1
|
Zhang XJ, Chen KL, Li XY, Yuan QQ, Lin CP, Liu ZQ, Zheng YG. Modification of carbonyl reductase based on substrate pocket loop regions alteration: an application for synthesis of duloxetine chiral intermediate in high efficiency. Bioprocess Biosyst Eng 2025; 48:927-937. [PMID: 40299030 DOI: 10.1007/s00449-025-03152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/12/2025] [Indexed: 04/30/2025]
Abstract
Duloxetine, a prominent 5-hydroxytryptamine norepinephrine reuptake inhibitor, is deployed mainly in the management of adult depression, showcasing minimal side effects, swift therapeutic onset, and a robust safety profile. Ethyl (S)-3-hydroxy-3-(2-thienyl)propionate ((S)-HEES) is the crucial chiral intermediate for duloxetine production. Asymmetric synthesis of (S)-HEES using carbonyl reductase as the biocatalyst has exhibited advantages including mild reaction conditions, high catalytic efficiency and environmental friendliness. In the present study, a loop region alteration strategy was developed to screen for a carbonyl reductase for (S)-HEES synthesis and EaSDR6 from Exiguobacterium sp. s126 was identified with considerable catalytic performance and broad substrate adaptability. Site-directed mutagenesis was subsequently performed, Mut-R142A/N204A was identified with a 3.6-fold enhancement in activity relative to the wild-type EaSDR6. The mutant kcat value was 52.5 s-1, 2.9-fold compared to the wild type, and the total catalytic efficiency (kcat/KM) was 24.9 mM-1 s-1, 1.9-fold higher than the wild type. The n-butyl acetate-aqueous biphasic bioreaction system was established for the asymmetric synthesis of (S)-HEES with the conversion of ethyl 3-oxo-3-(2-thienyl)propionate (KEES) of 90.2%, the product e.e. of > 99% after 8 h reaction at a substrate concentration of 200 g/L. The spatiotemporal yield reached 22.5 g/(L·h), which was higher than the ever reports about (S)-HEES biosynthesis. The present research provides new knowledge and technology for the construction of stereoselective carbonyl reductase and the green biosynthesis of chiral alcohol pharmaceutical intermediates.
Collapse
Affiliation(s)
- Xiao-Jian Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kai-Li Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiang-Yang Li
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qi-Qi Yuan
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chao-Ping Lin
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Upadhyay V, Li H, He J, Ocampo BE, Cook S, Zhao H, Maranas CD. Combining Chemical Catalysis with Enzymatic Steps for the Synthesis of the Artemisinin Precursor Dihydroartemisinic Acid. ACS Synth Biol 2025; 14:1112-1120. [PMID: 40105756 DOI: 10.1021/acssynbio.4c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The supply of artemisinin, the primary antimalarial drug recommended by the World Health Organization (WHO), is limited due to synthesis cost and supply constraints. This study explores novel chemo-enzymatic pathways for the efficient synthesis of dihydroartemisinic acid (DHAA), the penultimate precursor to artemisinin. The key concept here is to leverage the seamless integration of chemical and enzymatic steps for more thoroughly exploring synthesis alternatives. Using novoStoic, a biosynthetic pathway design tool, we identified previously unexplored carbon- and energy-balanced pathways for converting amorpha-4,11-diene (AMPD) to DHAA. For some of the enzymatically catalyzed steps lacking efficient enzymes, chemical catalysis alternatives were proposed and implemented, leading to a hybrid chemo-enzymatic pathway design. The proposed pathway converts AMPD directly to DHAA without going through artemisinic acid (AA), making it a shorter pathway compared with the existing synthesis routes for artemisinin. This effort paves the way for the systematic design of chemo-enzymatic pathways and provides insight into decision strategies between chemical synthesis and enzymatic synthesis steps. It serves as an example of how synthesis pathway design tools can be integrated with human intuition for accelerating retrosynthesis and how AI-based tools can identify and replace human intuitions to automate the decision processes. This can help reduce human-machine interventions and improve the development of future tools for synthesis planning.
Collapse
Affiliation(s)
- Vikas Upadhyay
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hongxiang Li
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Jiachen He
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| | - Blake Edward Ocampo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Silas Cook
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Pan J, Yang N, Lv YL, Zhang ZY, Li CX, Xu JH. Screening of lipase TiL from Tilletia indica for chemo-enzymatic epoxidation of alkenes. Enzyme Microb Technol 2025; 183:110547. [PMID: 39591727 DOI: 10.1016/j.enzmictec.2024.110547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/25/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
Lipase can mediate the chemo-enzymatic epoxidation of alkenes with the presence of free carboxylic acid and hydrogen peroxide. Four novel lipases with the abilities of chemo-enzymatic epoxidation were mined from the gene database. Lipase TiL originated from Tilletia indica was identified with significant activity on formation of methyl epoxystearate from methyl oleate. n-Heptanoic acid was determined as the optimal carboxylic acid substrate of TiL. Methyl oleate and α-pinene were efficiently converted to corresponding epoxy compound in micro-aqueous media and aqueous-organic biphase, respectively. A preparative scale chemo-enzymatic transformation of α-pinene was conduct using the optimized reaction condition, with 30 % yield of α-pinene oxide obtained.
