the enzyme loading was as high as 60.10 mg/g. The results of batch removal experiment of BPA showed that under the optimum treatment condition, the BPA removal rate of lac@CS-NHTs, FL and heat-inactivated lac@CS-NHTs was 87.31 %, 60.89 % and 24.54 %, respectively, which indicated that the contribution of biodegradation was greater than adsorption. In addition, the relative activity of lac@CS-NHTs dropped to about 44.24 % after 8 cycles of BPA removal, which demonstrated that lac@CS-NHTs have the potential to reduce costs in practical applications. Finally, the possible degradation mechanism and mineralization pathway of BPA were given via High-performance liquid chromatography (HPLC) analysis and gas chromatography-mass spectrometry (GC-MS) analysis.
Collapse
|
21
|
Awais M, Kamal S, Ijaz F, Rafique M, Rehman S. Improved Catalytic Performance of Aspergillus flavus Laccase Immobilized on the Zinc Ferrite Nanoparticles. Catal Letters 2022. [DOI: 10.1007/s10562-022-04067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Bilal M, Iqbal HM, Adil SF, Shaik MR, Abdelgawad A, Hatshan MR, Khan M. Surface-coated magnetic nanostructured materials for robust bio-catalysis and biomedical applications-A review. J Adv Res 2022; 38:157-177. [PMID: 35572403 PMCID: PMC9091734 DOI: 10.1016/j.jare.2021.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Enzymes based bio-catalysis has wide range of applications in various chemical and biological processes. Thus, the process of enzymes immobilization on suitable support to obtain highly active and stable bio-catalysts has great potential in industrial applications. Particularly, surface-modified magnetic nanomaterials have garnered a special interest as versatile platforms for biomolecules/enzyme immobilization. AIM OF REVIEW This review spotlights recent progress in the immobilization of various enzymes onto surface-coated multifunctional magnetic nanostructured materials and their derived nano-constructs for multiple applications. Conclusive remarks, technical challenges, and insightful opinions on this field of research which are helpful to expand the application prospects of these materials are also given with suitable examples. KEY SCIENTIFIC CONCEPTS OF REVIEW Nanostructured materials, including surface-coated magnetic nanoparticles have recently gained immense significance as suitable support materials for enzyme immobilization, due to their large surface area, unique functionalities, and high chemical and mechanical stability. Besides, magnetic nanoparticles are less expensive and offers great potential in industrial applications due to their easy recovery and separation form their enzyme conjugates with an external magnetic field. Magnetic nanoparticles based biocatalytic systems offer a wide-working temperature, pH range, increased storage and thermal stabilities. So far, several studies have documented the application of a variety of surface modification and functionalization techniques to circumvent the aggregation and oxidation of magnetic nanoparticles. Surface engineering of magnetic nanoparticles (MNPs) helps to improve the dispersion stability, enhance mechanical and physicochemical properties, upgrade the surface activity and also increases enzyme immobilization capabilities and biocompatibility of the materials. However, several challenges still need to be addressed, such as controlled synthesis of MNPs and clinical aspects of these materials require consistent research from multidisciplinary scientists to realize its practical applications.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Abdelatty Abdelgawad
- Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Wang Z, Ren D, Yu H, Zhang S, Zhang X, Chen W. Preparation optimization and stability comparison study of alkali-modified biochar immobilized laccase under multi-immobilization methods. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Bao C, Wang Y, Xu X, Li D, Chen J, Guan Z, Wang B, Hong M, Zhang J, Wang T, Zhang Q. Reversible immobilization of laccase onto glycopolymer microspheres via protein-carbohydrate interaction for biodegradation of phenolic compounds. BIORESOURCE TECHNOLOGY 2021; 342:126026. [PMID: 34598072 DOI: 10.1016/j.biortech.2021.126026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
It is challenging to regenerate enzyme carriers when covalently immobilized enzymes suffered from inactivation during continuous operations. Hence, it is urgent to develop a facile strategy to immobilize enzymes reversibly. Herein, the non-covalent interaction between protein and carbohydrate was used to adsorb and desorb enzymes reversibly. Laccase was immobilized onto glycopolymer microspheres via protein-carbohydrate interaction using lectins as the intermediates. The enzyme loading and immobilization yield were up to 49 mg/g and 77.1% with highly expressed activity of 107.9 U/mg. The immobilized laccase exhibited enhanced pH stability and high activity in catalyzing the biodegradation of paracetamol. During ten successive recoveries, the immobilized laccases could be recycled while maintaining relatively high enzyme activity. The glycopolymer microspheres could be efficiently regenerated by elution with an aqueous solution of mannose or acid for further enzyme immobilization. This glycopolymer microspheres has excellent potential to act as reusable carriers for the non-covalent immobilization of different enzymes.
