1
|
Zhang J, Wang J, Li G, Jia S, Han H, Wu F, Pei Y. New insights into the improved contaminants removal in SBR by intermittently weak ultrasound. CHEMOSPHERE 2024; 367:143674. [PMID: 39491685 DOI: 10.1016/j.chemosphere.2024.143674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The combination of intermittently weak ultrasound and sequencing batch reactor was thoroughly investigated to elucidate the relationship between enhanced contaminants removal and activated sludge characteristics, microbial composition, and regulation of differentially expressed genes (DEGs). At 12 °C, irradiation with an ultrasound intensity of 9.68 W/L, an irradiation time of 10 min, and an interval time of 24 h led to significant increases in COD, NH4+-N, and TP removals with the rates of 93.10 ± 1.51%, 95.75 ± 0.76%, and 92.52 ± 0.95%, respectively. The intermittently weak ultrasound enhanced contaminants removal was primarily attributed to the stimulated microbial metabolism, in which the mechanical oscillation rather than free radical oxidation facilitated the loosening of activated sludge flocs and promoted microorganism proliferation. Elevating the ultrasound intensity or irradiation time could weaken the effect of enhancing ammonia-oxidizing bacteria activity and suppressing nitrite-oxidizing bacteria activity. The results revealed that intermittently weak ultrasound primarily affected the extracellular polymeric substances (EPS), with protein nitrogen playing a more significant role than polysaccharide within EPS against ultrasound-induced stress. Furthermore, ultrasound irradiation elevated the energy barrier in total-binding EPS interaction energy curves, thereby inhibiting activated sludge aggregation. Over prolonged operation, the relative abundance of the prevalent denitrifying genus Thauera increased by 90.3%, whereas that of the fully aerobic denitrifier and nitrite producer Dokdonella increased by 68.7%. The intermittently weak ultrasound induced enhancement of microbial metabolism-related DEGs pathways, which served as the main contributor to the improved contaminants removal. These findings provide novel insights into the mechanisms by which intermittently weak ultrasound enhances the effectiveness of biological wastewater treatment.
Collapse
Affiliation(s)
- Jingshen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; Huang Huai Laboratory, Henan Academy of Sciences, Zhengzhou, 450046, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jinlin Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Guirong Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Shengyong Jia
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuanhu Pei
- Henan Qingshuiyuan Technology Co., Ltd, Jiyuan, 454650, China
| |
Collapse
|
2
|
Wen H, Cheng D, Chen Y, Yue W, Zhang Z. Review on ultrasonic technology enhanced biological treatment of wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171260. [PMID: 38417513 DOI: 10.1016/j.scitotenv.2024.171260] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
As a clean, sustainable and efficient technology of wastewater treatment, ultrasonic irradiation has gained special attention in wastewater treatment. It has been widely studied for degrading pollutants and enhancing biological treatment processes for wastewater treatment. This review focuses on the mechanism and updated information of ultrasonic technology to enhance biological treatment of wastewater. The mechanism involved in improving biological treatment by ultrasonic includes: 1) degradation of refractory substances and release carbon from sludges, 2) promotion of mass transfer and change of cell permeability, 3) facilitation of enzyme-catalyzed reactions and 4) influence of cell growth. Based on the above discussion, the effects of ultrasound on the enhancement of wastewater biological treatment processes can be categorized into indirect and direct ways. The indirect effect of ultrasonic waves in enhancing biological treatment is mainly achieved through the use of high-intensity ultrasonic waves. These waves can be used as a pretreatment to improve biodegradability of the wastewater. Moreover, the ultrasonic-treated sludge or its supernatant can serve as a carbon source for the treatment system. Low-intensity ultrasound is often employed to directly enhance the biological treatment of wastewater. The propose of this process is to improve activated sludge, domesticate polyphosphate-accumulating organisms, ammonia-oxidizing bacteria, and anammox bacteria, and achieve speedy start-up of partial nitrification and anammox. It has shown remarkable effects on maintaining stable operation, tolerating adverse conditions (i.e., low temperature, low C/N, etc.), resisting shock load (i.e., organic load, toxic load, etc.), and collapse recovery. These results indicate a promising future for biological wastewater treatment. Furthermore, virous ultrasonic reactor designs were presented, and their potential for engineering application was discussed.