Collapse
Affiliation(s)
- Jiang Pan
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Nan Yang
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yuan-Lin Lv
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zi-Yang Zhang
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Chun-Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| |
Collapse
|
4
|
Wang X, Zhang Y, Qi Z, Xu J, Pei J, Fang X, Zhao L. Dihydro-β-ionone production by a one-pot enzymatic cascade of a short-chain dehydrogenase NaSDR and enoate reductase AaDBR1. Int J Biol Macromol 2024; 277:134538. [PMID: 39111462 DOI: 10.1016/j.ijbiomac.2024.134538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Dihydro-β-ionone, a high-value compound with distinctive fragrance, is widely utilized in the flavor and fragrance industries. However, its low abundance in plant sources poses a significant challenge to its application through traditional extraction methods. Development of an enzyme cascade reaction with artificial design offers a promising alternative. Herein, a short-chain dehydrogenase NaSDR, was identified from Novosphingobium aromaticivorans DSM 12444, which exhibited a high activity in converting β-ionol to β-ionone. A novel biosynthesis route to produce dihydro-β-ionone from β-ionol was developed, by utilizing alcohol dehydrogenase NaSDR and enoate reductase AaDBR1. Under the optimized conditions (0.29 mg/mL NaSDR, 0.39 mg/mL AaDBR1, 1 mM NADP+ and 2.5 mM β-ionol at 40 °C for 2 h), a maximum yield (173.11 mg/L) of dihydro-β-ionone was achieved with a molar conversion rate of 35.6 %, which was 2.7-fold higher than that before optimization. Additionally, this cascade reaction achieved self-sufficient NADPH regeneration through the actions of NaSDR and AaDBR1. This study offered a fresh perspective for achieving a green and sustainable synthesis of dihydro-β-ionone and could inspire on another natural products biosynthesis.
Collapse
Affiliation(s)
- Xinyi Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Yangyang Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Zhipeng Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Jiahui Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Xianying Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China.
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China.
| |
Collapse
|
5
|
Wang YW, Liu HY, Duan ZW, Ning P, Zhang HM, Qian F, Wang P. Carrier-free immobilized enzymatic reactor based on CipA-fused carbonyl reductase for efficient synthesis of chiral alcohol with cofactor self-sufficiency. Int J Biol Macromol 2024; 276:133873. [PMID: 39013505 DOI: 10.1016/j.ijbiomac.2024.133873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
In this study, based on the self-assembly strategy, we fused CipA with carbonyl reductase LXCARS154Y derived from Leifsonia xyli by gene coding, and successfully performed the carrier-free immobilization of LXCARS154Y. The immobilized enzyme was then characterized using scanning electron microscope (SEM), dynamic light scattering (DLS) and fourier transform infrared spectroscopy (FTIR). Compared with the free enzyme, the immobilized LXCARS154Y exhibited a 2.3-fold improvement in the catalytic efficiency kcat/km for the synthesis of a chiral pharmaceutical intermediate (R)-3,5-bis(trifluoromethyl)phenyl ethanol ((R)-BTPE) by reducing 3,5-bis(trifluoromethyl)acetophenone (BTAP). Moreover, the immobilized enzyme showed the enhanced stability while maintaining over 61 % relative activity after 18 cycles of batch reaction. Further, when CipA-fused carbonyl reductase was employed for (R)-BTPE production in a continuous flow reaction, almost complete yield (97.0 %) was achieved within 7 h at 2 M (512.3 g/L) of BTAP concentration, with a space-time yield of 1717.1 g·L-1·d-1. Notably, we observed the retention of cofactor NADH by CipA-based enzyme aggregates, resulting in a higher total turnover number (TTN) of 4815 to facilitate this bioreductive process. This research developed a concise strategy for efficient preparation of chiral intermediate with cofactor self-sufficiency via continuous flow biocatalysis, and the relevant mechanism was also explored.
