1
|
Wang L, Xu J, Li C, Hu X, Song C, Liu G, Chen C. Microbial adhesion behavior and participation of adhered and planktonic microorganisms in anaerobic digestion of leaf, epidermis, pith from corn stalk. BIORESOURCE TECHNOLOGY 2025; 426:132346. [PMID: 40044053 DOI: 10.1016/j.biortech.2025.132346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 03/18/2025]
Abstract
This study presents deep insights into the microbial adhesion and community dynamics of adhered and planktonic microorganisms during the anaerobic digestion (AD) of leaf, epidermis, and pith of corn stalk (CS). Microbial adhesion regularity varied with the part of CS. Overall, hydrolytic bacteria (Ruminofilibacter xylanolyticum, uncultured Bacteroidetes bacteria RII-AN097, uncultured Prolixibacteriaceae bacteria, Proteiniphilum sp. S20) and fermentative bacteria (Enterobacter hormaechei, Mobilitalia sibirica, Sphaerochaeta associate, Marinatabiaceae bacteria Ai-910, uncultured Planctomycetes bacteria, Kosakonia cowanii) would adhere to the surface of feedstock to synergistically degrade CS according to the full-length 16S rDNA gene sequencing. Acidification (uncultured Sedimentibacteriaceae sp.) and methanogenesis microorganisms (Methanosarcina barkeri str. Fusaro, Methanosateta spp.) mainly played a role in the planktonic phase for acetic acid and methane production. This study enriches the understanding of the adhered and planktonic microbial community involved in the AD, and provides a novel perspective to scientifically regulate microorganisms improving methanogenesis efficiency.
Collapse
Affiliation(s)
- Ligong Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinxiao Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Cheng Li
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuejun Hu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Song
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guangqing Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chang Chen
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Sun J, Zhou T, Yin F, Wang S. Anaerobic co-biodegradation of polyhydroxyalkanoate and swine manure for volatile fatty acid production: The impact of C/N ratios and microbial dynamics. BIORESOURCE TECHNOLOGY 2025; 418:131995. [PMID: 39694107 DOI: 10.1016/j.biortech.2024.131995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Polyhydroxyalkanoate (PHA) is the important biodegradable plastic, however, biodegradation of PHA waste in anaerobic environments emits more CH4, a potent greenhouse gas. Bioconversion of PHA waste to useful byproducts - volatile fatty acids (VFAs) is a practical method to upcycle carbon from PHA. In this study, PHA waste was anaerobically co-digested with swine manure (SM) (the typical high nitrogen waste) at different C/N ratios. The results indicate that co-digestion of PHA and SM with a C/N ratio of 32.1 achieved VFA production of 5488 mg COD/L and 0.20 g COD/g VS. No significant differences were found in terms of the highest VFA concentrations between treatments with C/N ratios of 43.4 and 32.1. VFA produciton of 3655 mg COD/L and 0.14 g COD/g VS was achieved at 19 days by adjusting the C/N ratio to 19.2. Four bacteria were identified as dominant microorganisms responsible for converting PHA and SM to VFA.
Collapse
Affiliation(s)
- Jiaxin Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tanlong Zhou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Arora U, Khuntia HK, Chanakya HN, Kapley A. Luffa cylindrica (Sponge Gourd) Fibers in Treatment of Greywater: an Aerobic Fixed-Film Reactor Approach. Appl Biochem Biotechnol 2024; 196:5994-6010. [PMID: 38175410 DOI: 10.1007/s12010-023-04804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/05/2024]
Abstract
The need for potable water consumption in urban and suburban regions can be decreased by greywater treatment and its reuse. Utilizing natural fibers may provide sustainable solutions in addressing challenges related to water resource management. In this study, a fixed-film reactor was designed with Luffa cylindrica (an annually occurring fruit) as a bio-carrier. The lab-scale reactors were configured with and without Luffa cylindrica and were run for 90 days in fed-batch mode. Scanning electron microscopy (SEM) was performed to validate biofilm production over time. Monitoring COD, nitrogen, and total phosphate removal allowed for analysis of treatment effectiveness. Results demonstrated the treatment efficiency for the experimental reactor was 70.96%, 97.02%, 92.57%, and 81.20% for COD, nitrogen, phosphate, and anionic surfactant (AS), respectively. 16 s rRNA gene sequencing of bio-carrier and control greywater samples was carried out. Many bacteria known to break down anionic surfactants were observed, and microbial succession was witnessed in the control reactor vs. the experimental reactor samples. The three most prevalent genera in the experimental samples were Chlorobium, Chlorobaculum, and Terrimonas. However, it is crucial to underscore that additional research is essential to solidify our understanding in this domain, with this study laying the fundamental groundwork.
Collapse
Affiliation(s)
- Upasana Arora
- Environmental Biotechnology and Genomics Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Himanshu Kumar Khuntia
- Centre for Sustainable Technologies, Indian Institute of Science, Bangalore, 560012, India
| | - H N Chanakya
- Centre for Sustainable Technologies, Indian Institute of Science, Bangalore, 560012, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India.
| |
Collapse
|
4
|
Pereira AR, Assis NVD, Paranhos AGDO, Lima DRS, Baeta BEL, Aquino SFD, Silva SDQ. Effect of inoculum composition on the microbial community involved in the anaerobic digestion of sugarcane bagasse. ENVIRONMENTAL TECHNOLOGY 2024; 45:2205-2217. [PMID: 36632771 DOI: 10.1080/09593330.2023.2166877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
In anaerobic digestion (AD), the choice of inoculum type seems to be relevant for methane production for complex substrates, such as lignocellulosic material. Previous work demonstrated that the addition of fresh manure and ruminal fluid to anaerobic sludge improved methane productivity and kinetics of AD of crude sugarcane bagasse (CSB). Considering that the improvement of methane production could be a result of a more adapted microbial community, the present study performed the Next Generation Sequencing analysis to identify changes in the microbiome of anaerobic sludge inoculum, resulting from fresh manure and ruminal fluid addition. In comparison with AD performed only with anaerobic sludge inoculum (50:50, U), accumulated methane production was 15% higher with anaerobic sludge plus ruminal fluid inoculum (50:50, UR) and even higher (68%) with anaerobic sludge with fresh bovine manure inoculum (50:50, UFM), reaching the value of 143 NmLCH4.gVS-1. Clostridium species were highly abundant in all inocula, playing an important role during the hydrolysis and fermentation of CSB, and detoxifying potential inhibitors. Microbial composition also revealed the occurrence of Pseudomonas and Anaerobaculum at UFM inoculum that seem to have contributed to the higher methane production rate, mainly due to their hydrolytic and fermentative ability on lignocellulosic substrates. On the other hand, the presence of Alcaligenes might have had a negative effect on methane production due to their ability to perform methane oxidation.
Collapse
Affiliation(s)
- Andressa Rezende Pereira
- Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Brazil
| | - Nathália Vercelli de Assis
- Graduate Program in Biotechnology, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Brazil
| | | | - Diego Roberto Sousa Lima
- Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Brazil
| | - Bruno Eduardo Lobo Baeta
- Department of Chemistry, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Brazil
| | | | - Silvana de Queiroz Silva
- Department of Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Brazil
| |
Collapse
|
5
|
Pilarska AA, Bula K, Pilarski K, Adamski M, Wolna-Maruwka A, Kałuża T, Magda P, Boniecki P. Polylactide (PLA) as a Cell Carrier in Mesophilic Anaerobic Digestion-A New Strategy in the Management of PLA. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8113. [PMID: 36431599 PMCID: PMC9697477 DOI: 10.3390/ma15228113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The management of waste polylactide (PLA) in various solutions of thermophilic anaerobic digestion (AD) is problematic and often uneconomical. This paper proposes a different approach to the use of PLA in mesophilic AD, used more commonly on the industrial scale, which consists of assigning the function of a microbial carrier to the biopolymer. The study involved the testing of waste wafers and waste wafers and cheese in a co-substrate system, combined with digested sewage sludge. The experiment was conducted on a laboratory scale, in a batch bioreactor mode. They were used as test samples and as samples with the addition of a carrier: WF-control and WFC-control; WF + PLA and WFC + PLA. The main objective of the study was to verify the impact of PLA in the granular (PLAG) and powder (PLAP) forms on the stability and efficiency of the process. The results of the analysis of physicochemical properties of the carriers, including the critical thermal analysis by differential scanning calorimetry (DSC), as well as the amount of cellular biomass of Bacillus amyloliquefaciens obtained in a culture with the addition of the tested PLAG and PLAP, confirmed that PLA can be an effective cell carrier in mesophilic AD. The addition of PLAG produced better results for bacterial proliferation than the addition of powdered PLA. The highest level of dehydrogenase activity was maintained in the WFC + PLAG system. An increase in the volume of the methane produced for the samples digested with the PLA granules carrier was registered in the study. It went up by c.a. 26% for WF, from 356.11 m3 Mg-1 VS (WF-control) to 448.84 m3 Mg-1 VS (WF + PLAG), and for WFC, from 413.46 m3 Mg-1 VS, (WFC-control) to 519.98 m3 Mg-1 VS (WFC + PLAG).