Collapse
Affiliation(s)
- Haiting Wen
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, PR China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Yanlin Chen
- Chongqing Three Gorges Eco-Environmental technology innovation center Co., Ltd, Chongqing 401329, PR China
| | - Wenhui Yue
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Zehao Zhang
- National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
3
|
Jian J, Liao X, Mo Z, Li S, Li L, Chen S, Huang Z, Chen J, Dai W, Sun S. Feasibility of low-intensity ultrasound treatment with hydroxylamine to accelerate the initiation of partial nitrification and allow operation under intermittent aeration. J Environ Sci (China) 2024; 139:446-459. [PMID: 38105067 DOI: 10.1016/j.jes.2023.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 12/19/2023]
Abstract
Partial nitrification is a key aspect of efficient nitrogen removal, although practically it suffers from long start-up cycles and unstable long-term operational performance. To address these drawbacks, this study investigated the effect of low intensity ultrasound treatment combined with hydroxylamine (NH2OH) on the performance of partial nitrification. Results show that compared with the control group, low-intensity ultrasound treatment (0.10 W/mL, 15 min) combined with NH2OH (5 mg/L) reduced the time required for partial nitrification initiation by 6 days, increasing the nitrite accumulation rate (NAR) and ammonia nitrogen removal rate (NRR) by 20.4% and 6.7%, respectively, achieving 96.48% NRR. Mechanistic analysis showed that NH2OH enhanced ammonia oxidation, inhibited nitrite-oxidizing bacteria (NOB) activity and shortened the time required for partial nitrification initiation. Furthermore, ultrasonication combined with NH2OH dosing stimulated EPS (extracellular polymeric substances) secretion, increased carbonyl, hydroxyl and amine functional group abundances and enhanced mass transfer. In addition, 16S rRNA gene sequencing results showed that ultrasonication-sensitive Nitrospira disappeared from the ultrasound + NH2OH system, while Nitrosomonas gradually became the dominant group. Collectively, the results of this study provide valuable insight into the enhancement of partial nitrification start-up during the process of wastewater nitrogen removal.
Collapse
Affiliation(s)
- Jianxiong Jian
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihua Mo
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shoupeng Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Lei Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shaojin Chen
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenhua Huang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Junhao Chen
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wencan Dai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Province Solid Waste Recycling and Heavy Metal Pollution Control Engineering Technology Research Center, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China.
| |
Collapse
|
4
|
Zhang W, Zhou X, Cao X, Li S. Accelerating anammox nitrogen removal in low intensity ultrasound-assisted ASBBR: Performance optimization, EPS characterization and microbial community analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152989. [PMID: 35026268 DOI: 10.1016/j.scitotenv.2022.152989] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/19/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Efficient enrichment of slow-growing anammox species is essential for rapid start-up and stable operation of high-rate anammox reactors. Herein, a low intensity ultrasound (LIU) was introduced into anaerobic sequencing batch biofilm reactors (ASBBRs) to enhance anammox nitrogen removal from nitrogen-rich wastewater. Operation results demonstrated that the maximum total nitrogen (TN) removal efficiency of 91.5% were achieved under the optimal ultrasonic parameters (32.7 °C water temperature, 0.18 W/cm2 ultrasonic intensity and 25.7 min ultrasonication time). Moreover, significant increases of extracellular polymeric substances (EPS) components and contents were observed via the ultrasonication stimulation. A close correlation between nitrogen removal and shifts in transformation and intensity of spectrum peaks was also verified by three-dimensional excitation-emission matrix spectroscopy (3D-EEM) analysis. High-throughput sequencing revealed that the relative abundance of Candidatus Kuenenia as the key anammox consortium significantly increased after applying optimal ultrasonication condition. Furthermore, enhancement mechanisms and future prospect of the LIU-assisted anammox process was elucidated and discussed. This research provides a viable and promising acceleration strategy for anammox-based process in practice.