Collapse
Affiliation(s)
- Yao-Wu Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Han-Yu Liu
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Wen Duan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Pan Ning
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hai-Min Zhang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Feng Qian
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Pu Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
6
|
Salama S, Mostafa HS, Husseiny S, Sebak M. Actinobacteria as Microbial Cell Factories and Biocatalysts in The Synthesis of Chiral Intermediates and Bioactive Molecules; Insights and Applications. Chem Biodivers 2024; 21:e202301205. [PMID: 38155095 DOI: 10.1002/cbdv.202301205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Actinobacteria are one of the most intriguing bacterial phyla in terms of chemical diversity and bioactivities of their reported biomolecules and natural products, including various types of chiral molecules. Actinobacterial genera such as Detzia, Mycobacterium, and Streptomyces are among the microbial sources targeted for selective reactions such as asymmetric biocatalysis catalyzed by whole cells or enzymes induced in their cell niche. Remarkably, stereoselective reactions catalyzed by actinobacterial whole cells or their enzymes include stereoselective oxidation, stereoselective reduction, kinetic resolution, asymmetric hydrolysis, and selective transamination, among others. Species of actinobacteria function with high chemo-, regio-, and enantio-selectivity under benign conditions, which could help current industrial processing. Numerous selective enzymes were either isolated from actinobacteria or expressed from actinobacteria in other microbes and hence exploited in the production of pure organic compounds difficult to obtain chemically. In addition, different species of actinobacteria, especially Streptomyces species, function as natural producers of chiral molecules of therapeutic importance. Herein, we discuss some of the most outstanding contributions of actinobacteria to asymmetric biocatalysis, which are important in the organic and/or pharmaceutical industries. In addition, we highlight the role of actinobacteria as microbial cell factories for chiral natural products with insights into their various biological potentialities.
Collapse
Affiliation(s)
- Sara Salama
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt
| | - Heba Sayed Mostafa
- Food Science Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Samah Husseiny
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, 62517, Beni-Suef, Egypt
| | - Mohamed Sebak
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt
| |
Collapse
|
7
|
Ghatak A, Shanbhag AP, Datta S. Reducing the vicissitudes of heterologous prochiral substrate catalysis by alcohol dehydrogenases through machine learning algorithms. Biochem Biophys Res Commun 2024; 691:149298. [PMID: 38011820 DOI: 10.1016/j.bbrc.2023.149298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Alcohol dehydrogenases (ADHs) are popular catalysts for synthesizing chiral synthons a vital step for active pharmaceutical intermediate (API) production. They are grouped into three superfamilies namely, medium-chain (MDRs), short-chain dehydrogenase/reductases (SDRs), and iron-containing alcohol dehydrogenases. The former two are used extensively for producing various chiral synthons. Many studies screen multiple enzymes or engineer a specific enzyme for catalyzing a substrate of interest. These processes are resource-intensive and intricate. The current study attempts to decipher the ability to match different ADHs with their ideal substrates using machine learning algorithms. We explore the catalysis of 284 antibacterial ketone intermediates, against MDRs and SDRs to demonstrate a unique pattern of activity. To facilitate machine learning we curated a dataset comprising 33 features, encompassing 4 descriptors for each compound. Subsequently, an ensemble of machine learning techniques viz. Partial Least Squares (PLS) regression, k-Nearest Neighbors (kNN) regression, and Support Vector Machine (SVM) regression, was harnessed. Moreover, the assimilation of Principal Component Analysis (PCA) augmented precision and accuracy, thereby refining and demarcating diverse compound classes. As such, this classification is useful for discerning substrates amenable to diverse alcohol dehydrogenases, thereby mitigating the reliance on high-throughput screening or engineering in identifying the optimal enzyme for specific substrate.
Collapse
Affiliation(s)
- Arindam Ghatak
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India; Biomoneta Research Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS), UAS GKVK, Bangalore, 560065, India
| | - Anirudh P Shanbhag
- Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS), UAS GKVK, Bangalore, 560065, India.
| | - Santanu Datta
- Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS), UAS GKVK, Bangalore, 560065, India
| |
Collapse
|
8
|
Bachosz K, Zdarta J, Bilal M, Meyer AS, Jesionowski T. Enzymatic cofactor regeneration systems: A new perspective on efficiency assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161630. [PMID: 36657682 DOI: 10.1016/j.scitotenv.2023.161630] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Nowadays, the specificity of enzymatic processes makes them more and more important every year, and their usage on an industrial scale seems to be necessary. Enzymatic cofactors, however, play a crucial part in the prospective applications of enzymes, because they are indispensable for conducting highly effective biocatalytic activities. Due to the relatively high cost of these compounds and their consumption during the processes carried out, it has become crucial to develop systems for cofactor regeneration. Therefore, in this review, an attempt was made to summarize current knowledge on enzymatic regeneration methods, which are characterized by high specificity, non-toxicity and reported to be highly efficient. The regeneration of cofactors, such as nicotinamide dinucleotides, coenzyme A, adenosine 5'-triphosphate and flavin nucleotides, which are necessary for the proper functioning of a large number of enzymes, is discussed, as well as potential directions for further development of these systems are highlighted. This review discusses a range of highly effective cofactor regeneration systems along with the productive synthesis of many useful chemicals, including the simultaneous renewal of several cofactors at the same time. Additionally, the impact of the enzyme immobilization process on improving the stability and the potential for multiple uses of the developed cofactor regeneration systems was also presented. Moreover, an attempt was made to emphasize the importance of the presented research, as well as the identification of research gaps, which mainly result from the lack of available literature on this topic.
