1
|
Zhang C, Wang G, Ma S, Huang H, Ma Y, Li Z. Enhancing Hydrogen Productivity of Photosynthetic Bacteria from the Formulated Carbon Source by Mixing Xylose with Glucose. Appl Biochem Biotechnol 2021; 193:3996-4017. [PMID: 34661867 DOI: 10.1007/s12010-021-03708-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
To develop an efficient photofermentative process capable of higher rate biohydrogen production using carbon components of lignocellulosic hydrolysate, a desired carbon substrate by mixing xylose with glucose was formulated. Effects of crucial process parameters affecting cellular biochemical reaction of hydrogen by photosynthetic bacteria (PSB), i.e., variation in initial concentration of total carbon, glucose content in initial carbon substrate, and light intensity, were experimentally investigated using response surface methodology (RSM) with a Box-Behnken design (BBD). Hydrogen production rate (HPR) in the maximum value of 30.6 mL h-1 L-1 was attained under conditions of 39 mM initial concentration of total carbon, 59% (mol/mol) glucose content in initial carbon substrate, and 12.6 W m-2 light intensity at light wavelength of 590 nm. Synergic effects of metabolizing such a well-formulated carbon substrate for sustaining the active microbial synthesis to sufficiently accumulate biomass in bioreactor, as well as stimulating enzyme activity of nitrogenase for the higher rate biohydrogen production, were attributed to this carbon substrate that can enable PSB to maintain the relatively consistent microenvironment in suitable culture pH condition during the optimized photofermentative process.
Collapse
Affiliation(s)
- Chuan Zhang
- School of Electric Power, North China University of Water Resource and Electric Power, No. 36 Beihuan Road, Jinshui District, Zhengzhou, 450045, People's Republic of China. .,Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, People's Republic of China.
| | - Guihong Wang
- School of Electric Power, North China University of Water Resource and Electric Power, No. 36 Beihuan Road, Jinshui District, Zhengzhou, 450045, People's Republic of China
| | - Shuaishuai Ma
- School of Electric Power, North China University of Water Resource and Electric Power, No. 36 Beihuan Road, Jinshui District, Zhengzhou, 450045, People's Republic of China
| | - Hao Huang
- School of Electric Power, North China University of Water Resource and Electric Power, No. 36 Beihuan Road, Jinshui District, Zhengzhou, 450045, People's Republic of China
| | - Yixiao Ma
- School of Electric Power, North China University of Water Resource and Electric Power, No. 36 Beihuan Road, Jinshui District, Zhengzhou, 450045, People's Republic of China
| | - Zhaoran Li
- School of Electric Power, North China University of Water Resource and Electric Power, No. 36 Beihuan Road, Jinshui District, Zhengzhou, 450045, People's Republic of China.,Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, People's Republic of China
| |
Collapse
|
2
|
Chen J, Li J, Zhang X, Tyagi RD, Dong W. Ultra-sonication application in biodiesel production from heterotrophic oleaginous microorganisms. Crit Rev Biotechnol 2018; 38:902-917. [DOI: 10.1080/07388551.2017.1418733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jiaxin Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
- Eau, Terre et Environnement, INRS, Québec, Canada
| | - Ji Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| | | | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| |
Collapse
|
3
|
Budiman PM, Wu TY, Ramanan RN, Md Jahim J. Reusing colored industrial wastewaters in a photofermentation for enhancing biohydrogen production by using ultrasound stimulated Rhodobacter sphaeroides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15870-15881. [PMID: 28409433 DOI: 10.1007/s11356-017-8807-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/13/2017] [Indexed: 05/24/2023]
Abstract
One-time ultrasonication pre-treatment of Rhodobacter sphaeroides was evaluated for improving biohydrogen production via photofermentation. Batch experiments were performed by varying ultrasonication amplitude (15, 30, and 45%) and duration (5, 10, and 15 min) using combined effluents from palm oil as well as pulp and paper mill as a single substrate. Experimental data showed that ultrasonication at amplitude 30% for 10 min (256.33 J/mL) achieved the highest biohydrogen yield of 9.982 mL H2/mLmedium with 5.125% of light efficiency. A maximum CODtotal removal of 44.7% was also obtained. However, when higher ultrasonication energy inputs (>256.33 J/mL) were transmitted to the cells, biohydrogen production did not improve further. In fact, 20.6% decrease of biohydrogen yield (as compared to the highest biohydrogen yield) was observed using the most intense ultrasonicated inoculum (472.59 J/mL). Field emission scanning electron microscope images revealed the occurrence of cell damages and biomass losses if ultrasonication at 472.59 J/mL was used. The present results suggested that moderate ultrasonication pre-treatment was an effective technique to improve biohydrogen production performances of R. sphaeroides.