Collapse
Affiliation(s)
- Agnieszka A. Pilarska
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznan, Poland
| | - Karol Bula
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| | - Krzysztof Pilarski
- Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland
| | - Mariusz Adamski
- Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland
| | - Agnieszka Wolna-Maruwka
- Department of Soil Science and Microbiology, Poznań University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Tomasz Kałuża
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznan, Poland
| | - Przemysław Magda
- Department of Wastewater Treatment, Aquanet S.A., Gdyńska 1, 61-477 Poznań, Poland
| | - Piotr Boniecki
- Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland
| |
Collapse
|
6
|
de Quadros TCF, Mangerino Sicchieri I, Fernandes F, Kiyomi Kuroda E. Selection of additive materials for anaerobic co-digestion of fruit and vegetable waste and layer chicken manure. BIORESOURCE TECHNOLOGY 2022; 361:127659. [PMID: 35872273 DOI: 10.1016/j.biortech.2022.127659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to assess the potential of different additive materials in enhancing the stability and methane production of anaerobic co-digestion of fruit and vegetable waste and layer chicken manure. A biochemical methane potential assay was conducted to evaluate the co-digestion of substrates with the addition of additive materials (10 g L-1): biochars produced (450 and 550 °C) (from fruit and vegetable waste, layer chicken manure, and wood pruning waste), powdered activated carbon, and zeolites. All additive materials increased methane production. Biochars showed better results regarding methane production (increments of 17 to 28 %). The surface of biochars favored the adhesion of microorganisms, this was confirmed by spectra after co-digestion. Furthermore, the redox-active groups in the biochars may have contributed to the microbiological syntrophism, increasing methane rates. These materials are viable for application in co-digestion systems, and the use of waste for their production is an option for solid waste management.
Collapse
Affiliation(s)
- Thainara Camila Fernandes de Quadros
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Rodovia Celso Garcia Cid (PR-445), km 380, Londrina, Paraná 86057-970, Brazil.
| | - Isabela Mangerino Sicchieri
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Rodovia Celso Garcia Cid (PR-445), km 380, Londrina, Paraná 86057-970, Brazil
| | - Fernando Fernandes
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Rodovia Celso Garcia Cid (PR-445), km 380, Londrina, Paraná 86057-970, Brazil
| | - Emília Kiyomi Kuroda
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Rodovia Celso Garcia Cid (PR-445), km 380, Londrina, Paraná 86057-970, Brazil
| |
Collapse
|
7
|
Quantitative and Qualitative Changes in the Genetic Diversity of Bacterial Communities in Anaerobic Bioreactors with the Diatomaceous Earth/Peat Cell Carrier. Cells 2022; 11:cells11162571. [PMID: 36010646 PMCID: PMC9406963 DOI: 10.3390/cells11162571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
This paper analyses the impact of the diatomaceous earth/peat (DEP; 3:1) microbial carrier on changes in the bacterial microbiome and the development of biofilm in the anaerobic digestion (AD) of confectionery waste, combined with digested sewage sludge as inoculum. The physicochemical properties of the carrier material are presented, with particular focus on its morphological and dispersion characteristics, as well as adsorption and thermal properties. In this respect, the DEP system was found to be a suitable carrier for both mesophilic and thermophilic AD. The evaluation of quantitative and qualitative changes in the genetic diversity of bacterial communities, carried out using next-generation sequencing (NGS), showed that the material has a modifying effect on the bacterial microbiome. While Actinobacteria was the most abundant cluster in the WF-control sample (WF—waste wafers), Firmicutes was the dominant cluster in the digested samples without the carrier (WF-dig.; dig.—digested) and with the carrier (WF + DEP). The same was true for the count of Proteobacteria, which decreased twofold during biodegradation in favor of Synergistetes. The Syntrophomonas cluster was identified as the most abundant genus in the two samples, particularly in WF + DEP. This information was supplemented by observations of morphological features of microorganisms carried out using fluorescence microscopy. The biodegradation process itself had a significant impact on changes in the microbiome of samples taken from anaerobic bioreactors, reducing its biodiversity. As demonstrated by the results of this innovative method, namely the BioFlux microfluidic flow system, the decrease in the number of taxa in the digested samples and the addition of DEP contributed to the microbial adhesion in the microfluidic system and the formation of a stable biofilm.
Collapse
|
8
|
Eco-Friendly and Effective Diatomaceous Earth/Peat (DEP) Microbial Carriers in the Anaerobic Biodegradation of Food Waste Products. ENERGIES 2022. [DOI: 10.3390/en15093442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This article aims to present the results of research on anaerobic digestion (AD) of waste wafers (WF-control) and co-substrate system—waste wafers and cheese (WFC-control), combined with digested sewage sludge. The aim of this study was to assess the physicochemical parameters of the diatomaceous earth/peat (DEP; 3:1) carrier material and to verify its impact on the enzymatic activity and the process performance. The experiment was conducted in a laboratory, in a periodical mode of operation of bioreactors, under mesophilic conditions. The results of analyses of morphological-dispersive, spectroscopic, adsorption, thermal, and microbiological properties confirmed that the tested carrier material can be an excellent option to implement in biotechnological processes, especially in anaerobic digestion. As part of the experiment, the substrates, feedstock, and fermenting slurry were subjected to the analysis for standard process parameters. Monitoring of the course of AD was performed by measuring the values of key parameters for the recognition of the stability of the process: pH, VFA/TA ratio (volatile fatty acids/total alkalinity), the content of NH4+, and dehydrogenase activity, as an indicator of the intensity of respiratory metabolism of microorganisms. No significant signals of destabilization of the AD process were registered. The highest dehydrogenase activity, in the course of the process, was maintained in the WFC + DEP system. The microbial carrier DEP, used for the first time in the anaerobic digestion, had a positive effect on the yield of methane production. As a result, an increase in the volume of produced biogas was obtained for samples fermented with DEP carrier material for WF + DEP by 13.18% to a cumulative methane yield of 411.04 m3 Mg−1 VS, while for WFC + DEP by 12.85% to 473.91 m3 Mg−1 VS.
Collapse
|
9
|
Enrichment of Anaerobic Microbial Communities from Midgut and Hindgut of Sun Beetle Larvae (Pachnoda marginata) on Wheat Straw: Effect of Inoculum Preparation. Microorganisms 2022; 10:microorganisms10040761. [PMID: 35456811 PMCID: PMC9024811 DOI: 10.3390/microorganisms10040761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
The Pachnoda marginata larva have complex gut microbiota capable of the effective conversion of lignocellulosic biomass. Biotechnological utilization of these microorganisms in an engineered system can be achieved by establishing enrichment cultures using a lignocellulosic substrate. We established enrichment cultures from contents of the midgut and hindgut of the beetle larva using wheat straw in an alkaline medium at mesophilic conditions. Two different inoculation preparations were used: procedure 1 (P1) was performed in a sterile bench under oxic conditions using 0.4% inoculum and small gauge needles. Procedure 2 (P2) was carried out under anoxic conditions using more inoculum (4%) and bigger gauge needles. Higher methane production was achieved with P2, while the highest acetic acid concentrations were observed with P1. In the enrichment cultures, the most abundant bacterial families were Dysgonomonadaceae, Heliobacteriaceae, Ruminococcaceae, and Marinilabiliaceae. Further, the most abundant methanogenic genera were Methanobrevibacter, Methanoculleus, and Methanosarcina. Our observations suggest that in samples processed with P1, the volatile fatty acids were not completely converted to methane. This is supported by the finding that enrichment cultures obtained with P2 included acetoclastic methanogens, which might have prevented the accumulation of acetic acid. We conclude that differences in the inoculum preparation may have a major influence on the outcome of enrichment cultures from the P. marginata larvae gut.