Collapse
Affiliation(s)
- Karolina Bachosz
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Soltofts Plads 227, DK-2800 Kgs. Lyngby, Denmark.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Soltofts Plads 227, DK-2800 Kgs. Lyngby, Denmark.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
9
|
Shanbhag AP. Stairway to Stereoisomers: Engineering Short- and Medium-Chain Ketoreductases To Produce Chiral Alcohols. Chembiochem 2023; 24:e202200687. [PMID: 36640298 DOI: 10.1002/cbic.202200687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/15/2023]
Abstract
The short- and medium-chain dehydrogenase/reductase superfamilies are responsible for most chiral alcohol production in laboratories and industries. In nature, they participate in diverse roles such as detoxification, housekeeping, secondary metabolite production, and catalysis of several chemicals with commercial and environmental significance. As a result, they are used in industries to create biopolymers, active pharmaceutical intermediates (APIs), and are also used as components of modular enzymes like polyketide synthases for fabricating bioactive molecules. Consequently, random, semi-rational and rational engineering have helped transform these enzymes into product-oriented efficient catalysts. The rise of newer synthetic chemicals and their enantiopure counterparts has proved challenging, and engineering them has been the subject of numerous studies. However, they are frequently limited to the synthesis of a single chiral alcohol. The study attempts to defragment and describe hotspots of engineering short- and medium-chain dehydrogenases/reductases for the production of chiral synthons.
Collapse
Affiliation(s)
- Anirudh P Shanbhag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India.,Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS-TIFR), Bellary Road, Bangalore, 560003, India
| |
Collapse
|
10
|
Cui Y, Ji Y, Chen X, Li J, Feng J, Zhao Q, Yao P, Wu Q, Zhu D. Efficient enzymatic synthesis of (S)-1-(3′-bromo-2′-methoxyphenyl)ethanol, the key building block of lusutrombopag. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
11
|
Jia Q, Zheng YC, Li HP, Qian XL, Zhang ZJ, Xu JH. Engineering Isopropanol Dehydrogenase for Efficient Regeneration of Nicotinamide Cofactors. Appl Environ Microbiol 2022; 88:e0034122. [PMID: 35442081 PMCID: PMC9088361 DOI: 10.1128/aem.00341-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/03/2022] [Indexed: 12/18/2022] Open
Abstract
Isopropanol dehydrogenase (IPADH) is one of the most attractive options for nicotinamide cofactor regeneration due to its low cost and simple downstream processing. However, poor thermostability and strict cofactor dependency hinder its practical application for bioconversions. In this study, we simultaneously improved the thermostability (433-fold) and catalytic activity (3.3-fold) of IPADH from Brucella suis via a flexible segment engineering strategy. Meanwhile, the cofactor preference of IPADH was successfully switched from NAD(H) to NADP(H) by 1.23 × 106-fold. When these variants were employed in three typical bioredox reactions to drive the synthesis of important chiral pharmaceutical building blocks, they outperformed the commonly used cofactor regeneration systems (glucose dehydrogenase [GDH], formate dehydrogenase [FDH], and lactate dehydrogenase [LDH]) with respect to efficiency of cofactor regeneration. Overall, our study provides two promising IPADH variants with complementary cofactor specificities that have great potential for wide applications. IMPORTANCE Oxidoreductases represent one group of the most important biocatalysts for synthesis of various chiral synthons. However, their practical application was hindered by the expensive nicotinamide cofactors used. Isopropanol dehydrogenase (IPADH) is one of the most attractive biocatalysts for nicotinamide cofactor regeneration. However, poor thermostability and strict cofactor dependency hinder its practical application. In this work, the thermostability and catalytic activity of an IPADH were simultaneously improved via a flexible segment engineering strategy. Meanwhile, the cofactor preference of IPADH was successfully switched from NAD(H) to NADP(H). The resultant variants show great potential for regeneration of nicotinamide cofactors, and the engineering strategy might serve as a useful approach for future engineering of other oxidoreductases.
Collapse
Affiliation(s)
- Qiao Jia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hai-Peng Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiao-Long Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Suzhou Bioforany EnzyTech Co., Ltd., Changshu, Jiangsu, China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
12
|
Musa MM. Alcohol Dehydrogenases with anti-Prelog Stereopreference in Synthesis of Enantiopure Alcohols. ChemistryOpen 2022; 11:e202100251. [PMID: 35191611 PMCID: PMC8973272 DOI: 10.1002/open.202100251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Indexed: 01/03/2023] Open
Abstract
Biocatalytic production of both enantiomers of optically active alcohols with high enantiopurities is of great interest in industry. Alcohol dehydrogenases (ADHs) represent an important class of enzymes that could be used as catalysts to produce optically active alcohols from their corresponding prochiral ketones. This review covers examples of the synthesis of optically active alcohols using ADHs that exhibit anti-Prelog stereopreference. Both wild-type and engineered ADHs that exhibit anti-Prelog stereopreference are highlighted.