Collapse
Affiliation(s)
- Chunyang Bao
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yan Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xiaoling Xu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Die Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jing Chen
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Zhangbin Guan
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Bingyu Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Mei Hong
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jingyu Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Tianheng Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Qiang Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
25
|
Noreen S, Perveen S, Shafiq N, Aslam S, Iqbal HM, Ashraf SS, Bilal M. Laccase-loaded functionalized graphene oxide assemblies with improved biocatalytic properties and decolorization performance. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2021; 24:101884. [DOI: 10.1016/j.eti.2021.101884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Wang Z, Ren D, Jiang S, Yu H, Cheng Y, Zhang S, Zhang X, Chen W. The study of laccase immobilization optimization and stability improvement on CTAB-KOH modified biochar. BMC Biotechnol 2021; 21:47. [PMID: 34353307 PMCID: PMC8343897 DOI: 10.1186/s12896-021-00709-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although laccase has a good catalytic oxidation ability, free laccase shows a poor stability. Enzyme immobilization is a common method to improve enzyme stability and endow the enzyme with reusability. Adsorption is the simplest and common method. Modified biochar has attracted great attention due to its excellent performance. RESULTS In this paper, cetyltrimethylammonium bromide (CTAB)-KOH modified biochar (CKMB) was used to immobilize laccase by adsorption method (laccase@CKMB). Based on the results of the single-factor experiments, the optimal loading conditions of laccase@CKMB were studied with the assistance of Design-Expert 12 and response surface methods. The predicted optimal experimental conditions were laccase dosage 1.78 mg/mL, pH 3.1 and 312 K. Under these conditions, the activity recovery of laccase@CKMB was the highest, reaching 61.78%. Then, the CKMB and laccase@CKMB were characterized by TGA, FT-IR, XRD, BET and SEM, and the results showed that laccase could be well immobilized on CKMB, the maximum enzyme loading could reach 57.5 mg/g. Compared to free laccase, the storage and pH stability of laccase@CKMB was improved greatly. The laccase@CKMB retained about 40% of relative activity (4 °C, 30 days) and more than 50% of relative activity at pH 2.0-6.0. In addition, the laccase@CKMB indicated the reusability up to 6 reaction cycles while retaining 45.1% of relative activity. Moreover, the thermal deactivation kinetic studies of laccase@CKMB showed a lower k value (0.00275 min- 1) and higher t1/2 values (252.0 min) than the k value (0.00573 min- 1) and t1/2 values (121.0 min) of free laccase. CONCLUSIONS We explored scientific and reasonable immobilization conditions of laccase@CKMB, and the laccase@CKMB possessed relatively better stabilities, which gave the immobilization of laccase on this cheap and easily available carrier material the possibility of industrial applications.
Collapse
Affiliation(s)
- Zhaobo Wang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China. .,Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China.
| | - Shan Jiang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Hongyan Yu
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Yaohui Cheng
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Wangsheng Chen
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| |
Collapse
|
27
|
Yadav D, Ranjan B, Mchunu N, Le Roes-Hill M, Kudanga T. Enzymatic treatment of phenolic pollutants by a small laccase immobilized on APTES-functionalised magnetic nanoparticles. 3 Biotech 2021; 11:302. [PMID: 34194895 DOI: 10.1007/s13205-021-02854-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/19/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, we have successfully synthesized magnetic nanoparticles (MNPs), functionalised them by silanization and used them for the covalent immobilization of a recombinant small laccase (rSLAC) from Streptomyces coelicolor. The immobilized recombinant laccase (MNP-rSLAC) was subsequently used for the treatment of phenol, 4-chlorophenol (4-CP) and 4-fluorophenol (4-FP). The enzyme completely degraded 80 µg/mL of the selected phenolic compounds within 2 h in the presence of a natural mediator, acetosyringone. The MNP-rSLAC retained > 73% of initial activity (2,6-dimethoxyphenol as substrate) after 10 catalytic cycles and could be easily recovered from the reaction mixture by the application of magnetic field. Furthermore, immobilised rSLAC exhibited better storage stability than its free counterpart. The Michaelis constant (Km) value for the immobilised rSLAC was higher than free rSLAC, however the maximum velocity (Vmax) of the immobilised SLAC was similar to that of the free rSLAC. Growth inhibition studies using Escherichia coli showed that rSLAC-mediated treatment of phenolic compounds reduced the toxicity of phenol, 4-CP and 4-FP by 90, 60 and 55%, respectively. Interestingly, the presence of selected metal ions (Co2+, Cu2+, Mn2+) greatly enhanced the catalytic activity of rSLAC and MNP-rSLAC. This study indicates that immobilized small laccase (MNP-rSLAC) has potential for treating wastewater contaminated with phenolic compounds. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02854-0.