Collapse
|
10
|
Cazaudehore G, Guyoneaud R, Evon P, Martin-Closas L, Pelacho AM, Raynaud C, Monlau F. Can anaerobic digestion be a suitable end-of-life scenario for biodegradable plastics? A critical review of the current situation, hurdles, and challenges. Biotechnol Adv 2022; 56:107916. [PMID: 35122986 DOI: 10.1016/j.biotechadv.2022.107916] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/18/2022]
Abstract
Growing concern regarding non-biodegradable plastics and the impact of these materials on the environment has promoted interest in biodegradable plastics. The intensification of separate biowastes collection in most European countries has also contributed to the development of biodegradable plastics, and the subject of their end-of-life is becoming a key issue. To date, there has been relatively little research to evaluate the biodegradability of biodegradable plastics by anaerobic digestion (AD) compared to industrial and home composting. However, anaerobic digestion is a particularly promising strategy for treating biodegradable organic wastes in the context of circular waste management. This critical review aims to provide an in-depth update of anaerobic digestion of biodegradable plastics by providing a summary of the literature regarding process performances, parameters affecting biodegradability, the microorganisms involved, and some of the strategies (e.g., pretreatment, additives, and inoculum acclimation) used to enhance the degradation rate of biodegradable plastics. In addition, a critical section is dedicated to suggestions and recommendations for the development of biodegradable plastics sector and their treatment in anaerobic digestion.
Collapse
Affiliation(s)
- G Cazaudehore
- APESA, Pôle Valorisation, Cap Ecologia, 64230 Lescar, France; Université de Pau et des Pays de l'Adour/E2S UPPA/CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, Chimie et Microbiologie de l'Environnement, 64000 Pau, France
| | - R Guyoneaud
- Université de Pau et des Pays de l'Adour/E2S UPPA/CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, Chimie et Microbiologie de l'Environnement, 64000 Pau, France
| | - P Evon
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, ENSIACET, INRAE, INPT, 4 Allée Émile Monso, 31030 Toulouse Cedex 4, France
| | - L Martin-Closas
- Dept. Horticulture, Botany and Gardening, University of Lleida, Avda, Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - A M Pelacho
- Dept. Horticulture, Botany and Gardening, University of Lleida, Avda, Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - C Raynaud
- CATAR CRITT Agroressources, ENSIACET, 4 Allée Émile Monso, 31030 Toulouse Cedex 4, France
| | - F Monlau
- APESA, Pôle Valorisation, Cap Ecologia, 64230 Lescar, France.
| |
Collapse
|
11
|
Sun H, Zhang L, Zhang Y, Guo B, Liu Y. A new non-steady-state mass balance model for quantifying microbiome responses to disturbances in wastewater bioreactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113370. [PMID: 34351289 DOI: 10.1016/j.jenvman.2021.113370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Herein we proposed an ecology model, based on a non-steady-state mass balance (16S rRNA MiSeq reads normalized by volatile suspended solids), to quantify microbiome responses to disturbances in wastewater bioreactors. Rather than focusing on the most abundant microbial groups commonly used in the literature, the goal of the model was to identify active species within the community. The model incorporated the temporal changes of operational taxonomic units following a disturbance, through considering the density and type of genotypes in the influent entering the bioreactor, in the effluent leaving the bioreactor, growing in the bioreactor, and in the waste sludge discharged from the bioreactor continuously or instantaneously, as well as the prior microbial community and the sludge characteristics. One application of this model demonstrated that significant differences existed between the key populations responding to an increasing organic loading rate and the dominant species in a high-rate thermophilic upflow anaerobic sludge blanket reactor.
Collapse
Affiliation(s)
- Huijuan Sun
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yingdi Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Bing Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
12
|
Abid M, Wu J, Seyedsalehi M, Hu YY, Tian G. Novel insights of impacts of solid content on high solid anaerobic digestion of cow manure: Kinetics and microbial community dynamics. BIORESOURCE TECHNOLOGY 2021; 333:125205. [PMID: 33932808 DOI: 10.1016/j.biortech.2021.125205] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
High solid anaerobic digestion has become the mainstream technology for sustainable on-farm treatment of solid wastes but has not been optimized with respect to increasing solid content in cow manure (CM). In the present study, CM was batch digested at total solid (TS) of 5%, 10%, 15% and 20% and microbial communities were investigated. The process remained stable up to 15% TS. The biomethane production rate at TS of 10% and 15% was reported to be 352.2 mL g-1 VS and 318.6 mL g-1 VS, reaching up to 83% and 75% of TS 5% biomethane, respectively. Kinetics results disclosed that the biodegradable organics could be utilized at increasing solid content with decreasing hydrolysis rate. The abundances of hydrogenotrophic and methylotrophic methanogens increased significantly with increasing solid content. This study is of great importance for understanding and application of high solid anaerobic digestion of cow manure.
Collapse
Affiliation(s)
- Muhammad Abid
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Mahdi Seyedsalehi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu-Ying Hu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang 330013, China
| | - Guangliang Tian
- Institute of New Rural Development, Guizhou University, Guizhou Province 550025, China
| |
Collapse
|
13
|
Silica/Lignin Carrier as a Factor Increasing the Process Performance and Genetic Diversity of Microbial Communities in Laboratory-Scale Anaerobic Digesters. ENERGIES 2021. [DOI: 10.3390/en14154429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The article aims to present results of research on anaerobic digestion (AD) of waste wafers (WF-control) and co-substrate system–waste wafers and cheese (WFC-control), combined with digested sewage sludge, as inoculum. The purpose of this paper is to confirm the outcome of adding silica/lignin (S/L; 4:1) material, as a microbial carrier, on the process performance and genetic diversity of microbial communities. The experiment was conducted in a laboratory under mesophilic conditions, in a periodical operation mode of bioreactors. Selected physicochemical parameters of the tested carrier, along with the microstructure and thermal stability, were determined. Substrates, batches and fermenting slurries were subjected to standard parameter analysis. As part of the conducted analysis, samples of fermented food were also tested for total bacterial count, dehydrogenase activity. Additionally, DNA extraction and next-generation sequencing (NGS) were carried out. As a result of the conducted study, an increase in the volume of produced biogas was recorded for samples fermented with S/L carrier: in the case of WF + S/L by 18.18% to a cumulative biogas yield of 833.35 m3 Mg−1 VS, and in the case of WFC + S/L by 17.49% to a yield of 950.64 m3 Mg−1 VS. The largest total bacterial count, during the process of dehydrogenase activity, was maintained in the WFC + S/L system. The largest bacterial biodiversity was recorded in samples fermented with the addition of cheese, both in the case of the control variant and in the variant when the carrier was used. In contrast, three phyla of bacteria Firmicutes, Proteobacteria and Actinobacteria predominated in all experimental facilities.
Collapse
|
14
|
Cardona L, Mazéas L, Chapleur O. Zeolite favours propionate syntrophic degradation during anaerobic digestion of food waste under low ammonia stress. CHEMOSPHERE 2021; 262:127932. [PMID: 32805662 DOI: 10.1016/j.chemosphere.2020.127932] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 05/22/2023]
Abstract
Zeolite addition has been widely suggested for its ability to overcome ammonia stress occurring during anaerobic digestion. However little is known regarding the underlying mechanisms of mitigation and especially how zeolite influences the microbial structuration. The aim of this study was to bring new contributions on the effect of zeolite on the microbial community arrangement under a low ammonia stress. Replicated batch experiments were conducted. The microbial population was characterised with 16S sequencing. Methanogenic pathways were identified with methane isotopic fractionation. In presence of ammonia, zeolite mitigated the decrease of biogas production rate. Zeolite induced the development of Izimaplasmatales order and preserved Peptococcaceae family members, known as propionate degraders. Moreover methane isotopic fractionation showed that hydrogenotrophic methanogenesis was maintained in presence of zeolite under ammonia low stress. Our results put forward the benefit of zeolite to improve the bacteria-archaea syntrophy needed for propionate degradation and methane production under a low ammonia stress.