Collapse
Affiliation(s)
- Musa M. Musa
- Department of Chemistry Interdisciplinary Research Center for Refining and Advanced ChemicalsKing Fahd University of Petroleum and MineralsDhahran31261Saudi Arabia
| |
Collapse
|
13
|
Li Q, Ma C, Di J, Ni J, He YC. Catalytic valorization of biomass for furfuryl alcohol by novel deep eutectic solvent-silica chemocatalyst and newly constructed reductase biocatalyst. BIORESOURCE TECHNOLOGY 2022; 347:126376. [PMID: 34801722 DOI: 10.1016/j.biortech.2021.126376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Chemoenzymatic cascade catalysis using deep eutectic solvent-silica heterogeneous catalyst and reductase biocatalyst was constructed for synthesizing furfuryl alcohol from biomass in one-pot manner. A novel heterogeneous catalyst B:LA-SG(SiO2) was firstly prepared by immobilizing deep eutectic solvent Betaine:Lactic acid on silica with sol-gel method using tetraethyl orthosilicate as silicon source. High furfural yield (45.3%) was achieved from corncob with B:LA-SG(SiO2) catalyst (2.5 wt%) in water at 170 ˚C for 0.5 h. Possible catalytic mechanism for converting biomass into furfural was proposed. Moreover, one newly constructed recombinant E. coli KF2021 cells containing formate dehydrogenase and reductase was utilized to transform corncob-valorized furfural into furfuralcohol at 97.7% yield at pH 7.5 and 40 ˚C via HCOONa-driven coenzyme regeneration. Such a hybrid process was constructed for tandem chemocatalysis and biocatalysis in a same reactor, potentially reducing the operation cost, which had potential application for valorization of biomass to value-added furans.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, China
| | - Junhua Di
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, China
| | - Jiacheng Ni
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, China
| | - Yu-Cai He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, China; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
14
|
Cheng F, Wu DY, Liang XH, Wang CJ, Weng JQ, Zou SP, Xu JM, Xue YP, Zheng YG. A light-controlled biocatalytic system for precise regulation of enzymatic decarboxylation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00480a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A light-controlled biocatalytic one-pot system is developed, which enables precise regulation of gene expression and photocatalysis by illumination and yields high conversion and stereoselectivity.
Collapse
Affiliation(s)
- Feng Cheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Dong-Yang Wu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xi-Hang Liang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Cheng-Jiao Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jia-Qi Weng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Shu-Ping Zou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jian-Miao Xu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ya-Ping Xue
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
15
|
Zhang S, Ma C, Li Q, Li Q, He YC. Efficient chemoenzymatic valorization of biobased D-fructose into 2,5-bis(hydroxymethyl)furan with deep eutectic solvent Lactic acid:Betaine and Pseudomonas putida S12 whole cells. BIORESOURCE TECHNOLOGY 2022; 344:126299. [PMID: 34748976 DOI: 10.1016/j.biortech.2021.126299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
2,5-Bis(hydroxymethyl)furan (BHMF) is one kind of important upgraded derivatives of biobased 5-hydroxymethylfuran (5-HMF). This study verified the feasibility of one-pot chemoenzymatic conversion of biobased D-fructose to BHMF by cascade catalysis with deep eutectic solvent Lactic acid:Betaine (LA:B) and reductase biocatalyst in LA:B - H2O. Using D-fructose (36.0 g/L) as feedstock, the yield of 5-HMF reached 91.6% in DES LA:B - H2O (15:85, v:v) at 150 °C for 1.5 h. Using D-fructose (2 mol D-fructose/mol 5-HMF) as cosubstrate, commercial 5-HMF (125 mM) was converted into BHMF at 90.7% yield by whole-cells of Pseudomonas putida S12 within 24 h at 30 °C and pH 8.0. In addition, Pseudomonas Putida S12 could efficiently transform D-fructose-valorized 5-HMF into BHMF [98.4% yield, based on 5-HMF; 90.1% yield, based on substrate D-fructose] in DES LA:B - H2O. An efficient chemoenzymatic valorization of D-fructose to BHMF was developed in a benign reaction system.
Collapse
Affiliation(s)
- Shunli Zhang
- Laboratory of Biomass & Bioenergy, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan, Hubei Province, China
| | - Cuiluan Ma
- Laboratory of Biomass & Bioenergy, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan, Hubei Province, China
| | - Qi Li
- Laboratory of Biomass & Bioenergy, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan, Hubei Province, China
| | - Qing Li
- Laboratory of Biomass & Bioenergy, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan, Hubei Province, China
| | - Yu-Cai He
- Laboratory of Biomass & Bioenergy, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan, Hubei Province, China; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
16
|
Simić S, Zukić E, Schmermund L, Faber K, Winkler CK, Kroutil W. Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chem Rev 2021; 122:1052-1126. [PMID: 34846124 DOI: 10.1021/acs.chemrev.1c00574] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biocatalysis, using enzymes for organic synthesis, has emerged as powerful tool for the synthesis of active pharmaceutical ingredients (APIs). The first industrial biocatalytic processes launched in the first half of the last century exploited whole-cell microorganisms where the specific enzyme at work was not known. In the meantime, novel molecular biology methods, such as efficient gene sequencing and synthesis, triggered breakthroughs in directed evolution for the rapid development of process-stable enzymes with broad substrate scope and good selectivities tailored for specific substrates. To date, enzymes are employed to enable shorter, more efficient, and more sustainable alternative routes toward (established) small molecule APIs, and are additionally used to perform standard reactions in API synthesis more efficiently. Herein, large-scale synthetic routes containing biocatalytic key steps toward >130 APIs of approved drugs and drug candidates are compared with the corresponding chemical protocols (if available) regarding the steps, reaction conditions, and scale. The review is structured according to the functional group formed in the reaction.