Collapse
Affiliation(s)
- Deepti Yadav
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. BOX 1334, Durban, 4000 South Africa
| | - Bibhuti Ranjan
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. BOX 1334, Durban, 4000 South Africa
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Nokuthula Mchunu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. BOX 1334, Durban, 4000 South Africa
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, 0110 South Africa
| | - Marilize Le Roes-Hill
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, PO Box 1906, Bellville, 7535 South Africa
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. BOX 1334, Durban, 4000 South Africa
| |
Collapse
|
28
|
Weissenberger T, Machoke AGF, Kolle JM, Avadhut YS, Hartmann M, Schwieger W. Synthesis and Catalytic Performance of Aluminium‐containing Mesoporous, Spherical Silica Particles. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202000183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tobias Weissenberger
- University of Erlangen-Nuremberg Institute of Chemical Reaction Engineering Egerlandstrasse 3 91058 Erlangen Germany
| | - Albert G. F. Machoke
- University of Erlangen-Nuremberg Institute of Chemical Reaction Engineering Egerlandstrasse 3 91058 Erlangen Germany
| | - Joel M. Kolle
- University of Erlangen-Nuremberg Institute of Chemical Reaction Engineering Egerlandstrasse 3 91058 Erlangen Germany
| | - Yamini S. Avadhut
- University of Erlangen-Nuremberg Erlangen Center for Interface Research and Catalysis Egerlandstrasse 3 91058 Erlangen Germany
| | - Martin Hartmann
- University of Erlangen-Nuremberg Erlangen Center for Interface Research and Catalysis Egerlandstrasse 3 91058 Erlangen Germany
| | - Wilhelm Schwieger
- University of Erlangen-Nuremberg Institute of Chemical Reaction Engineering Egerlandstrasse 3 91058 Erlangen Germany
- University of Erlangen-Nuremberg Erlangen Center for Interface Research and Catalysis Egerlandstrasse 3 91058 Erlangen Germany
| |
Collapse
|
29
|
Ren D, Wang Z, Jiang S, Yu H, Zhang S, Zhang X. Recent environmental applications of and development prospects for immobilized laccase: a review. Biotechnol Genet Eng Rev 2021; 36:81-131. [PMID: 33435852 DOI: 10.1080/02648725.2020.1864187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Laccases have enormous potential as promising 'green' biocatalysts in environmental applications including wastewater treatment and polluted soil bioremediation. The catalytic oxidation reaction they perform uses only molecular oxygen without other cofactors, and the only product after the reaction is water. The immobilization of laccase offers several improvements such as protected activity and enhanced stability over free laccase. In addition, the reusability of immobilized laccase is adistinct advantage for future applications. This review covers the sources of and progress in laccase research, and discusses the different methodologies of laccase immobilization that have emerged in the recent 5-10 years, as well as its applications to environmental fields, and evaluates these emerging technologies. Abbreviations: (2,4,6-TCP): 2,4,6-trichlorophenol; (2,4-DCP): 2,4-dichlorophenol; (ABTS), 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid); (ACE), acetaminophen; (BC-AS), almond shell; (BC-PM), pig manure; (BC-PW), pine wood; (BPA), bisphenol A; (BPA), bisphenol A; (BPF), bisphenol F; (BPS), bisphenol S; (C60), fullerene; (Ca-AIL), calcium-alginate immobilized laccase; (CBZ), carbamazepine; (CETY), cetirizine; (CHT-PGMA-PEI-Cu (II) NPs), Cu (II)-chelated chitosan nanoparticles; (CLEAs), cross-linked enzyme aggregates; (CMMC), carbon-based mesoporous magnetic composites; (COD), chemical oxygen demand; (CPH), ciprofloxacin hydrochloride; (CS), chitosan; (CTC), chlortetracycline; (Cu-AIL), copper-alginate immobilized laccase; (DBR K-4BL), Drimarene brilliant red K-4BL; (DCF), diclofenac; (E1),estrone; (E2), 17 β-estradiol; (EDC), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride; (EDCs), endocrine disrupting chemicals; (EE2), 17α-ethinylestradiol; (EFMs), electrospun fibrous membranes; (FL), free laccase; (fsMP), fumed silica microparticles; (GA-CBs), GLU-crosslinked chitosan beads; (GA-CBs), glutaraldehyde-crosslinked chitosan beads; (GA-Zr-MOF), graphene aerogel-zirconium-metal organic framework; (GLU), glutaraldehyde; (GO), graphene oxide; (HMCs), hollow mesoporous carbon spheres; (HPEI/PES), hyperbranched polyethyleneimine/polyether sulfone; (IC), indigo carmine; (IL), immobilized laccase; (kcat), catalytic constant; (Km), Michealis constant; (M-CLEAs), Magnetic cross-linked enzyme aggregates; (MMSNPs-CPTS-IDA-Cu2+), Cu2+-chelated magnetic mesoporous silica nanoparticles; (MSS), magnetic mesoporous silica spheres; (MWNTs), multi-walled carbon nanotubes; (MWNTs), multi-walled carbon nanotubes; (NHS), N-hydroxy succinimide; (O-MWNTs), oxidized-MWNTs; (P(AAm-NIPA)), poly(acrylamide-N-isopropylacrylamide); (p(GMA)), poly(glycidyl methacrylate); (p(HEMA)), poly(hydroxyethyl methacrylate); (p(HEMA-g-GMA)-NH2, poly(glycidyl methacrylate) brush grafted poly(hydroxyethyl methacrylate); (PA6/CHIT), polyamide 6/chitosan; (PAC), powdered active carbon; (PAHs), polycyclic aromatic hydrocarbons; (PAM-CTS), chitosan grafted polyacrylamide hydrogel; (PAN/MMT/GO), polyacrylonitrile/montmorillonite/graphene oxide; (PAN/PVdF), polyacrylonitrile/polyvinylidene fluoride; (PEG), poly ethylene glycol; (PEI), Poly(ethyleneimine); (poly(4-VP)), poly(4-vinyl pyridine); (poly(GMA-MAA)), poly(glycidyl methacrylate-methacrylic acid); (PVA), polyvinyl alcohol; (RBBR), Remazol Brilliant Blue R; (SDE), simulated dye effluent; (semi-IPNs), semi-interpenetrating polymer networks; (TC), tetracycline; (TCH), tetracycline hydrochloride; (TCS), triclosan; (Vmax), maximum activity; (Zr-MOF, MMU), micro-mesoporous Zr-metal organic framework.