Collapse
Affiliation(s)
- Laëtitia Cardona
- Université Paris-Saclay, INRAE, PROSE, 1 Rue Pierre-Gilles de Gennes, CS 10030, 92761, Antony Cedex, France.
| | - Laurent Mazéas
- Université Paris-Saclay, INRAE, PROSE, 1 Rue Pierre-Gilles de Gennes, CS 10030, 92761, Antony Cedex, France.
| | - Olivier Chapleur
- Université Paris-Saclay, INRAE, PROSE, 1 Rue Pierre-Gilles de Gennes, CS 10030, 92761, Antony Cedex, France.
| |
Collapse
|
15
|
A Comparison of the Influence of Kraft Lignin and the Kraft Lignin/Silica System as Cell Carriers on the Stability and Efficiency of the Anaerobic Digestion Process. ENERGIES 2020. [DOI: 10.3390/en13215803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study compares the effects of pure kraft lignin and the kraft lignin/silica system (1:4 by weight). The comparative analysis of the physicochemical properties of both carriers showed that the kraft lignin/silica system was characterised by better properties. The experiment conducted in the study involved continuous anaerobic digestion under mesophilic conditions. Three samples were degraded in the following order: (i) sewage sludge (SS), (ii) SS with the addition of kraft lignin, and (iii) SS with the addition of the kraft lignin/silica system. A quantitative analysis of the digestate samples was carried out by means of in situ fluorescence. It showed more intense proliferation of microorganisms in the SS + kraft lignin/silica variant than in the sample with pure kraft lignin. The highest amount of biogas was obtained in the SS + kraft lignin/silica variant (689 m3 Mg−1 VS, including 413 m3 Mg−1 VS of methane; VS—volatile solids). There were comparable amounts of biogas in the SS variant (526 m3 Mg−1 VS of biogas, including 51% of methane) and the SS + kraft lignin variant (586 m3 Mg−1 VS of biogas, including 54% of methane). The research clearly showed that the material with a high share of silica was an effective cell carrier.
Collapse
|
16
|
Influence of Granular Activated Carbon on Anaerobic Co-Digestion of Sugar Beet Pulp and Distillers Grains with Solubles. Processes (Basel) 2020. [DOI: 10.3390/pr8101226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Anaerobic digestion is an important technology to receive energy from various types of biomass. In this work, the impact of granular activated carbon (GAC) on the mesophilic anaerobic co-digestion of sugar beet pulp and distillers grains was investigated. After a short period, anaerobic reactors began to produce biomethane and were ready for completion within 19–24 days. The addition of GAC to reactors (5–10 g L−1) significantly enhanced the methane production rate and consumption of produced volatile fatty acids. Thus, the maximum methane production rate increased by 13.7% in the presence of GAC (5 g L−1). Bacterial and archaeal community structure and dynamics were investigated, based on 16S rRNA genes analysis. The abundant classes of bacteria in GAC-free and GAC-containing reactors were Clostridia, Bacteroidia, Actinobacteria, and Synergistia. Methanogenic communities were mainly represented by the genera Methanosarcina, Methanoculleus, Methanothrix, and Methanomassiliicoccus in GAC-free and GAC-containing reactors. Our results indicate that the addition of granular activated carbon at appropriate dosages has a positive effect on anaerobic co-digestion of by-products of the processing of sugar beet and ethanol distillation process.
Collapse
|
17
|
Ciezkowska M, Bajda T, Decewicz P, Dziewit L, Drewniak L. Effect of Clinoptilolite and Halloysite Addition on Biogas Production and Microbial Community Structure during Anaerobic Digestion. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4127. [PMID: 32957462 PMCID: PMC7560405 DOI: 10.3390/ma13184127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 01/22/2023]
Abstract
The study presents a comparison of the influence of a clinoptilolite-rich rock-zeolite (commonly used for improving anaerobic digestion processes)-and a highly porous clay mineral, halloysite (mainly used for gas purification), on the biogas production process. Batch experiments showed that the addition of each mineral increased the efficiency of mesophilic anaerobic digestion of both sewage sludge and maize silage. However, halloysite generated 15% higher biogas production during maize silage transformation. Halloysite also contributed to a much higher reduction of chemical oxygen demand for both substrates (by ~8% for maize silage and ~14% for sewage sludge) and a higher reduction of volatile solids and total ammonia for maize silage (by ~8% and ~4%, respectively). Metagenomic analysis of the microbial community structure showed that the addition of both mineral sorbents influenced the presence of key members of archaea and bacteria occurring in a well-operated biogas reactor. The significant difference between zeolite and halloysite is that the latter promoted the immobilization of key methanogenic archaea Methanolinea (belong to Methanomicrobia class). Based on this result, we postulate that halloysite could be useful not only as a sorbent for (bio)gas treatment methodologies but also as an agent for improving biogas production.
Collapse
Affiliation(s)
- Martyna Ciezkowska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.C.); (P.D.); (L.D.)
| | - Tomasz Bajda
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland;
| | - Przemyslaw Decewicz
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.C.); (P.D.); (L.D.)
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.C.); (P.D.); (L.D.)
| | - Lukasz Drewniak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.C.); (P.D.); (L.D.)
| |
Collapse
|
18
|
Ren H, Feng Y, Liu T, Li J, Wang Z, Fu S, Zheng Y, Peng Z. Effects of different simulated seasonal temperatures on the fermentation characteristics and microbial community diversities of the maize straw and cabbage waste co-ensiling system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135113. [PMID: 31791754 DOI: 10.1016/j.scitotenv.2019.135113] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/14/2019] [Accepted: 10/20/2019] [Indexed: 05/14/2023]
Abstract
Ensiling is considered as a suitable method to preserve seasonal agricultural residues to enable long-term supply for wastes valorization. In this study, the effects of simulated seasonal temperatures (-3, 18 and 34 °C) on the organic compositions, ensiling fermentation characteristics, and microbial community evolution during 120 days co-ensiling of maize straw and cabbage wastes were investigated. Successful storage performance was obtained at all these three temperatures. Comparatively, silages at 18 and 34 °C showed lower ammonia nitrogen, lower pH and more intensive lactic acid bacteria fermentation than that at -3 °C. Both silages at -3 and18 °C were well-preserved for 120 days with higher biodegradation potential (BDP), accompanied by lower content of acid detergent lignin (ADL). However, the silages at 34 °C could only preserved for 90 days due to low carbohydrate, low BDP and higher ADL content than that at -3 or18 °C. The storage temperature is a critical parameter that significantly affected the silage quality by influencing the microbial community diversity in silages. Proteobacteria and Firmicutes were dominant bacteria at phylum level for all silages while the dominant lactic acid bacteria at genus level were Lactobacillus and Leuconostoc, which restrained the undesirable microbes such as Enterobacteriaceae, Pseudomonas, Flavobacterium, and Pantoea during co-ensiling. Co-ensiling of maize straw with vegetable wastes may provide a promising strategy for long-term preservation of air-dried crop straw while using vegetable wastes as regulatable supplement to achieve silages of desired quality. This study could provide valuable information for conservation and management of agricultural wastes.
Collapse
Affiliation(s)
- Haiwei Ren
- School of Life Science and Engineering/Western China Energy & Environment Research Center, Lanzhou University of Technology, Lanzhou, Gansu Province 730050, PR China
| | - Yinping Feng
- School of Life Science and Engineering/Western China Energy & Environment Research Center, Lanzhou University of Technology, Lanzhou, Gansu Province 730050, PR China
| | - Tong Liu
- School of Life Science and Engineering/Western China Energy & Environment Research Center, Lanzhou University of Technology, Lanzhou, Gansu Province 730050, PR China
| | - Jinping Li
- School of Life Science and Engineering/Western China Energy & Environment Research Center, Lanzhou University of Technology, Lanzhou, Gansu Province 730050, PR China
| | - Zhiye Wang
- Institute of Biology, Gansu Academy of Sciences, Lanzhou 73000, China
| | - Shanfei Fu
- School of Environment and Civil Engineering, Jiangnan University, No 1800, Lihudadao Road, Wuxi, Jiangsu Province 214122, PR China.