Collapse
Affiliation(s)
- Wei Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China.
| | - Xiwei Cao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China
| | - Shuhan Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China
| |
Collapse
|
5
|
Yuan L, Wang T, Xing F, Wang X, Yun H. Enhancement of Anammox performances in an ABR at normal temperature by the low-intensity ultrasonic irradiation. ULTRASONICS SONOCHEMISTRY 2021; 73:105468. [PMID: 33517095 PMCID: PMC7848630 DOI: 10.1016/j.ultsonch.2021.105468] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
A lab-scale ultrasound enhancing Anammox reactor (ABRU) was established and irradiated once a week by ultrasound with the optimal parameter (frequency of 25.0 kHz, intensity of 1.00 W cm-2 and exposure time of 36.0 s) obtained by response surface methodology (RSM). ABRU and the controlled Anammox reactor (ABRC) without ultrasonic treatment were operated in parallel. The start-up time of Anammox process in ABRU (59 d) was shorter than that in ABRC (69 d). At the end of the nitrogen load-enhancing period, NLR (0.500 kg N m-3 d-1) and NRR (0.430 kg N m-3 d-1) in ABRU were both higher than NLR (0.400 kg N m-3 d-1) and NRR (0.333 kg N m-3 d-1) in ABRC. The results of RTQ-PCR demonstrated that the specific low-intensity ultrasound irradiation improved the enrichment levels of AnAOB in mature sludge. SEM images and the observation of the macroscopic morphology of mature sludge showed that the ultrasound irradiation strengthened the formation of Anammox granular sludge, thereby improved the interception capacity and impact load resistance of the reactor, and enhanced the nitrogen removal performance in ABRU. The ultrasonic enhanced Anammox reactor based on an ABR with the optimal parameters can promote the rapid start-up and efficient and stable operation of the Anammox process at normal temperature (around 25.0 °C).
Collapse
Affiliation(s)
- Luzi Yuan
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Tao Wang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Fanghua Xing
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Xian Wang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Hongying Yun
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| |
Collapse
|
6
|
Tian S, Huang S, Zhu Y, Zhang G, Lian J, Liu Z, Zhang L, Qin X. Effect of low-intensity ultrasound on partial nitrification: Performance, sludge characteristics, and properties of extracellular polymeric substances. ULTRASONICS SONOCHEMISTRY 2021; 73:105527. [PMID: 33770745 PMCID: PMC8010210 DOI: 10.1016/j.ultsonch.2021.105527] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Ultrasound technology, which is environment-friendly and economical, has emerged as a novel strategy that can be used to enhance the partial nitrification process. However, its effect on this process remains unclear. Therefore, in this study, partial nitrification sludge was subjected to low-intensity (0.15 W/mL) ultrasound treatment for 10 min, and the effect of ultrasonic treatment on the partial nitrification process was evaluated based on changes in reactor performance, sludge characteristics, and the properties of extracellular polymeric substances (EPS). The results obtained showed that the ultrasonic treatment enhanced nitrite accumulation performance as well as the activity of ammonia-oxidizing bacteria from 3.3 to 16.6 mg O2/g VSS,⋅while inhibiting the activity of nitrite-oxidizing bacteria. Further analysis showed that owing to the ultrasonic treatment, there was an increase in EPS contents. Particularly, there was a significant increase in loosely bound polysaccharide (PS) contents, indicating the occurrence of intracellular PS anabolics as well as PS secretion. Additionally, ultrasonic treatment induced a significant increase in carbonyl, hydroxyl, and amine functional group contents, and EPS analysis results revealed that it had a positive effect on mass transfer efficiency; thus, it enhanced the partial nitrification process. Overall, this study describes the effect of intermittent low-intensity ultrasound on the partial nitrification process as well as the associated enhancement mechanism.