Collapse
Affiliation(s)
- Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Zhaobo Wang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Shan Jiang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Hongyan Yu
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| |
Collapse
|
30
|
Influence of Carrier Structure and Physicochemical Factors on Immobilisation of Fungal Laccase in Terms of Bisphenol A Removal. Catalysts 2020. [DOI: 10.3390/catal10090951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Laccase from Pleurotus ostreatus was immobilised on porous Purolite® carriers and amino-functionalised ultrafiltration membranes. The results indicated a correlation between the carrier structure and the activity of laccase immobilised thereon. The highest activity was obtained for carriers characterised by a small particle size and a larger pore diameter (the porous carriers with an additional spacer (C2 and C6) and octadecyl methacrylate beads with immobilised laccase activity of 5.34 U/g, 2.12 U/g and 7.43 U/g, respectively. The conditions of immobilisation and storage of immobilised laccase were modified to improve laccase activity in terms of bisphenol A transformation. The highest laccase immobilisation activity was obtained on small bead carriers with a large diameter of pores incubated in 0.1 M phosphate buffer pH 7 and for immobilisation time of 3 h at 22 °C. The immobilised LAC was stable for four weeks maintaining 80–90% of its initial activity in the case of the best C2, C6, and C18 carriers. The immobilised laccase transformed 10 mg/L of BPA in 45% efficiency and decreased its toxicity 3-fold in the Microtox tests. The effectiveness of BPA transformation, and the legitimacy of conducting this process due to the reduction of the toxicity of the resulting reaction products have been demonstrated. Reusability of immobilised LAC has been proven during BPA removal in 10 subsequent batches.
Collapse
|
31
|
Shokri Z, Azimi N, Moradi S, Rostami A. A novel magnetically separable laccase‐mediator catalyst system for the aerobic oxidation of alcohols and 2‐substituted‐2,3‐dihydroquinazolin‐4(1
H
)‐ones under mild conditions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zahra Shokri
- Department of Chemistry, Faculty of Science University of Kurdistan Zip Code 66177‐15175 Sanandaj Iran
| | - Nahid Azimi
- Department of Chemistry, Faculty of Science University of Kurdistan Zip Code 66177‐15175 Sanandaj Iran
| | - Sirvan Moradi
- Department of Chemistry, Faculty of Science University of Kurdistan Zip Code 66177‐15175 Sanandaj Iran
| | - Amin Rostami
- Department of Chemistry, Faculty of Science University of Kurdistan Zip Code 66177‐15175 Sanandaj Iran
| |
Collapse
|
32
|
Wang F, Owusu-Fordjour M, Xu L, Ding Z, Gu Z. Immobilization of Laccase on Magnetic Chelator Nanoparticles for Apple Juice Clarification in Magnetically Stabilized Fluidized Bed. Front Bioeng Biotechnol 2020; 8:589. [PMID: 32714899 PMCID: PMC7343707 DOI: 10.3389/fbioe.2020.00589] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/14/2020] [Indexed: 12/29/2022] Open
Abstract
The juice clarification, one of the key steps in juice processing, suffers from haze formation that results from residual phenolic compounds. In this study, laccase was immobilized on metal-chelated magnetic silica nanoparticles and used for continuous juice clarification in a magnetically stabilized fluidized bed (MSFB) assisted by alternating magnetic field. Furthermore, a new combination of laccase catalysis and microfiltration was developed for the juice clarification. Immobilized laccase provided high relative activity within broader ranges of pH and temperature compared to the free enzyme. Magnetic immobilized laccase exhibited the best reaction rate of 12.1 μmol g–1 min–1 for catechol oxidation under the alternating magnetic field of 400 Hz, 60 Gs. No activity loss occurred in immobilized laccase after 20 h continuous operation of juice treatment in MSFB under an alternating magnetic field. Combined with microfiltration after treatment with immobilized laccase, the color of apple juice was decreased by 33.7%, and the light transmittance was enhanced by 20.2%. Furthermore, only 16.3% of phenolic compounds and 15.1% of antioxidant activity was reduced for apple juice after the clarification. By this combination strategy, the apple juice possessed good freeze–thaw and thermal stability.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | | | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Zhongyang Ding
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Zhenghua Gu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
33
|
Debnath R, Saha T. An insight into the production strategies and applications of the ligninolytic enzyme laccase from bacteria and fungi. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101645] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Jankowska K, Zdarta J, Grzywaczyk A, Kijeńska-Gawrońska E, Biadasz A, Jesionowski T. Electrospun poly(methyl methacrylate)/polyaniline fibres as a support for laccase immobilisation and use in dye decolourisation. ENVIRONMENTAL RESEARCH 2020; 184:109332. [PMID: 32151845 DOI: 10.1016/j.envres.2020.109332] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Novel electrospun poly(methyl methacrylate)/polyaniline electrospun fibres were produced, characterised, modified, and used as a support for laccase immobilisation by two methods: adsorption and covalent binding. Effective deposition of laccase by both methods was confirmed by FTIR and CLSM results. Nevertheless, the main objective of the study was to select the most favourable immobilisation conditions and prepare heterogeneous biocatalysts with the best possible catalytic properties. The highest relative activity of enzymes immobilised by adsorption and covalent binding were obtained after 1 h of immobilisation using laccase solution at a concentration of 1 mg/mL, at pH 5 and 25 °C. It was found that the immobilised enzymes, which were present in amounts of 110 mg/g and 185 mg/g for systems with adsorbed and covalently bonded laccase respectively, exhibited slightly lower substrate affinity, and in consequence also a lower maximum reaction rate, than the free enzyme. The stability of laccase improved significantly upon immobilisation: both heterogeneous biocatalysts retained over 80% relative activity even after 10 repeated catalytic cycles and 30 days of storage. The obtained systems were used for decolourisation of Remazol Brilliant Blue R dye from a model aqueous solution, resulting in removal efficiencies of 87% and 58% using adsorbed and covalently bonded laccase, respectively. The described approach to the removal of textile dye from model solution is significant for the sustainable and environmentally friendly decolourisation of various compounds from wastewater.