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 101C BIVAP, 1980 Kimball Avenue, Manhattan, KS 66506, USA
| | - Zhangpu Peng
- Institute of Biology, Gansu Academy of Sciences, Lanzhou 73000, China
| |
Collapse
|
19
|
Ozbayram EG, Kleinsteuber S, Nikolausz M. Biotechnological utilization of animal gut microbiota for valorization of lignocellulosic biomass. Appl Microbiol Biotechnol 2019; 104:489-508. [DOI: 10.1007/s00253-019-10239-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
|
20
|
Zhao Y, Xu C, Ai S, Wang H, Gao Y, Yan L, Mei Z, Wang W. Biological pretreatment enhances the activity of functional microorganisms and the ability of methanogenesis during anaerobic digestion. BIORESOURCE TECHNOLOGY 2019; 290:121660. [PMID: 31326651 DOI: 10.1016/j.biortech.2019.121660] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 06/10/2023]
Abstract
Biological pretreatment can increase the methane production of anaerobic digestion. In this study, stover was pretreated via microbial consortium prior to anaerobic digestion; through 16S rRNA gene and 16S rRNA amplicon sequencing and metatranscriptomic analysis, and the effects of the pretreatment on the microbial community and critical factors of the increased methane production were studied. Microbial community structure was less affected by the pretreatment, which ensures the stable performance of anaerobic digestion. The methane production increased by 62.85% at the peak phase compared to the untreated stover. The activity of Methanosaeta increased from 2.0% to 10.1%, significantly enhancing the ability of the community to capture acetic acid and reduce CO2 to methane. The main contribution to the increase in methane production was a unique acetyl-CoA synthetase, which showed significant up-regulation (121.8%). This research demonstrated the importance of Methanosaeta and its unique metabolic pathways in anaerobic digestion utilizing a biological pretreatment.
Collapse
Affiliation(s)
- Yiquan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Congfeng Xu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Shiqi Ai
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Haipeng Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Yamei Gao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Zili Mei
- Biogas Institute of Ministry of Agriculture and Rural Affairs, 610041 Chengdu, PR China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| |
Collapse
|
21
|
Pan X, Wang L, Lv N, Ning J, Zhou M, Wang T, Li C, Zhu G. Impact of physical structure of granular sludge on methanogenesis and methanogenic community structure. RSC Adv 2019; 9:29570-29578. [PMID: 35702508 PMCID: PMC9116110 DOI: 10.1039/c9ra04257a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/15/2019] [Accepted: 09/05/2019] [Indexed: 11/21/2022] Open
Abstract
Physical structures of sludge are critical factors determining the performance of the anaerobic digestion process, especially for the rate-limiting step, methanogenesis. Thus, to evaluate the effect of granular physical structure on methanogenesis and methanogenic community variation, intact and disintegrated granules were applied as inocula with formate, hydrogen and acetate as sole substrates in batch reactors. Kinetics results revealed that the physical structure of sludge had little impact on methane yield potential from three substrates, while a significantly different impact on methanogenesis rates of formate, hydrogen and acetate. The methanogenesis rate of formate in disintegrated granules was higher than that in the intact granular system, the methanogenesis rate of H2/CO2 in the intact granular system was higher than that in the disintegrated granules and the methanogenesis rate of acetate was similar with the in intact and disintegrated granular systems. Besides, in both intact and disintegrated granular systems, methanogenesis rates of formate were the highest, then followed the H2/CO2 and acetate was the lowest, indicating formate consumption has an advantage over hydrogen in the studied system. A microbial assay indicated that Methanobacteriales, Methanosarcinales and Methanomicrobiales are dominant methanogens on the order level, and the physical structure of granular sludge has little influence on methanogenic communities on the order level but showed significant influence on the species level. It enlightens us that the physical structure of sludge could be considered for regulating the anaerobic digestion via influencing the methanogenesis rates.
Collapse
Affiliation(s)
- Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences Xiamen 361021 China +86-592-6190790 +86-592-6190790
| | - Lina Wang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University 126 Xiantai Street Changchun 130000 China
| | - Nan Lv
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences Xiamen 361021 China +86-592-6190790 +86-592-6190790
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jing Ning
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences Xiamen 361021 China +86-592-6190790 +86-592-6190790
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Mingdian Zhou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences Xiamen 361021 China +86-592-6190790 +86-592-6190790
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tao Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences Xiamen 361021 China +86-592-6190790 +86-592-6190790
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark Kgs. Lyngby DK-2800 Denmark
| | - Gefu Zhu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences Xiamen 361021 China +86-592-6190790 +86-592-6190790
| |
Collapse
|
22
|
Rodríguez-Abalde Á, Guivernau M, Prenafeta-Boldú FX, Flotats X, Fernández B. Characterization of microbial community dynamics during the anaerobic co-digestion of thermally pre-treated slaughterhouse wastes with glycerin addition. Bioprocess Biosyst Eng 2019; 42:1175-1184. [DOI: 10.1007/s00449-019-02115-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/20/2019] [Accepted: 03/25/2019] [Indexed: 11/25/2022]
|
23
|
Kraft Lignin Grafted with Polyvinylpyrrolidone as a Novel Microbial Carrier in Biogas Production. ENERGIES 2018. [DOI: 10.3390/en11123246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The objective of this study was to verify the effect of kraft lignin as a microbial carrier on biogas/methane yield. An anaerobic co-digestion test process was carried out, in which confectionery waste was used with sewage sludge. At the first stage of the study pure lignin and lignin combined with polyvinylpyrrolidone (PVP) were subjected to an extensive physicochemical analysis. Their morphology, dispersion and adsorption properties were determined. The two materials were also subjected to thermal, spectroscopic and elementary analysis. The anaerobic digestion of the two substrates was carried out with and without the addition of the carrier, under mesophilic conditions and in periodic operation. The monitoring and analysis of the two essential parameters, i.e., pH and volatile fatty acids/total alkalinity (VFA/TA) ratio, revealed that the process was stable in both tests. Microbial and biochemical analyses showed intensified proliferation of eubacteria and increased dehydrogenase activity in samples prepared with the lignin + PVP material. The cell count increased by 46% in the stuffed wafers (WAF) + sewage sludge (SS) variant with the carrier, whereas the enzyme activity increased by 43%. Cell immobilisation noticeably improved the process efficiency. The biogas production increased from 722 m3 Mg−1 VS to 850 m3 Mg−1 VS (VS – volatile solids), whereas the methane production increased from 428 m3 Mg−1 VS to 503 m3 Mg−1 VS (by about 18%). The research proved that lignin could be used as a very effective microbial carrier in anaerobic digestion (AD).
Collapse
|
24
|
Cai Y, Zheng Z, Zhao Y, Zhang Y, Guo S, Cui Z, Wang X. Effects of molybdenum, selenium and manganese supplementation on the performance of anaerobic digestion and the characteristics of bacterial community in acidogenic stage. BIORESOURCE TECHNOLOGY 2018; 266:166-175. [PMID: 29966926 DOI: 10.1016/j.biortech.2018.06.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/16/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
The addition of trace elements to aid anaerobic digestion has already been widely studied. However, the effects of rare trace elements on anaerobic digestion remain unclear. In this study, the effects of Mo, Se and Mn on anaerobic digestion of rice straw were explored. The results showed the methane yield increased by 59.3%, 47.1% and 48.9% in the first 10 days following addition of Mo (0.01 mg/L), Se (0.1 mg/L) and Mn (1.0 mg/L), respectively. Toxic effects and the accumulation of volatile fatty acids (VFAs) were observed when the Se, Mo and Mn concentrations were greater than 100, 1000 and 1000 mg/L, respectively. The half-maximal inhibitory concentrations (IC50) for Se, Mn and Mo were 79.9 mg/L, 773.9 mg/L and 792.3 mg/L, respectively. The addition of trace elements has changed the bacterial structure of the bacteria, which in turn has affected the digestion performance.