Collapse
Affiliation(s)
- Shuai Tian
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Shuchang Huang
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yichun Zhu
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Junfeng Lian
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Zuwen Liu
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Linan Zhang
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Xinxin Qin
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
7
|
Jagaba AH, Kutty SRM, Lawal IM, Abubakar S, Hassan I, Zubairu I, Umaru I, Abdurrasheed AS, Adam AA, Ghaleb AAS, Almahbashi NMY, Al-Dhawi BNS, Noor A. Sequencing batch reactor technology for landfill leachate treatment: A state-of-the-art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111946. [PMID: 33486234 DOI: 10.1016/j.jenvman.2021.111946] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/06/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Landfill has become an underlying source of surface and groundwater pollution if not efficiently managed, due to the risk of leachate infiltration into to land and aquifers. The generated leachate is considered a serious environmental threat for the public health, because of the toxic and recalcitrant nature of its constituents. Thus, it must be collected and appropriately treated before being discharged into the environment. At present, there is no single unit process available for proper leachate treatment as conventional wastewater treatment processes cannot achieve a satisfactory level for degrading toxic substances present. Therefore, there is a growing interest in examination of different leachate treatment processes for maximum operational flexibility. Based on leachate characteristics, discharge requirements, technical possibilities, regulatory requirements and financial considerations, several techniques have been applied for its degradation, presenting varying degrees of efficiency. Therefore, this article presents a comprehensive review of existing research articles on the pros and cons of various leachate degradation methods. In line with environmental sustainability, the article stressed on the application and efficiency of sequencing batch reactor (SBR) system treating landfill leachate due to its operational flexibility, resistance to shock loads and high biomass retention. Contributions of integrated leachate treatment technologies with SBR were also discussed. The article further analyzed the effect of different adopted materials, processes, strategies and configurations on leachate treatment. Environmental and operational parameters that affect SBR system were critically discussed. It is believed that information contained in this review will increase readers fundamental knowledge, guide future researchers and be incorporated into future works on experimentally-based SBR studies for leachate treatment.
Collapse
Affiliation(s)
- A H Jagaba
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria.
| | - S R M Kutty
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - I M Lawal
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria; Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
| | - S Abubakar
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - I Hassan
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - I Zubairu
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - I Umaru
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - A S Abdurrasheed
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Civil Engineering, Ahmadu Bello University, Zaria, Nigeria
| | - A A Adam
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - A A S Ghaleb
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - N M Y Almahbashi
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - B N S Al-Dhawi
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - A Noor
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
8
|
Huang S, Zhu Y, Zhang G, Lian J, Liu Z, Zhang L, Tian S. Effects of low-intensity ultrasound on nitrite accumulation and microbial characteristics during partial nitrification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135985. [PMID: 31841915 DOI: 10.1016/j.scitotenv.2019.135985] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/12/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Ultrasound technology has attracted increasing attention in the field of sewage sludge treatment. This study investigated the nitrite accumulation ratio (NAR) and microbial characteristics of the partial nitrification (PN) process in a sequencing batch reactor employing ultrasonic treatment (ultrasound density = 0.25 W/mL, irradiation time = 10 min). PN was achieved over 73 days with a NAR above 85% under ambient temperatures. A low dissolved oxygen (DO) environment was generated in the reactor by enhancing the oxygen utilization rate of ammonia-oxidizing bacteria (AOB). Additionally, the application of long-term ultrasonic treatment led to the enhancement of the dominance of the Nitrosomonas genus of AOB, while populations of the Nitrospira genus of nitrite-oxidizing bacteria (NOB) were eradicated. At the same time, the activities of the aerobic denitrifying bacteria Thauera, Terrimonas, Defluviimonas, and Thermomonas were enhanced and their relative abundance was increased. Overall, the results suggest that ultrasonic treatment can enhance AOB activity and generate a low DO environment that facilitates effective PN.
Collapse
Affiliation(s)
- Shuchang Huang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yichun Zhu
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Junfeng Lian
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zuwen Liu
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Linan Zhang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Shuai Tian
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
9
|
Zheng M, Duan H, Dong Q, Ni BJ, Hu S, Liu Y, Huang X, Yuan Z. Effects of ultrasonic treatment on the ammonia-oxidizing bacterial (AOB) growth kinetics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:629-635. [PMID: 31301503 DOI: 10.1016/j.scitotenv.2019.06.435] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/15/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Ultrasound has in the past few decades found applications in a variety of disciplines including chemistry, medicine, physics, and to a much less extent microbiology. Our previous studies found that ultrasonic treatment increases the activity of ammonia-oxidizing bacteria (AOB) while suppressing nitrite-oxidizing bacteria (NOB), resulting in beneficial effects in wastewater treatment. In this study, the kinetic and microbiological features of nitrifying microorganisms in activated sludge intermittently treated with ultrasound were investigated to gain an improved understanding of the mechanism involved in ultrasound-induced stimulation of AOB kinetics. The nitrifying microorganisms were initially enriched over 100 days in a laboratory sequential batch reactor (SBR). Ultrasonic treatment of the sludge was then applied with the treatment time in each 12 h SBR cycle progressively increased from 4 to 24 min. Application of the treatment for 21 days led to a doubled maximum specific ammonia oxidation rate, and also the enhanced dominance of known AOB Nitrosomonas genus in the biomass. This stimulatory effect is well described by a modified enzyme catalyzed reaction model, showing a good linear relationship between the natural logarithm value of μmax,AOB and the applied ultrasonic energy density. This result suggests that ultrasonic treatment likely reduced the activation energy of key enzymes involved in ammonium oxidation.