Collapse
Affiliation(s)
- Katarzyna Jankowska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Adam Grzywaczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Ewa Kijeńska-Gawrońska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, PL-02507, Warsaw, Poland
| | - Andrzej Biadasz
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, PL-60965, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland.
| |
Collapse
|
35
|
Banerjee S, Arora A, Vijayaraghavan R, Patti AF. Extraction and crosslinking of bromelain aggregates for improved stability and reusability from pineapple processing waste. Int J Biol Macromol 2020; 158:318-326. [PMID: 32353500 DOI: 10.1016/j.ijbiomac.2020.04.220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/01/2023]
Abstract
The present study is first of its kind that focuses upon the extraction of bromelain from pineapple core waste and stabilising it as insoluble cross-linked aggregates. The influence of process variables such as the choice of precipitant, type of cross-linker, concentration of cross-linker and the reaction time for cross-linking step was investigated upon the activity recovery of bromelain cross-linked aggregates. The optimization of this biocatalyst preparation specifically recovered 87% of the enzymatic activity available in pineapple core waste by ammonium sulphate (60%, w/v) precipitation followed by cross-linking for 4 h with 80 mM glutaraldehyde. Cross-linked bromelain aggregates were thermally more stable and exhibited higher pH stability in comparison to free bromelain. The cross-linked bromelain aggregates exhibited higher operational stability in different organic solvents at 4 °C. The highest operational stability (% stability given in parenthesis) was observed in acetone (100%) followed by hexane (53.6%), ethyl acetate (39.6%), ethanol (32.5%) and chloroform (14.9%). The kinetic studies revealed higher Km value (5.45 mM) after the formation of cross-linked bromelain aggregates as compared to free bromelain (5.04 mM) with almost similar Vmax values. Cross-linked bromelain aggregates also showed significant reusability characteristics with an activity retention of >85% after 5-time cycles. Such recyclability of bromelain cross-linked aggregates could lead to potential industrial applications in both food and non-food sector. In addition, the present extraction method avoids costs related to purification and expensive immobilization carriers.
Collapse
Affiliation(s)
- Shivali Banerjee
- IITB - Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Bio-Processing Laboratory, Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; School of Chemistry, Green Chemical Futures, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Amit Arora
- IITB - Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Bio-Processing Laboratory, Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - R Vijayaraghavan
- School of Chemistry, Green Chemical Futures, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Antonio F Patti
- School of Chemistry, Green Chemical Futures, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.
| |
Collapse
|
36
|
Mohammadi NS, Khiabani MS, Ghanbarzadeh B, Mokarram RR. Enhancement of biochemical aspects of lipase adsorbed on halloysite nanotubes and entrapped in a polyvinyl alcohol/alginate hydrogel: strategies to reuse the most stable lipase. World J Microbiol Biotechnol 2020; 36:45. [PMID: 32130535 DOI: 10.1007/s11274-020-02817-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/20/2020] [Indexed: 12/21/2022]
Abstract
Entrapment of halloysite nanotubes (HNTs) loaded with enzyme, into a polymer matrix (PVA/Alg), is a way to produce an environment surrounding the adsorbed enzyme molecules which improves the enzyme properties such as storage and operational stability. Hence, in this study, we optimised the factors affecting lipase adsorption onto halloysite nanotubes including halloysite amounts (5, 42.5 and 80 mg), lipase concentrations (30, 90 and 150 µg/ml), temperatures (5, 20 and 35 °C) and adsorption times (30, 165 and 300 min). The optimal conditions were determined as an halloysite amount of 50 to 80 mg, a lipase concentration of 30 to 57 μg/ml, an adsorption temperature of 20 °C and an adsorption time of 165 min, which resulted in a specific activity and adsorption efficiency of 15,000 (U/g protein) and 70%, respectively. Then, lipase adsorbed under optimal conditions was entrapped in a PVA/Alg hydrogel. The formation mechanism of immobilized lipase was investigated by FESEM and FTIR. Subsequent entrapment of adsorbed lipase improved the lipase storage and operational stability. Km, Vmax, Kcat and Kcat/Km values showed an increase in the entrapped HNT-lipase performance in comparison with the free and adsorbed lipase.
Collapse
Affiliation(s)
- Najmeh Sabahi Mohammadi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Mahmood Sowti Khiabani
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.,Department of Food Engineering, Faculty of Engineering, Near East University, Nicosia, Cyprus Mersin, Turkey
| | - Reza Rezaei Mokarram
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| |
Collapse
|
37
|
Basak G, Hazra C, Sen R. Biofunctionalized nanomaterials for in situ clean-up of hydrocarbon contamination: A quantum jump in global bioremediation research. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 256:109913. [PMID: 31818738 DOI: 10.1016/j.jenvman.2019.109913] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Interfacing organic or inorganic nanoparticles with biological entities or molecules or systems with the aim of developing functionalized nano-scale materials or composites for remediation of persistent organic hydrocarbon pollutants (such as monocyclic and polycyclic aromatic hydrocarbons, MAH/PAH) has generated great interest and continues to grow almost unabated. However, the usefulness and potency of these materials or conjugates hinges over several key barriers, including structural assembly with fine-tuned control over nanoparticle/biomolecule ratio, spatial orientation and activity of biomolecules, the nano/bio-interface strategy and hierarchical architecture, water-dispersibility and long term colloidal stability in environmental media, and non-specific toxicity. The present review thus critically analyses, discusses and interprets recently reported attempts and approaches to functionalize nanoparticles with biomolecules. Since there is no comprehensive and critical reviews on the applications of nanotechnology in bioremediation of MAHs/PAHs, this overview essentially captures the current global scenario and vision on the use and future prospects of biofunctionalized nanomaterials with respect to their strategic interactions involved at the nano/bio-interface essential to understand and decipher the structural and functional relationships and their impact on persistent hydrocarbon remediation.