Collapse
Affiliation(s)
- Yafan Cai
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Zehui Zheng
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Yubin Zhao
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Yue Zhang
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Shiyu Guo
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Zongjun Cui
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Xiaofen Wang
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
25
|
Poirier S, Déjean S, Chapleur O. Support media can steer methanogenesis in the presence of phenol through biotic and abiotic effects. WATER RESEARCH 2018; 140:24-33. [PMID: 29684699 DOI: 10.1016/j.watres.2018.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
A wide variety of inhibitors can induce anaerobic digester disruption. To avoid performance losses, support media can be used to mitigate inhibitions. However, distinguishing the physico-chemical from the biological mechanisms of such strategies remains delicate. In this framework, the impact of 10 g/L of different types of zeolites and activated carbons (AC) on microbial community dynamics during anaerobic digestion of biowaste in the presence of 1.3 g/L of phenol was evaluated with 16 S rRNA gene sequencing. In the presence of AC, methanogenesis inhibition was rapidly removed due to a decrease of phenol concentration. This abiotic effect related to the physico-chemical properties of AC led to increased final CH4 and CO2 productions by 29-31% compared to digesters incubated without support. Interestingly, although zeolite did not adsorb phenol, final CH4 and CO2 production reached comparable levels as with AC. Nevertheless, compared to digesters incubated without support, methanogenesis lag phase duration was less reduced in the presence of zeolites (5 ± 1 days) than in the presence of activated carbons (12 ± 2 days). Both types of support induced biotic effects. AC and zeolite both allowed the preservation of the major representative archaeal genus of the non-inhibited ecosystem, Methanosarcina. By contrast, they distinctly shaped bacterial populations. OTUs belonging to class W5 became dominant at the expense of OTUs assigned to orders Clostridiales, Bacteroidales and Anaerolinales in the presence of AC. Zeolite enhanced the implantation of OTUs assigned to bacterial phylum Cloacimonetes. This study highlighted that supports can induce biotic and abiotic effects within digesters inhibited with phenol, showing potentialities to enhance anaerobic digestion stability under disrupting conditions.
Collapse
Affiliation(s)
- Simon Poirier
- Hydrosystems and Bioprocesses Research Unit, Irstea, France.
| | - Sébastien Déjean
- Toulouse Mathematics Institute, UMR 5219 CNRS, Toulouse University, Toulouse, France.
| | | |
Collapse
|
26
|
Wijesinghe DTN, Dassanayake KB, Scales P, Chen D. Developing an anaerobic digester with external Zeolite filled column for enhancing methane production from swine manure - A feasibility study. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:751-760. [PMID: 29995574 DOI: 10.1080/03601234.2018.1480164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Development of digesters with an external zeolite column facilitates the convenient removal of the zeolite with TAN, without disturbing the continuous anaerobic digestion process. A digester with an inside zeolite bed (In-Zeo) and digester without adding zeolite (No-Zeo) were employed to compare the process performance with digester with external zeolite column (EX-Zeo). The cumulative, CH4 yields were 5% and 15% greater in the EX-Zeo, and the In-Zeo digesters respectively compared to the No-Zeo digesters. Also, the % VS reduction was 49%, 55% and 41%, respectively in the Ex-Zeo, In-Zeo and No-Zeo digesters. The results indicated that treatment with 7% zeolite during anaerobic digestion has the potential to improve biodegradation of swine manure. The addition of zeolite appeared to reduce TAN from the digestate, thereby enhancing the CH4 yield. Zeolite could be used either internally or externally to enhance CH4 production through anaerobic digestion of swine manure.
Collapse
Affiliation(s)
- D Thushari N Wijesinghe
- a Faculty of Veterinary & Agricultural Sciences , University of Melbourne, Melbourne , Victoria , Australia
| | | | - Peter Scales
- b School of Engineering , University of Melbourne , Melbourne , Victoria , Australia
| | - Deli Chen
- a Faculty of Veterinary & Agricultural Sciences , University of Melbourne, Melbourne , Victoria , Australia
| |
Collapse
|
27
|
Wijesinghe DTN, Dassanayake KB, Scales P, Sommer SG, Chen D. Removal of excess nutrients by Australian zeolite during anaerobic digestion of swine manure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:362-372. [PMID: 29194008 DOI: 10.1080/10934529.2017.1401398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
The objective of this study was to investigate the feasibility of using natural and NaCl-treated Australian zeolites to simultaneously remove excess nutrients from anaerobically digested swine manure. Ion adsorption and desorption properties of Australian zeolite during the anaerobic digestion of swine manure were investigated. Two experiments were conducted: the first was an adsorption experiment with multi-component solutions that corresponded with the ionic composition of swine manure digestates. The second experiment determined the effects of zeolite dose rates during anaerobic digestion of swine manure on the removal of N, P and K from solution. Adsorption isotherms confirmed selectivity for K+ over NH4+ by Australian natural and sodium zeolites. Therefore, NH4+ removal was considerably reduced when there was simultaneous K+ uptake. Natural zeolite desorbed more Ca2+ during K+ and NH4+ adsorption than sodium zeolite. The ion exchange reaction was independent of the presence of P. P removal was very dependent on the pH of the medium. Natural Australian zeolite was shown to be a potential sorbent for the removal of NH4+, K+ and P during the anaerobic digestion of swine manure. However, the application of high concentrations of zeolite at higher pH values (> 7.5) might not be appropriate for anaerobic digestion, because zeolite desorbed more Ca2+ ions into the solution at the higher doses of zeolite and then availability of P for microbial growth might be reduced as a result of PO43- precipitation with Ca2+ at the higher pH.
Collapse
Affiliation(s)
- D Thushari N Wijesinghe
- a Faculty of Veterinary & Agricultural Sciences , University of Melbourne , Victoria , Australia
| | | | - Peter Scales
- b School of Engineering , University of Melbourne , Victoria , Australia
| | - Sven G Sommer
- c Faculty of Engineering , University of Southern Denmark , Odense , Denmark
| | - Deli Chen
- a Faculty of Veterinary & Agricultural Sciences , University of Melbourne , Victoria , Australia
| |
Collapse
|
28
|
Lin Q, He G, Rui J, Fang X, Tao Y, Li J, Li X. Microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion. Microb Cell Fact 2016; 15:96. [PMID: 27260194 PMCID: PMC4893225 DOI: 10.1186/s12934-016-0491-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/23/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Temperature is an important factor determining the performance and stability of the anaerobic digestion process. However, the microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion systems remain further elusive. To address this issue, we investigated the changes in composition, diversity and activities of microbial communities under temperature gradient from 25 to 55 °C using 16S rRNA gene amplicon sequencing approach based on genomic DNA (refer to as "16S rDNA") and total RNA (refer to as "16S rRNA"). RESULTS Microbial community structure and activities changed dramatically along the temperature gradient, which corresponded to the variations in digestion performance (e.g., daily CH4 production, total biogas production and volatile fatty acids concentration). The ratios of 16S rRNA to 16S rDNA of microbial taxa, as an indicator of the potentially relative activities in situ, and whole activities of microbial community assessed by the similarity between microbial community based on 16S rDNA and rRNA, varied strongly along the temperature gradient, reflecting different metabolic activities. The daily CH4 production increased with temperature from 25 to 50 °C and declined at 55 °C. Among all the examined microbial properties, the whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities showed highest correlations to the performance. CONCLUSIONS The whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities were sensitive indicators for the performance of anaerobic digestion systems under temperature gradient, while beta-diversity could predict functional differences. Microorganism-regulated mechanisms of temperature effects on anaerobic digestion performance were likely realized through increasing alpha-diversity of both microbial communities and potentially relative activities to supply more functional pathways and activities for metabolic network, and increasing the whole activities of microbial community, especially methanogenesis, to improve the strength and efficiency in anaerobic digestion process.
Collapse
Affiliation(s)
- Qiang Lin
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guihua He
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Junpeng Rui
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaoyu Fang
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yong Tao
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jiabao Li
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
29
|
Lin Q, De Vrieze J, Li J, Li X. Temperature affects microbial abundance, activity and interactions in anaerobic digestion. BIORESOURCE TECHNOLOGY 2016; 209:228-236. [PMID: 26970926 DOI: 10.1016/j.biortech.2016.02.132] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Temperature is a major factor determining the performance of the anaerobic digestion process. The microbial abundance, activity and interactional networks were investigated under a temperature gradient from 25°C to 55°C through amplicon sequencing, using 16S ribosomal RNA and 16S rRNA gene-based approaches. Comparative analysis of past accumulative elements presented by 16S rRNA gene-based analysis, and the in-situ conditions presented by 16S rRNA-based analysis, provided new insights concerning the identification of microbial functional roles and interactions. The daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. Increased methanogenesis and hydrolysis at 50°C were main factors causing higher methane production which was also closely related with more well-defined methanogenic and/or related modules with comprehensive interactions and increased functional orderliness referred to more microorganisms participating in interactions. This research demonstrated the importance of evaluating functional roles and interactions of microbial community.