Collapse
Affiliation(s)
- Stefan Simić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Erna Zukić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Kurt Faber
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Christoph K Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria.,Field of Excellence BioHealth─University of Graz, 8010 Graz, Austria.,BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
17
|
Zhu L, Song Y, Chang C, Ma H, Yang L, Deng Z, Deng W, Qu X. Engineering Leifsonia Alcohol Dehydrogenase for Thermostability and Catalytic Efficiency by Enhancing Subunit Interactions. Chembiochem 2021; 22:3178-3183. [PMID: 34549865 DOI: 10.1002/cbic.202100431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/21/2021] [Indexed: 12/31/2022]
Abstract
Leifsonia alcohol dehydrogenase (LnADH) is a promising biocatalyst for the synthesis of chiral alcohols. However, limitations of wild-type LnADH observed for practical application include low activity and poor stability. In this work, protein engineering was employed to improve its thermostability and catalytic efficiency by altering the subunit interfaces. Residues T100 and S148 were identified to be significant for thermostability and activity, and the melting temperature (ΔTm ) and catalytic efficiency of the mutant T100R/S148I toward ketone substrates was improved by 18.7 °C and 1.8-5.5-fold. Solving the crystal structures of the wild-type enzyme and T100R/S148L revealed beneficial effects of mutations on stability and catalytic activity. The most robust mutant T100R/S148I is promising for industrial applications and can produce 200 g liter-1 day-1 chiral alcohols at 50 °C by only a 1 : 500 ratio of enzyme to substrate.
Collapse
Affiliation(s)
- Lu Zhu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Rd., Wuhan, 430071, China
| | - Yang Song
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.,Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Chenchen Chang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.,Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Hongmin Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Rd., Wuhan, 430071, China
| | - Lu Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Wei Deng
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.,Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Rd., Wuhan, 430071, China
| |
Collapse
|
18
|
Hao YC, Zong MH, Wang ZL, Li N. Chemoenzymatic access to enantiopure N-containing furfuryl alcohol from chitin-derived N-acetyl-D-glucosamine. BIORESOUR BIOPROCESS 2021; 8:80. [PMID: 38650256 PMCID: PMC10992857 DOI: 10.1186/s40643-021-00435-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chiral furfuryl alcohols are important precursors for the synthesis of valuable functionalized pyranones such as the rare sugar L-rednose. However, the synthesis of enantiopure chiral biobased furfuryl alcohols remains scarce. In this work, we present a chemoenzymatic route toward enantiopure nitrogen-containing (R)- and (S)-3-acetamido-5-(1-hydroxylethyl)furan (3A5HEF) from chitin-derived N-acetyl-D-glucosamine (NAG). FINDINGS 3-Acetamido-5-acetylfuran (3A5AF) was obtained from NAG via ionic liquid/boric acid-catalyzed dehydration, in an isolated yield of approximately 31%. Carbonyl reductases from Streptomyces coelicolor (ScCR) and Bacillus sp. ECU0013 (YueD) were found to be good catalysts for asymmetric reduction of 3A5AF. Enantiocomplementary synthesis of (R)- and (S)-3A5HEF was implemented with the yields of up to > 99% and the enantiomeric excess (ee) values of > 99%. Besides, biocatalytic synthesis of (R)-3A5HEF was demonstrated on a preparative scale, with an isolated yield of 65%. CONCLUSIONS A two-step process toward the chiral furfuryl alcohol was successfully developed by integrating chemical catalysis with enzyme catalysis, with excellent enantioselectivities. This work demonstrates the power of the combination of chemo- and biocatalysis for selective valorization of biobased furans.