Collapse
Affiliation(s)
- Geetanjali Basak
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Chinmay Hazra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
38
|
Zhang H, Hay AG. Magnetic biochar derived from biosolids via hydrothermal carbonization: Enzyme immobilization, immobilized-enzyme kinetics, environmental toxicity. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121272. [PMID: 31581014 DOI: 10.1016/j.jhazmat.2019.121272] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/11/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Magnetic and nonmagnetic biochar (MBC & BC) were produced from biosolids under hydrothermal conditions and characterized in order to understand surface chemistry impacts on enzyme immobilization and activity. Peak surface pore size of MBC was 180 nm and that of BC was 17 nm. Despite similar surface area (≈ 49 m2/g) MBC immobilized more laccase (99 mg/g) than biochar (31 mg/g). For horseradish peroxidase (HRP), the two biochars had similar immobilization capacity (≈ 65 mg/g). Laccase and HRP on MBC had 47.1 and 18.0% higher specific activity than on BC, respectively. The matrix activity of MBC-laccase (33.3 U/mg support) was 3.7-fold higher than BC-laccase (8.8 U/mg support) and higher than the same amount of free laccase (30.2 U) at pH 3.0 (P < 0.05). Although MBC had its own peroxide oxidation activity (104.1 and 165.9 U/mg biochar at pHs 5&6) this only accounted for 16.7 and 20.4% of the total MBC-H RP activity respectively. After 10 wash cycles, MBC still retained 79.3% and 60.3% of laccase and HRP activity, respectively. Additionally, MBC had lower acute toxicity, suggesting that it is relative benign from an environmental perspective.
Collapse
Affiliation(s)
- He Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Anthony G Hay
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
39
|
Chatzikonstantinou AV, Polydera AC, Thomou E, Chalmpes N, Baroud TN, Enotiadis A, Estevez L, Patila M, Hammami MA, Spyrou K, Giannelis EP, Tzakos AG, Gournis D, Stamatis H. Lipase immobilized on magnetic hierarchically porous carbon materials as a versatile tool for the synthesis of bioactive quercetin derivatives. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2019.100372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
40
|
Zhang Y, Piao M, He L, Yao L, Piao T, Liu Z, Piao Y. Immobilization of laccase on magnetically separable biochar for highly efficient removal of bisphenol A in water. RSC Adv 2020; 10:4795-4804. [PMID: 35495269 PMCID: PMC9049069 DOI: 10.1039/c9ra08800h] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/10/2020] [Indexed: 01/24/2023] Open
Abstract
Laccase was stably immobilized on a cost effective and nanosized magnetic biochar (L-MBC) by adsorption, precipitation and crosslinking, and it was used for high performance BPA removal. A large amount of enzyme could be immobilized on the magnetic biochar with high activity (2.251 U per mg MBC), and the L-MBC could be magnetically separated from the aqueous solution in 20 seconds. The successful immobilization of laccase was also confirmed via FTIR, SEM, and EDS analyses. The L-MBC presented better storage and stability performances, pH tolerance and thermal stability than the free laccase. It was found that BPA with an initial concentration of 25 mg L-1 could be thoroughly removed within 75 min, where BPA removal was attributed to enzymatic degradation and adsorption. In addition, the BPA removal efficiency by the L-MBC could be maintained above 85% even after seven cycles of repeated use. Due to high stability and efficient recyclability, the L-MBC-based biocatalyst has the potential to be a reliable method for treating BPA in environmental water sources.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University 2519 Jiefang Road Changchun 130021 China
| | - Mingyue Piao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University 2519 Jiefang Road Changchun 130021 China
- College of Environmental Science and Engineering, Jilin Normal University Siping Jilin 136000 China
| | - Lingzhi He
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University 2519 Jiefang Road Changchun 130021 China
| | - Lan Yao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University 2519 Jiefang Road Changchun 130021 China
| | - Tiezhu Piao
- Department of Biological and Chemical Engineering, Yanbian University of Science and Technology Yanji 133000 China
| | - Zairan Liu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University 2519 Jiefang Road Changchun 130021 China
| | - Yunxian Piao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University 2519 Jiefang Road Changchun 130021 China
| |
Collapse
|
41
|
Wu E, Li Y, Huang Q, Yang Z, Wei A, Hu Q. Laccase immobilization on amino-functionalized magnetic metal organic framework for phenolic compound removal. CHEMOSPHERE 2019; 233:327-335. [PMID: 31176895 DOI: 10.1016/j.chemosphere.2019.05.150] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
An amino-functionalized magnetic metal organic framework (MOF), Fe3O4-NH2@MIL-101(Cr), was employed for laccase immobilization for the first time. The immobilized laccase was synthesized by the adsorption and covalent binding method, thus exhibited high activity recovery, large immobilization capacity and good tolerance to low pH and high temperature conditions. The excellent stability enabled the immobilized laccase to retain 89% of its initial activity after storage for 28 days. When the ambient temperature reached 85 °C, the immobilized laccase showed 49.1% residual activity even after 6 h preservation. The stability of laccase in organic solvents such as methanol was also greatly improved. Application of the immobilized laccase for 2,4-dichlorophenol removal was also investigated. The adsorption by Fe3O4-NH2@MIL-101(Cr) contributed to a quick removal in the first hour, and the removal efficiency reached 87% eventually. When the reaction was completed, the immobilized laccase could be separated from the solution by a magnet. The results introduced a novel support for laccase immobilization, and the immobilized laccase had great potential in wastewater treatment.