Collapse
Affiliation(s)
- Qiang Lin
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jo De Vrieze
- Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Jiabao Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
30
|
Weiß S, Somitsch W, Klymiuk I, Trajanoski S, Guebitz GM. Comparison of biogas sludge and raw crop material as source of hydrolytic cultures for anaerobic digestion. BIORESOURCE TECHNOLOGY 2016; 207:244-251. [PMID: 26894564 DOI: 10.1016/j.biortech.2016.01.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 06/05/2023]
Abstract
Mixed fermentative/hydrolytic bacteria were enriched on lignocellulose substrates in minimal medium under semi-anaerobic mesophilic conditions in the presence or absence of natural zeolite as growth supporter to ultimately bioaugment non-adapted sludge and thereby enhance the overall anaerobic digestion (AD) of recalcitrant plant material. Desired enzyme activities, i.e. xylanases and cellulase were monitored during subsequent cultivation cycles. Furthermore, enriched microbial communities were characterized by 16S rRNA-based 454-Pyrosequencing, revealing Firmicutes, Bacteriodetes, Proteobacteria and Spirochaetes to be the predominant bacterial groups in cultures derived from anaerobic sludge and raw crop material, i.e. maple green cut and wheat straw as well. Enriched populations relevant for biopolymer hydrolysis were then compared in biological methane potential tests to demonstrate positive effects on the biogasification of renewable plant substrate material. A significant impact on methane productivity was observed with adapted mixed cultures when used in combination with clinoptilolite to augment and supplement non-adapted bioreactor sludge.
Collapse
Affiliation(s)
- Stefan Weiß
- Austrian Centre of Industrial Biotechnology, Petersgasse 14/5, A-8010 Graz, Austria.
| | - Walter Somitsch
- Engineering Consultant, Wiedner Hauptstrasse 90/2/19, A-1050 Vienna, Austria; IPUS Mineral- und Umwelttechnologie GmbH, Werksgasse 281, A-8786 Rottenmann, Austria
| | - Ingeborg Klymiuk
- Medical University of Graz, Centre for Medical Research, Core Facility Molecular Biology, Stiftingtalstraße 24, A-8010 Graz, Austria
| | - Slave Trajanoski
- Medical University of Graz, Centre for Medical Research, Core Facility Computational Bioanalytics, Bioinformatics, Stiftingtalstraße 24, A-8010 Graz, Austria
| | - Georg M Guebitz
- Austrian Centre of Industrial Biotechnology, Petersgasse 14/5, A-8010 Graz, Austria; University of Natural Resources and Life Sciences, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, A-3430 Tulln, Austria
| |
Collapse
|
31
|
Gonzalez-Martinez A, Garcia-Ruiz MJ, Rodriguez-Sanchez A, Osorio F, Gonzalez-Lopez J. Archaeal and bacterial community dynamics and bioprocess performance of a bench-scale two-stage anaerobic digester. Appl Microbiol Biotechnol 2016; 100:6013-33. [DOI: 10.1007/s00253-016-7393-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 11/30/2022]
|
32
|
Ziganshina EE, Belostotskiy DE, Ilinskaya ON, Boulygina EA, Grigoryeva TV, Ziganshin AM. Effect of the Organic Loading Rate Increase and the Presence of Zeolite on Microbial Community Composition and Process Stability During Anaerobic Digestion of Chicken Wastes. MICROBIAL ECOLOGY 2015; 70:948-60. [PMID: 26045158 DOI: 10.1007/s00248-015-0635-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/22/2015] [Indexed: 05/24/2023]
Abstract
This study investigates the effect of the organic loading rate (OLR) increase from 1.0 to 3.5 g VS L(-1) day(-1) at constant hydraulic retention time (HRT) of 35 days on anaerobic reactors' performance and microbial diversity during mesophilic anaerobic digestion of ammonium-rich chicken wastes in the absence/presence of zeolite. The effects of anaerobic process parameters on microbial community structure and dynamics were evaluated using a 16S ribosomal RNA gene-based pyrosequencing approach. Maximum 12 % of the total ammonia nitrogen (TAN) was efficiently removed by zeolite in the fixed zeolite reactor (day 87). In addition, volatile fatty acids (VFA) in the fixed zeolite reactor accumulated in lower concentrations at high OLR of 3.2-3.5 g VS L(-1) day(-1). Microbial communities in the fixed zeolite reactor and reactor without zeolite were dominated by various members of Bacteroidales and Methanobacterium sp. at moderate TAN and VFA levels. The increase of the OLR accompanied by TAN and VFA accumulation and increase in pH led to the predominance of representatives of the family Erysipelotrichaceae and genera Clostridium and Methanosarcina. Methanosarcina sp. reached relative abundances of 94 and 57 % in the fixed zeolite reactor and reactor without zeolite at the end of the experimental period, respectively. In addition, the diminution of Synergistaceae and Crenarchaeota and increase in the abundance of Acholeplasmataceae in parallel with the increase of TAN, VFA, and pH values were observed.
Collapse
Affiliation(s)
- Elvira E Ziganshina
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan, 420008, The Republic of Tatarstan, Russia
| | - Dmitry E Belostotskiy
- Department of Technologies, A. E. Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, Kazan, 420088, The Republic of Tatarstan, Russia
| | - Olga N Ilinskaya
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan, 420008, The Republic of Tatarstan, Russia
| | - Eugenia A Boulygina
- Laboratory of Omics Technologies, Kazan (Volga Region) Federal University, Kazan, 420008, The Republic of Tatarstan, Russia
| | - Tatiana V Grigoryeva
- Laboratory of Omics Technologies, Kazan (Volga Region) Federal University, Kazan, 420008, The Republic of Tatarstan, Russia
| | - Ayrat M Ziganshin
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan, 420008, The Republic of Tatarstan, Russia.
| |
Collapse
|
33
|
Nelson MC, Bomar L, Maltz M, Graf J. Mucinivorans hirudinis gen. nov., sp. nov., an anaerobic, mucin-degrading bacterium isolated from the digestive tract of the medicinal leech Hirudo verbana. Int J Syst Evol Microbiol 2015; 65:990-995. [PMID: 25563920 DOI: 10.1099/ijs.0.000052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Three anaerobic bacterial strains were isolated from the digestive tract of the medicinal leech Hirudo verbana, using mucin as the primary carbon and energy source. These strains, designated M3(T), M4 and M6, were Gram-stain-negative, non-spore-forming and non-motile. Cells were elongated bacilli approximately 2.4 µm long and 0.6 µm wide. Growth only occurred anaerobically under mesophilic and neutral pH conditions. All three strains could utilize multiple simple and complex sugars as carbon sources, with glucose fermented to acid by-products. The DNA G+C contents of strains M3(T), M4 and M6 were 44.9, 44.8 and 44.8 mol%, respectively. The major cellular fatty acid of strain M3(T) was iso-C15 : 0. Phylogenetic analysis of full-length 16S rRNA gene sequences revealed that the three strains shared >99 % similarity with each other and represent a new lineage within the family Rikenellaceae of the order Bacteroidales, phylum Bacteroidetes. The most closely related bacteria to strain M3(T) based on 16S rRNA gene sequences were Rikenella microfusus DSM 15922(T) (87.3 % similarity) and Alistipes finegoldii AHN 2437(T) (87.4 %). On the basis of phenotypic, genotypic and physiological evidence, strains M3(T), M4 and M6 are proposed as representing a novel species of a new genus within the family Rikenellaceae, for which the name Mucinivorans hirudinis gen. nov., sp. nov. is proposed. The type strain of Mucinivorans hirudinis is M3(T) ( = ATCC BAA-2553(T) = DSM 27344(T)).