Collapse
Affiliation(s)
- Min Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Haoran Duan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Qian Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Bing-Jie Ni
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shihu Hu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhiguo Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
10
|
Zheng M, Wu S, Dong Q, Huang X, Yuan Z, Liu Y. Achieving mainstream nitrogen removal via the nitrite pathway from real municipal wastewater using intermittent ultrasonic treatment. ULTRASONICS SONOCHEMISTRY 2019; 51:406-411. [PMID: 30249372 DOI: 10.1016/j.ultsonch.2018.07.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/10/2018] [Accepted: 07/25/2018] [Indexed: 05/06/2023]
Abstract
Achieving mainstream nitrogen removal via the nitrite pathway (NH4+ → NO2- → N2) is highly beneficial for energy neutral/positive wastewater treatment. Our previous batch assays revealed that ultrasonic treatment can suppress nitrite-oxidizing bacteria (NOB) while enhancing the activity of ammonia-oxidizing bacteria (AOB). Based on this concept, this study investigated the feasibility of applying ultrasonication to achieve the nitrite pathway in mainstream wastewater treatment. Two lab-scale sequencing batch reactors were set-up in parallel and fed with real municipal wastewater. With 100% of the sludge treated every 12 h at a treatment energy input of 0.066 kJ per mg mixed liquor suspended solids, the nitrite pathway was rapidly (within two weeks) established in the experimental reactor with stable effluent nitrite accumulation ratio (NO2-/(NO2- + NO3-)) of above 80% and significantly decreased NOB population. In comparison, the control reactor always possessed the conventional nitrification and denitrification pathway. Economic analysis indicated that energy consumption is too high for practical applications. However, this technology may be used in conjunction with other technologies, whereby this ultrasonic treatment can be used infrequently (e.g. once every few months) when the nitrite pathway becomes unstable.
Collapse
Affiliation(s)
- Min Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shuang Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qian Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhiguo Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Wu S, Zheng M, Dong Q, Liu Y, Wang C. Evaluating the excess sludge reduction in activated sludge system with ultrasonic treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:2341-2347. [PMID: 29757186 DOI: 10.2166/wst.2018.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrasonic treatment for enhancing biological processes has recently attracted considerable attention in wastewater treatment. In this study, we systematically investigated the mixed liquor properties of activated sludge under ultrasonic treatment. The sludge samples were collected from the aerobic tank of a full-scale membrane bioreactor (MBR) treating municipal wastewater, and the volatile suspended solids (VSS) concentration was approximately 6.0 g/L. The results showed that ultrasonic treatment induced floc disintegration, organics release, temperature increase, microbial activity and pH variation. The maximum mg soluble chemical oxygen demand (COD) per mg VSS released was estimated to be 0.147 using the Monod equation. The exponential increase in the concentration of dissolved organic matter is related to the loss of relative heterotrophic bacterial activity. A sonolysis-cryptic growth model was demonstrated to be capable of describing ultrasonic sludge reduction, which would support the further development of ultrasonic treatment technology in activated sludge systems.