Collapse
Affiliation(s)
- Pretty Mori Budiman
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ta Yeong Wu
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Ramakrishnan Nagasundara Ramanan
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Jamaliah Md Jahim
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
4
|
Enhanced photo-H2 production by unsaturated flow condition in continuous culture. Biotechnol Lett 2014; 37:359-66. [DOI: 10.1007/s10529-014-1677-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
|
5
|
Wang AJ, Cao GL, Liu WZ. Biohydrogen production from anaerobic fermentation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 128:143-63. [PMID: 22089826 DOI: 10.1007/10_2011_123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Significant progress has been achieved in China for biohydrogen production from organic wastes, particularly wastewater and agricultural residues, which are abundantly available in China. This progress is reviewed with a focus on hydrogen-producing bacteria, fermentation processes, and bioreactor configurations. Although dark fermentation is more efficient for hydrogen production, by-products generated during the fermentation not only compromise hydrogen production yield but also inhibit the bacteria. Two strategies, combination of dark fermentation and photofermentation and coupling of dark fermentation with a microbial electrolysis cell, are expected to address this issue and improve hydrogen production as well as substrate utilization, which are also discussed. Finally, challenges and perspectives for biohydrogen production are highlighted.
Collapse
Affiliation(s)
- Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China,
| | | | | |
Collapse
|
6
|
Effect of Heat Pretreated Consortia on Fermentative Biohydrogen Production from Vegetable Waste. NATIONAL ACADEMY SCIENCE LETTERS-INDIA 2013. [DOI: 10.1007/s40009-013-0124-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Zhang K, Ren N, Guo C, Wang A, Cao G. Effects of various pretreatment methods on mixed microflora to enhance biohydrogen production from corn stover hydrolysate. J Environ Sci (China) 2011; 23:1929-1936. [PMID: 22432321 DOI: 10.1016/s1001-0742(10)60679-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Five individual pretreatment methods, including three widely-used protocols (heat, acid and base) and two novel attempts (ultrasonic and ultraviolet), were conducted in batch tests to compare their effects on mixed microflora to enhance hydrogen (H2) production from corn stover hydrolysate. Experimental results indicated that heat and base pretreatments significantly increased H2 yield with the values of 5.03 and 4.45 mmol H2/g sugar utilized, respectively, followed by acid pretreatment of 3.21 mmol H2/g sugar utilized. However, compared with the control (2.70 mmol H2/g sugar utilized), ultrasonic and ultraviolet pretreatments caused indistinctive effects on H2 production with the values of 2.92 and 2.87 mmol H2/g sugar utilized, respectively. The changes of soluble metabolites composition caused by pretreatment were in accordance with H2-producing behavior. Concretely, more acetate accumulation and less ethanol production were found in pretreated processes, meaning that more reduced nicotinamide adenine dinucleotide (NADH) might be saved and flowed into H2-producing pathways. PCR-DGGE analysis indicated that the pretreatment led to the enrichment of some species, which appeared in large amounts and even dominated the microbial community. Most of the dominated species were affiliated to Enterobacter spp. and Escherichia spp. As another efficient H2 producer, Clostridium bifermentan was only found in a large quantity after heat pretreatment. This strain might be mainly responsible for better performance of H2 production in this case.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | | | | | | | | |
Collapse
|