Collapse
Affiliation(s)
- Ya-Cheng Hao
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Zhi-Lin Wang
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, 20 Jinying Road, Guangzhou, 510640, China.
| | - Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China.
| |
Collapse
|
19
|
Chang S, He X, Li B, Pan X. Improved Bio-Synthesis of 2,5-bis(hydroxymethyl)furan by Burkholderia contaminans NJPI-15 With Co-substrate. Front Chem 2021; 9:635191. [PMID: 33634077 PMCID: PMC7901908 DOI: 10.3389/fchem.2021.635191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/07/2021] [Indexed: 11/25/2022] Open
Abstract
Upgrading of biomass derived 5-hydroxymethylfurfural (HMF) has attracted considerable interest recently. A new highly HMF-tolerant strain of Burkholderia contaminans NJPI-15 was isolated in this study, and the biocatalytic reduction of HMF into 2,5-bis(hydroxymethyl)furan (BHMF) using whole cells was reported. Co-substrate was applied to improve the BHMF yield and selectivity of this strain as well as HMF-tolerant level. The catalytic capacity of the cells can be substantially improved by Mn2+ ion. The strain exhibited good catalytic performance at a pH range of 6.0–9.0 and a temperature range of 25°C–35°C. In addition, 100 mM HMF could be reduced to BHMF by the B. contaminans NJPI-15 resting cells in presence of 70 mM glutamine and 30 mM sucrose, with a yield of 95%. In the fed-batch strategy, 656 mM BHMF was obtained within 48 h, giving a yield of 93.7%. The reported utilization of HMF to produce BHMF is a promising industrially sound biocatalytic process.
Collapse
Affiliation(s)
- Siyuan Chang
- School of Biology and Environment, Nanjing Polytechnic Institute, Nanjing, China
| | - Xuejun He
- School of Biology and Environment, Nanjing Polytechnic Institute, Nanjing, China
| | - Bingfeng Li
- School of Biology and Environment, Nanjing Polytechnic Institute, Nanjing, China
| | - Xin Pan
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
20
|
Expanding the Application Range of Microbial Oxidoreductases by an Alcohol Dehydrogenase from Comamonas testosteroni with a Broad Substrate Spectrum and pH Profile. Catalysts 2020. [DOI: 10.3390/catal10111281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alcohol dehydrogenases catalyse the conversion of a large variety of ketone substrates to the corresponding chiral products. Due to their high regio- and stereospecificity, they are key components in a wide range of industrial applications. A novel alcohol dehydrogenase from Comamonas testosteroni (CtADH) was identified in silico, recombinantly expressed and purified, enzymatically and biochemically investigated as well as structurally characterized. These studies revealed a broad pH profile and an extended substrate spectrum with the highest activity for compounds containing halogens as substituents and a moderate activity for bulky–bulky ketones. Biotransformations with selected ketones—performed with a coupled regeneration system for the co-substrate NADPH—resulted in conversions of more than 99% with all tested substrates and with excellent enantioselectivity for the corresponding S-alcohol products. CtADH/NADPH/substrate complexes modelled on the basis of crystal structures of CtADH and its closest homologue suggested preliminary hints to rationalize the enzyme’s substrate preferences
Collapse
|
21
|
Qian WZ, Ou L, Li CX, Pan J, Xu JH, Chen Q, Zheng GW. Evolution of Glucose Dehydrogenase for Cofactor Regeneration in Bioredox Processes with Denaturing Agents. Chembiochem 2020; 21:2680-2688. [PMID: 32324965 DOI: 10.1002/cbic.202000196] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Indexed: 02/04/2023]
Abstract
Glucose dehydrogenase (GDH) is a general tool for driving nicotinamide (NAD(P)H) regeneration in synthetic biochemistry. An increasing number of synthetic bioreactions are carried out in media containing high amounts of organic cosolvents or hydrophobic substrates/products, which often denature native enzymes, including those for cofactor regeneration. In this work, we attempted to improve the chemical stability of Bacillus megaterium GDH (BmGDHM0 ) in the presence of large amounts of 1-phenylethanol by directed evolution. Among the resulting mutants, BmGDHM6 (Q252L/E170K/S100P/K166R/V72I/K137R) exhibited a 9.2-fold increase in tolerance against 10 % (v/v) 1-phenylethanol. Moreover, BmGDHM6 was also more stable than BmGDHM0 when exposed to hydrophobic and enzyme-inactivating compounds such as acetophenone, ethyl 2-oxo-4-phenylbutyrate, and ethyl (R)-2-hydroxy-4-phenylbutyrate. Coupled with a Candida glabrata carbonyl reductase, BmGDHM6 was successfully used for the asymmetric reduction of deactivating ethyl 2-oxo-4-phenylbutyrate with total turnover number of 1800 for the nicotinamide cofactor, thus making it attractive for commercial application. Overall, the evolution of chemically robust GDH facilitates its wider use as a general tool for NAD(P)H regeneration in biocatalysis.