Collapse
Affiliation(s)
- Enhui Wu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Yuexian Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Qing Huang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Zhenkai Yang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Anyu Wei
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China.
| |
Collapse
|
42
|
Wlizło K, Polak J, Jarosz-Wilkołazka A, Pogni R, Petricci E. Novel textile dye obtained through transformation of 2-amino-3-methoxybenzoic acid by free and immobilised laccase from a Pleurotus ostreatus strain. Enzyme Microb Technol 2019; 132:109398. [PMID: 31731976 DOI: 10.1016/j.enzmictec.2019.109398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/08/2019] [Indexed: 11/28/2022]
Abstract
Transformation of 2-amino-3-methoxybenzoic acid into novel and eco-friendly orange dye (N15) was performed using native and immobilised laccase (LAC) from Pleurotus ostreatus strain. A several parameters affecting laccase-mediated transformation efficiency included the selection of type and pH value of buffer, reaction temperature, substrate and laccase concentration as well as the type of carrier and LAC storage conditions were evaluated. The optimal conditions for N15 dye synthesis were 40 mM sodium-tartrate buffer pH 5.5 containing 3 mM of the substrate, efficiently transformed by 2 U of free laccase per 1 mmol of the substrate. Laccase was immobilised on porous Purolite® carriers, which had never been tested as a support for oxidoreductases. Immobilised laccase, characterised by a high immobilisation yield, was obtained by adsorption of laccase on a porous acrylic carrier with octadecyl groups (C18) incubated in optimum conditions of 40 mM phosphate buffer pH 7.0 containing 1 mg of laccase per 1 g of the carrier (wet mass). The immobilised LAC showed the highest storage stability for 21 days and higher thermostability at 40 ℃ and 60 ℃ in comparison to its native form. The N15 dye showed good dyeing properties towards natural fibres, and the dyed fibre demonstrated resistance to different physicochemical factors during use, which was confirmed by commercial quality tests. The N15 dye is a phenazine, i.e. a heterogenic compound containing amino-, methoxy-, and three carboxyl functional groups with the molecular weight of approximately 449.37 U.
Collapse
Affiliation(s)
- Kamila Wlizło
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19, 20-031 Lublin, Poland
| | - Jolanta Polak
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19, 20-031 Lublin, Poland.
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19, 20-031 Lublin, Poland
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Elena Petricci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
43
|
Jannah Sulaiman N, Mansor AF, Rahman RA, Illias RM, Shaarani SM. Adsorption Kinetics of Cellulase and Xylanase Immobilized on Magnetic Mesoporous Silica. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nurul Jannah Sulaiman
- Universiti Teknologi MalaysiaSchool of Chemical & Energy EngineeringFaculty of Engineering 81310 Skudai Johor Malaysia
| | - Azmi Fadziyana Mansor
- Universiti Teknologi MalaysiaSchool of Chemical & Energy EngineeringFaculty of Engineering 81310 Skudai Johor Malaysia
| | - Roshanida A. Rahman
- Universiti Teknologi MalaysiaSchool of Chemical & Energy EngineeringFaculty of Engineering 81310 Skudai Johor Malaysia
| | - Rosli M. Illias
- Universiti Teknologi MalaysiaSchool of Chemical & Energy EngineeringFaculty of Engineering 81310 Skudai Johor Malaysia
| | - Shalyda M. Shaarani
- Universiti Malaysia PahangFaculty of Chemical & Natural Resources Engineering Lebuhraya Tun Razak 26300 Gambang Kuantan, Pahang Malaysia
| |
Collapse
|
44
|
Hashemabadi M, Badoei-Dalfard A. Fabrication of Magnetic CLEA-protease Nanocomposite: High Progression in Biotechnology and Protein Waste Management. Catal Letters 2019. [DOI: 10.1007/s10562-019-02751-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Covalently immobilized laccase onto graphene oxide nanosheets: Preparation, characterization, and biodegradation of azo dyes in colored wastewater. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.156] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Zeleňák V, Zeleňáková A, Kapusta O, Hrubovčák P, Girman V, Bednarčík J. Fe 2O 3 and Gd 2O 3 nanoparticles loaded in mesoporous silica: insights into influence of NPs concentration and silica dimensionality. RSC Adv 2019; 9:3679-3687. [PMID: 35518101 PMCID: PMC9060262 DOI: 10.1039/c8ra05576a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/07/2019] [Indexed: 12/01/2022] Open
Abstract
Fine Fe2O3 and Gd2O3 magnetic nanoparticles (NPs) with sizes 7 nm and 10 nm embedded into mesoporous silica have been prepared using a wet-impregnation method. A comparative study of the reactant concentration along with the hosting matrix symmetry on mesostructuring and the magnetic properties of the nanocomposites have been investigated. Reactants with four different concentrations of Fe3+ and Gd3+ ions and silica matrices with two different kinds of symmetry (hexagonal and cubic) have been utilized for the study. The structural characterization of the samples has been carried out by the N2 adsorption/desorption method, high-energy X-ray diffraction (HE-XRD), TG/DTA, and high resolution transmission electron microscopy (HRTEM). The magnetic properties of the nanocomposites have been examined by means of SQUID magnetometry. It has been found that a range of different magnetic states (diamagnetic, paramagnetic, ferromagnetic, superparamagnetic) can be induced by the feasible tailoring of the particle concentration, the porous matrix symmetry and the composition. Furthermore, the existence of a “critical concentration limit” for embedding the particles within the body of the matrix has been confirmed. Exceeding the limit results in the expulsion of nanoparticles on the outer surface of the mesoporous matrix. Revelation of the relationships between particle concentration, matrix symmetry and magnetic properties of the particular composite reported in this study may facilitate the design and construction of advanced intelligent nanodevices. The concentration of nanoparticles inside the pores and the symmetry of the porous matrix significantly affected the magnetic properties.![]()