Collapse
Affiliation(s)
- Shuang Wu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China E-mail:
| | - Min Zheng
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China E-mail:
| | - Qian Dong
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China E-mail:
| | - Yanchen Liu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China E-mail:
| | - Chengwen Wang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China E-mail:
| |
Collapse
|
12
|
Ma K, Qin Z, Zhao Z, Zhao C, Liang S. Toxicity evaluation of wastewater collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant. CHEMOSPHERE 2016; 158:163-170. [PMID: 27262686 DOI: 10.1016/j.chemosphere.2016.05.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/12/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
The toxicity of water-receiving bodies, the effluent and other treatment stages in wastewater treatment plants has recently been of interest to the public due to the lack of a regulated toxicity-based index for wastewater discharge in China. This study aimed to evaluate the conventional pollution parameters and toxicities of wastewaters collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant through dehydrogenase activity (DHA) and bioluminescent bacteria (Vibrio qinghaiensis) tests. The results of an analysis of conventional parameters indicated that the total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), ammonia nitrogen (NH3N), and total phosphorus (TP) were largely removed after various treatments. However, the TN, NH3N and COD still exceeded the regulated standards. The tested pharmaceutical park effluents were mainly polluted with organic pollutants and nitrogenous. The toxicity test results indicated that the toxicities could be markedly reduced after treatment, with the toxicities of two out of the six effluent samples at different treatment stages being greater than the influent toxicity. Spearman's rank correlation coefficients indicated a significantly positive correlation between the toxicity values obtained using the DHA and Vibrio qinghaiensis tests. Compared with the DHA measurement, the Vibrio qinghaiensis test was faster and more sensitive. Meanwhile, the toxicity indicators were significantly and positively correlated with the TSS, TN, TP and COD concentrations. These results may aid the understanding of the toxicity of pharmaceutical industrial park wastewaters and toxicity removal using the treatment techniques that are currently utilized in China.
Collapse
Affiliation(s)
- Ke Ma
- College of Chemistry and Environmental Science, Hebei University; Key Laboratory of Hebei Provincial Analytical Science and Technology, Baoding 071002, PR China
| | - Zhe Qin
- College of Chemistry and Environmental Science, Hebei University; Key Laboratory of Hebei Provincial Analytical Science and Technology, Baoding 071002, PR China
| | - Zhongqing Zhao
- College of Chemistry and Environmental Science, Hebei University; Key Laboratory of Hebei Provincial Analytical Science and Technology, Baoding 071002, PR China
| | - Chunxia Zhao
- College of Chemistry and Environmental Science, Hebei University; Key Laboratory of Hebei Provincial Analytical Science and Technology, Baoding 071002, PR China
| | - Shuxuan Liang
- College of Chemistry and Environmental Science, Hebei University; Key Laboratory of Hebei Provincial Analytical Science and Technology, Baoding 071002, PR China.
| |
Collapse
|
13
|
Zheng M, Liu YC, Xin J, Zuo H, Wang CW, Wu WM. Ultrasonic Treatment Enhanced Ammonia-Oxidizing Bacterial (AOB) Activity for Nitritation Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:864-71. [PMID: 26678011 DOI: 10.1021/acs.est.5b04178] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Oxidation of ammonia to nitrite rather than nitrate is critical for nitritation process for wastewater treatment. We proposed a promising approach by using controlled ultrasonic treatment to enhance the activity of ammonia-oxidizing bacteria (AOB) and suppress that of nitrite-oxidizing bacteria (NOB). Batch activity assays indicated that when ultrasound was applied, AOB activity reached a peak level and then declined but NOB activity deteriorated continuously as the power intensity of ultrasound increased. Kinetic analysis of relative microbial activity versus ultrasonic energy density was performed to investigate the effect of operational factors (power, sludge concentration, and aeration) on AOB and NOB activities and the test parameters were selected for reactor tests. Laboratory sequential batch reactor (SBR) was further used to test the ultrasonic stimulus with 8 h per day operational cycle and synthetic waste urine as influent. With specific ultrasonic energy density of 0.09 kJ/mg VSS and continuously fed influent containing above 200 mg NH3-N/L, high AOB reproductive activity was achieved and nearly complete conversion of ammonia-N to nitrite was maintained. Microbial structure analysis confirmed that the treatment changed community of AOB, NOB, and heterotrophs. Known AOB Nitrosomonas genus remained at similar level in the biomass while typical NOB Nitrospira genus disappeared in the SBR under ultrasonic treatment and after the treatment was off for 30 days.