Collapse
Affiliation(s)
- Michael C Nelson
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Lindsey Bomar
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Michele Maltz
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
34
|
Lebuhn M, Weiß S, Munk B, Guebitz GM. Microbiology and Molecular Biology Tools for Biogas Process Analysis, Diagnosis and Control. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 151:1-40. [PMID: 26337842 DOI: 10.1007/978-3-319-21993-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many biotechnological processes such as biogas production or defined biotransformations are carried out by microorganisms or tightly cooperating microbial communities. Process breakdown is the maximum credible accident for the operator. Any time savings that can be provided by suitable early-warning systems and allow for specific countermeasures are of great value. Process disturbance, frequently due to nutritional shortcomings, malfunction or operational deficits, is evidenced conventionally by process chemistry parameters. However, knowledge on systems microbiology and its function has essentially increased in the last two decades, and molecular biology tools, most of which are directed against nucleic acids, have been developed to analyze and diagnose the process. Some of these systems have been shown to indicate changes of the process status considerably earlier than the conventionally applied process chemistry parameters. This is reasonable because the triggering catalyst is determined, activity changes of the microbes that perform the reaction. These molecular biology tools have thus the potential to add to and improve the established process diagnosis system. This chapter is dealing with the actual state of the art of biogas process analysis in practice, and introduces molecular biology tools that have been shown to be of particular value in complementing the current systems of process monitoring and diagnosis, with emphasis on nucleic acid targeted molecular biology systems.
Collapse
Affiliation(s)
- Michael Lebuhn
- Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture (LfL), Lange Point 6, 85354, Freising, Germany
| | | | | | | |
Collapse
|
35
|
Weiß S, Lebuhn M, Andrade D, Zankel A, Cardinale M, Birner-Gruenberger R, Somitsch W, Ueberbacher BJ, Guebitz GM. Activated zeolite--suitable carriers for microorganisms in anaerobic digestion processes? Appl Microbiol Biotechnol 2013; 97:3225-38. [PMID: 23435898 DOI: 10.1007/s00253-013-4691-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
Plant cell wall structures represent a barrier in the biodegradation process to produce biogas for combustion and energy production. Consequently, approaches concerning a more efficient de-polymerisation of cellulose and hemicellulose to monomeric sugars are required. Here, we show that natural activated zeolites (i.e. trace metal activated zeolites) represent eminently suitable mineral microhabitats and potential carriers for immobilisation of microorganisms responsible for anaerobic hydrolysis of biopolymers stabilising related bacterial and methanogenic communities. A strategy for comprehensive analysis of immobilised anaerobic populations was developed that includes the visualisation of biofilm formation via scanning electron microscopy and confocal laser scanning microscopy, community and fingerprint analysis as well as enzyme activity and identification analyses. Using SDS polyacrylamide gel electrophoresis, hydrolytical active protein bands were traced by congo red staining. Liquid chromatography/mass spectroscopy revealed cellulolytical endo- and exoglucanase (exocellobiohydrolase) as well as hemicellulolytical xylanase/mannase after proteolytic digestion. Relations to hydrolytic/fermentative zeolite colonisers were obtained by using single-strand conformation polymorphism analysis (SSCP) based on amplification of bacterial and archaeal 16S rRNA fragments. Thereby, dominant colonisers were affiliated to the genera Clostridium, Pseudomonas and Methanoculleus. The specific immobilisation on natural zeolites with functional microbes already colonising naturally during the fermentation offers a strategy to systematically supply the biogas formation process responsive to population dynamics and process requirements.
Collapse
Affiliation(s)
- S Weiß
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Adu-Gyamfi N, Ravella SR, Hobbs PJ. Optimizing anaerobic digestion by selection of the immobilizing surface for enhanced methane production. BIORESOURCE TECHNOLOGY 2012; 120:248-255. [PMID: 22820114 DOI: 10.1016/j.biortech.2012.06.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/12/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
Maximizing methane production while maintaining an appreciable level of process stability is a crucial challenge in the anaerobic digestion industry. In this study, the role of six parameters: the type of immobilizing supports, loading rate, inoculum levels, C:N ratio, trace nutrients concentrations and mixing rate, on methane production were investigated under thermophilic conditions (55 ± 1°C) with synthetic substrate medium. The immobilizing supports were Silica gel, Sand, Molecular Sieve and Dowex Marathon beads. A Taguchi Design of Experiment (DOE) methodology was employed to determine the effects of different parameters using an L(16) orthogonal array. Overall, immobilizing supports influenced methane production substantially (contributing 61.3% of the observed variation in methane yield) followed by loading rate and inoculum which had comparable influence (17.9% and 17.7% respectively). Optimization improved methane production by 153% (from 183 to 463 ml CH(4)l(-1)d(-1)).
Collapse
|
37
|
ALI AAM, ZAINUDIN MHM, IDRIS A, BAHARUDDIN AS, SULAIMAN A, MATSUI T, OSAKA N, OSHIBE H, HASSAN MA, SHIRAI Y. Enhanced Biogas Production from Palm Oil Mill Effluent Supplemented with Untreated Oil Palm Empty Fruit Bunch Biomass with a Change in the Microbial Community. ACTA ACUST UNITED AC 2012. [DOI: 10.11301/jsfe.13.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Azni IDRIS
- Faculty of Engineering, Universiti Putra Malaysia
| | | | - Alawi SULAIMAN
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA
| | - Toru MATSUI
- Fundamental Technology Department, Technical Research Institute, Tokyo Gas Co., Ltd
| | - Noriko OSAKA
- Fundamental Technology Department, Technical Research Institute, Tokyo Gas Co., Ltd
| | - Hiroshi OSHIBE
- Fundamental Technology Department, Technical Research Institute, Tokyo Gas Co., Ltd
| | - Mohd Ali HASSAN
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia
| | - Yoshihito SHIRAI
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology
| |
Collapse
|
38
|
Montalvo S, Gonzalez P, Mena C, Guerrero L, Borja R. Influence of the food to microorganisms (F/M) ratio and temperature on batch anaerobic digestion processes with and without zeolite addition. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:1785-1794. [PMID: 22755525 DOI: 10.1080/10934529.2012.689235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The main objective of this work was to evaluate the influence of the food to microorganisms (F/M) ratio and temperature on batch anaerobic digestion processes carried out with and without zeolite addition as a microbial carrier. Three laboratory-scale experimental runs were conducted using a synthetic substrate with a COD:N:P ratio of 500:5:1. The first run (I) was conducted at a constant temperature of 27°C, increasing the F/M ratio from 0.21 to 0.40 (g COD/g VSS). During the second run (II) the temperature and the F/M ratio increased from 27°C to 37°C and from 0.21 to 0.40, respectively. Finally, in the third experimental run (III) the F/M ratio achieved high values (1.92 and 1.30) either by varying the substrate concentration at a constant biomass concentration or by increasing the biomass concentration at a constant substrate concentration. Higher biomass growth rate, COD removal and methane production were found in the reactors with zeolite, especially at the highest F/M assayed during the first run. The highest ammonium removals were also achieved at the highest F/M ratio (0.40) in the reactors with zeolite. Within the range studied (25°C-37°C) in the reactors with zeolite operating at 37°C, the second run demonstrated the low influence of temperature on substrate consumption and ammonia removal, with 93% and 70% of COD and ammonia removal efficiencies, respectively. The third run corroborated the results previously obtained and fit the experimental results to simple kinetic models, the Monod model being the most adequate for predicting the behavior of the systems studied. The maximum specific microorganism growth rate (μ(max)) values for the reactors with zeolite were almost twice as high as those obtained for the reactors without zeolite for similar F/M ratios.
Collapse
Affiliation(s)
- S Montalvo
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Chile
| | | | | | | | | |
Collapse
|
39
|
Abu-Dahrieh J, Orozco A, Groom E, Rooney D. Batch and continuous biogas production from grass silage liquor. BIORESOURCE TECHNOLOGY 2011; 102:10922-10928. [PMID: 21993325 DOI: 10.1016/j.biortech.2011.09.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 05/31/2023]
Abstract
Herein batch and continuous mesophilic anaerobic digestion of grass silage liquor was studied. The continuous process was carried out in Armfield digesters with an OLR ranging from 0.851 to 1.77 kg COD m(-3) day(-1). The effect of recirculation of effluent from the digester was investigated using different OLRs of grass silage liquor feed. These results showed that as the OLR increased, the methane yield decreased for the reactor with no recycle and increased for the reactor with recycle. However, the COD removal for both digesters was nearly the same at the same OLR. Overall these studies show that grass silage liquor can produce a high quality methane steam between 70% and 80% and achieve methane yields of 0.385 m3 kg(-1) COD.
Collapse
Affiliation(s)
- Jehad Abu-Dahrieh
- CenTACat, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| | | | | | | |
Collapse
|