Collapse
Affiliation(s)
- V. Zeleňák
- Department of Inorganic Chemistry
- Faculty of Sciences
- P. J. Safarik University in Kosice
- 04054 Košice
- Slovakia
| | - A. Zeleňáková
- Department of Condensed Matter Physics
- Faculty of Sciences
- P. J. Safarik University in Kosice
- 04054 Košice
- Slovakia
| | - O. Kapusta
- Department of Condensed Matter Physics
- Faculty of Sciences
- P. J. Safarik University in Kosice
- 04054 Košice
- Slovakia
| | - P. Hrubovčák
- Department of Condensed Matter Physics
- Faculty of Sciences
- P. J. Safarik University in Kosice
- 04054 Košice
- Slovakia
| | - V. Girman
- Department of Condensed Matter Physics
- Faculty of Sciences
- P. J. Safarik University in Kosice
- 04054 Košice
- Slovakia
| | | |
Collapse
|
47
|
Irfan M, Mehmood S, Irshad M, Anwar Z. Optimized production, purification and molecular characterization of fungal laccase through Alternaria alternata. TURKISH JOURNAL OF BIOCHEMISTRY 2018. [DOI: 10.1515/tjb-2017-0239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Objective
Industrial effluents and agriculture biomass are main environmental hazards which are facing by developing country like Pakistan. Along with various other industrial applications, laccases are also involved in the oxidation of various industrial hazardous compounds to detoxify them. This study was designed to produce and purify laccase from ascomyceteous fungi, i.e. Alternaria alternata through solid stat fermentation.
Materials and methods
Abundantly available Sarkanda grass “Saccharum spontaneum” was used as agro-waste substrate for laccase production from fungus A. alternata. Previously only white rot fungi are familiar for laccase production and almost no work has been done on laccase production by A. alternata. In this research work, different physical and chemical parameters were optimized for maximum laccase production through solid state fermentation (SSF).
Results
Enzyme was purified and its molecular weight was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Maximum laccase activity (21.87±0.0115 unit/mL) was detected on 7th day of incubation having pH 5 of the medium at 35°C. None of the added metal ions increased laccase production. Galactose and “yeast extract” used as optimum carbon and nitrogen source for highest laccase production.
Conclusion
A monomeric protein (laccase) having approximately 51 kDa molecular weight obtained after SDS-PAGE.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Biochemistry and Molecular Biology , University of Gujrat , Gujrat , Pakistan
| | - Sajid Mehmood
- Department of Biochemistry and Molecular Biology , University of Gujrat , Gujrat , Pakistan
| | - Muhammad Irshad
- Department of Biochemistry and Molecular Biology , University of Gujrat , Gujrat , Pakistan
| | - Zahid Anwar
- Department of Biochemistry and Molecular Biology , University of Gujrat , Gujrat , Pakistan
| |
Collapse
|
48
|
Xu HM, Sun XF, Wang SY, Song C, Wang SG. Development of laccase/graphene oxide membrane for enhanced synthetic dyes separation and degradation. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.04.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Kunjukunju S, Roy A, Shekhar S, Kumta PN. Cross-linked enzyme aggregates of alginate lyase: A systematic engineered approach to controlled degradation of alginate hydrogel. Int J Biol Macromol 2018; 115:176-184. [DOI: 10.1016/j.ijbiomac.2018.03.110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
|
50
|
Seenuvasan M, Vinodhini G, Malar CG, Balaji N, Kumar KS. Magnetic nanoparticles: a versatile carrier for enzymes in bio-processing sectors. IET Nanobiotechnol 2018; 12:535-548. [PMID: 30095410 PMCID: PMC8676490 DOI: 10.1049/iet-nbt.2017.0041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/21/2017] [Accepted: 07/17/2017] [Indexed: 08/01/2023] Open
Abstract
Many industrial processes experience the advantages of enzymes which evolved the demand for enzymatic technologies. The enzyme immobilisation technology using different carriers has trustworthy applications in industrial biotechnology as these techniques encompass varied advantages such as enhanced stability, activity along with reusability. Immobilisation onto nanomaterial is highly favourable as it includes almost all aspects of science. Among the various techniques of immobilisation, the uses of nanoparticles are remarkably well perceived as these possess high-specific surface area leading to high enzyme loadings. The magnetic nanoparticles (MNPs) are burgeoning in the field of immobilisation as it possess some of the unique properties such as high surface area to volume ratio, uniform particle size, biocompatibility and particularly the recovery of enzymes with the application of an external magnetic field. Immobilisation of industrially important enzymes onto nanoparticles offers overall combined benefits. In this review, the authors here focus on the current scenario in synthesis and functionalisation of MNPs which makes it more compatible for the enzyme immobilisation and its application in the biotechnological industries.
Collapse
Affiliation(s)
| | | | - Carlin Geor Malar
- Department of Chemical Engineering, SSN College of Engineering, Chennai, India
| | - Nagarajan Balaji
- Department of Biotechnology, Madha Engineering College, Chennai, India
| | | |
Collapse
|