Collapse
Affiliation(s)
- Min Zheng
- School of Environment, Tsinghua University , Beijing 100084, China
| | - Yan-Chen Liu
- School of Environment, Tsinghua University , Beijing 100084, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Beijing 100084, China
| | - Jia Xin
- College of Environmental Science and Engineering, Ocean University of China , Qingdao 266100, China
| | - Hao Zuo
- School of Environment, Tsinghua University , Beijing 100084, China
| | - Cheng-Wen Wang
- School of Environment, Tsinghua University , Beijing 100084, China
| | - Wei-Min Wu
- Department of Civil & Environmental Engineering, the William & Cloy Codiga Resource Recovery Research Center, Center for Sustainable Development & Global Competitiveness, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
14
|
Ge S, Wang S, Yang X, Qiu S, Li B, Peng Y. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review. CHEMOSPHERE 2015; 140:85-98. [PMID: 25796420 DOI: 10.1016/j.chemosphere.2015.02.004] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 12/14/2014] [Accepted: 02/01/2015] [Indexed: 06/04/2023]
Abstract
Partial nitrification has gained broad interests in the biological nitrogen removal (BNR) from wastewater, since it alleviates carbon limitation issues and acts as a shortcut nitrogen removal system combined with anaerobic ammonium oxidation (Anammox) process. The occurrence and maintenance of partial nitrification relies on various conditions, which favor ammonium oxidizing bacteria (AOB) but inhibit or limit nitrite oxidizing bacteria (NOB). The studies of the AOB and NOB activities have been conducted by state-of-the-art molecular techniques, such as Polymerase Chain Reaction (PCR), Quantitative PCR, denaturing gradient gel electrophoresis (DGGE), Fluorescence in situ hybridization (FISH) technique, Terminal Restriction Fragment Length Polymorphism (T-RFLP), Live/Dead BacLight, and quinone profile. Furthermore, control strategies for obtaining partial nitrification are mainly focused on the pH, temperature, dissolved oxygen concentration, real-time aeration control, sludge retention time, substrate concentration, alternating anoxic and aerobic operation, inhibitor and ultrasonic treatment. Existing problems and further perspectives for the scale-up of partial nitrification are also proposed and suggested.
Collapse
Affiliation(s)
- Shijian Ge
- Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Shanyun Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiong Yang
- Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuang Qiu
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Yongzhen Peng
- Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
15
|
Pang Y, Zhang Y, Yan X, Ji G. Cold Temperature Effects on Long-Term Nitrogen Transformation Pathway in a Tidal Flow Constructed Wetland. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13550-13557. [PMID: 26460580 DOI: 10.1021/acs.est.5b04002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The present study investigated long-term treatment performance and nitrogen transformation mechanisms in tidal flow constructed wetlands (TFCWs) under 4, 8, and 12 °C temperature regimes. High and stable ammonium (NH4(+)-N) removal efficiency (93-96%) was achieved in our TFCWs, whereas nitrate (NO3(-)-N) was accumulated at different levels under different temperatures. Quantitative response relationships showed anammox/amoA, (narG+napA)/amoA, and (narG+napA)/bacteria were the respective key functional gene groups determining 4, 8, and 12 °C NO3(-)-N reduction. Pathway analysis revealed the contribution of these functional gene groups along a depth gradient. In addition, denitrification process increased, while anammox process decreased consistent with a rise in temperature from 4 to 12 °C. Furthermore, cold temperatures exhibited different effects on anammox and denitrification and their long-term acclimatization capacities changed with temperature.
Collapse
Affiliation(s)
- Yunmeng Pang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University , Beijing 100871, China
| | - Yan Zhang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University , Beijing 100871, China
| | - Xingjun Yan
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University , Beijing 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
16
|
Rezaee S, Zinatizadeh AAL, Asadi A. High rate CNP removal from a milk processing wastewater in a single ultrasound augmented up-flow anaerobic/aerobic/anoxic bioreactor. ULTRASONICS SONOCHEMISTRY 2015; 23:289-301. [PMID: 25457518 DOI: 10.1016/j.ultsonch.2014.10.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/22/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
Simultaneous removal of carbon, nitrogen and phosphorus (CNP) in a single bioreactor is of high significance in terms of reactor volume and energy consumption. Therefore, in this study, an innovative up-flow anaerobic/aerobic/anoxic bioreactor (UAAASB) augmented by ultrasound was developed as a high rate single bioreactor for the simultaneous removal of nutrients from a milk processing wastewater. The ultrasonic irradiation used in this work was in the range of high frequency (1.7 MHz). The central composite design (CCD) and response surface methodology (RSM) were applied to design the experimental conditions, model obtained data, and optimize the process. The effects of three independent variables, i.e. hydraulic retention time (HRT), aeration mode and mixed liquor suspended solid (MLSS) concentration on 10 process responses were investigated. The results prove that the ultrasonic irradiation has a positive effect on the sludge settling velocity and effluent turbidity. The optimum conditions were determined as 12-15 h, 4000-5000 mg/l and 1.5-2 for HRT, MLSS concentration and aeration mode, respectively, based on removal efficiency of sCOD ⩾ 90%, TN and TP ⩾ 50%.
Collapse
Affiliation(s)
- S Rezaee
- Water and Wastewater Research Center (WWRC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - A A L Zinatizadeh
- Water and Wastewater Research Center (WWRC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.
| | - A Asadi
- Water and Wastewater Research Center (WWRC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
17
|
Yu JJ, Chen H, Ji YX, Zhang J, Ma C, Jin RC. Mechanisms of ultrasound irradiation for enhancing the ANAMMOX process. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Jin R, Liu G, Li C, Xu R, Li H, Zhang L, Zhou J. Effects of carbon-nitrogen ratio on nitrogen removal in a sequencing batch reactor enhanced with low-intensity ultrasound. BIORESOURCE TECHNOLOGY 2013; 148:128-134. [PMID: 24047680 DOI: 10.1016/j.biortech.2013.08.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 06/02/2023]
Abstract
A sequencing batch reactor (SBR) enhanced with low-intensity ultrasound was designed to study the removal of nitrogen under different carbon-nitrogen (C/N) ratios. The results showed that the removal efficiencies of CODCr and nitrogen were inversely proportional to C/N ratios. The CODCr of the effluent in the control reactor (CR) and the low-intensity ultrasound-enhanced reactor (UER) were lower than 40 mg L(-1). With a decrease in C/N ratio, the NH4(+)-N removal load of the CR showed little change, while the NH4(+)-N removal load of UER increased from 21.2 to 56.1mg NH4(+)-N/g mixed liquid suspended solids per day. To further understand effects of low-intensity ultrasound, the denaturing gel gradient electrophoresis (DGGE) analysis showed that the similar coefficients of the community structures in the UER and CR were 86%, 52% and 29% when the C/N ratios were 15:1, 10:1, 5:1, respectively.
Collapse
Affiliation(s)
- Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Zheng M, Liu YC, Xu KN, Wang CW, He H, Zhu W, Dong Q. Use of low frequency and density ultrasound to stimulate partial nitrification and simultaneous nitrification and denitrification. BIORESOURCE TECHNOLOGY 2013; 146:537-542. [PMID: 23973972 DOI: 10.1016/j.biortech.2013.07.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/06/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
Low frequency and density ultrasound has attracted considerable attention in enhancing wastewater treatment performance, particularly in the removal of nitrogen. In the present study, two sequencing batch reactors were operated to confirm the effects of ultrasound at the frequency of 40 kHz and density of 0.027 W/mL on partial nitrification and simultaneous nitrification and denitrification (SND). At the optimal irradiation time of 2.0 h, the obtained nitrite accumulation ratio and SND efficiency at full aerobic were 73.9% and 72.8%, respectively. Nitrite accumulation was the result of increased NH4(+)-N removal and improved ammonia oxidizing bacteria (AOB) activity with simultaneous inhibition of nitrite oxidizing bacteria (NOB) activity. Ultrasonic treatment could provide suitable conditions in temperature and pH for AOB growth, and destroy the NOB community structure. Moreover, organic matters were released and offered an additional carbon source for denitrification apart from the negative effects on sludge properties.
Collapse
Affiliation(s)
- Min Zheng
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yan-Chen Liu
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Kang-Ning Xu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Cheng-Wen Wang
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Hui He
- University of Science and Technology Beijing, Beijing 100083, China
| | - Wei Zhu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Qian Dong
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|