Collapse
Affiliation(s)
- Wen-Zhuo Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Ling Ou
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
22
|
Çakar MM, Ruupunen J, Mangas-Sanchez J, Birmingham WR, Yildirim D, Turunen O, Turner NJ, Valjakka J, Binay B. Engineered formate dehydrogenase from Chaetomium thermophilum, a promising enzymatic solution for biotechnical CO2 fixation. Biotechnol Lett 2020; 42:2251-2262. [DOI: 10.1007/s10529-020-02937-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/05/2020] [Indexed: 11/28/2022]
|
23
|
Wang H, Zheng Y, Chen F, Xu J, Yu H. Enantioselective Bioamination of Aromatic Alkanes Using Ammonia: A Multienzymatic Cascade Approach. ChemCatChem 2020. [DOI: 10.1002/cctc.201902253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hui Wang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Yu‐Cong Zheng
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Fei‐Fei Chen
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Jian‐He Xu
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Hui‐Lei Yu
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| |
Collapse
|
24
|
Jia HY, Zong MH, Zheng GW, Li N. One-Pot Enzyme Cascade for Controlled Synthesis of Furancarboxylic Acids from 5-Hydroxymethylfurfural by H 2 O 2 Internal Recycling. CHEMSUSCHEM 2019; 12:4764-4768. [PMID: 31490638 DOI: 10.1002/cssc.201902199] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Furancarboxylic acids are promising biobased building blocks in pharmaceutical and polymer industries. In this work, dual-enzyme cascade systems composed of galactose oxidase (GOase) and alcohol dehydrogenases (ADHs) are constructed for controlled synthesis of 5-formyl-2-furancarboxylic acid (FFCA) and 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF), based on the catalytic promiscuity of ADHs. The byproduct H2 O2 , which is produced in GOase-catalyzed oxidation of HMF to 2,5-diformylfuran (DFF), is used for horseradish peroxidase (HRP)-mediated regeneration of the oxidized nicotinamide cofactors for subsequent oxidation of DFF promoted by an ADH, thus implementing H2 O2 internal recycling. The desired products FFCA and FDCA are obtained with yields of more than 95 %.
Collapse
Affiliation(s)
- Hao-Yu Jia
- State Key Laboratory of Pulp and Paper Engineering, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Min-Hua Zong
- State Key Laboratory of Pulp and Paper Engineering, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ning Li
- State Key Laboratory of Pulp and Paper Engineering, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| |
Collapse
|
25
|
Luo W, Du HJ, Bonku EM, Hou YL, Li LL, Wang XQ, Yang ZH. An Alkali-tolerant Carbonyl Reductase from Bacillus subtilis by Gene Mining: Identification and Application. Catal Letters 2019. [DOI: 10.1007/s10562-019-02873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Brüning F, Nagae H, Käch D, Mashima K, Togni A. Asymmetric Hydrogenation of Aryl Perfluoroalkyl Ketones Catalyzed by Rhodium(III) Monohydride Complexes Bearing Josiphos Ligands. Chemistry 2019; 25:10818-10822. [PMID: 31233638 DOI: 10.1002/chem.201902585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 12/17/2022]
Abstract
The asymmetric hydrogenation of 2,2,2-trifluoroacetophenones and aryl perfluoroalkyl ketones was developed using a unique, well-defined chloride-bridged dinuclear rhodium(III) complex bearing Josiphos-type diphosphine ligands. These complexes were prepared from [RhCl(cod)]2 , Josiphos ligands, and hydrochloric acid. As catalyst precursors, they allow for the efficient and enantioselective synthesis (up to 99 % ee) of chiral secondary alcohols with perfluoroalkyl groups. This system does not require an activating base for the hydrogenation of 2,2,2-trifluoroacetophenones. Additionally, the enantioselective C=O hydrogenations of 2-phenyl-3-(haloacetyl)-indoles, a class of privileged structures in medicinal chemistry, is reported for the first time.
Collapse
Affiliation(s)
- Fabian Brüning
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Haruki Nagae
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 5608531, Japan
| | - Daniel Käch
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 5608531, Japan
| | - Antonio Togni
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| |
Collapse
|
27
|
Xu J, Hu Y, Fan J, Arkin M, Li D, Peng Y, Xu W, Lin X, Wu Q. Light‐Driven Kinetic Resolution of α‐Functionalized Carboxylic Acids Enabled by an Engineered Fatty Acid Photodecarboxylase. Angew Chem Int Ed Engl 2019; 58:8474-8478. [DOI: 10.1002/anie.201903165] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/10/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jian Xu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Yujing Hu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Jiajie Fan
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Mamatjan Arkin
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Danyang Li
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Yongzhen Peng
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Weihua Xu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Xianfu Lin
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Qi Wu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| |
Collapse
|
28
|
Xu J, Hu Y, Fan J, Arkin M, Li D, Peng Y, Xu W, Lin X, Wu Q. Light‐Driven Kinetic Resolution of α‐Functionalized Carboxylic Acids Enabled by an Engineered Fatty Acid Photodecarboxylase. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jian Xu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Yujing Hu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Jiajie Fan
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Mamatjan Arkin
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Danyang Li
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Yongzhen Peng
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Weihua Xu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Xianfu Lin
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Qi Wu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| |
Collapse
|
29
|
Jin Q, Wu Z, Dou Y, Yang Y, Xia J, Jin Z. A novel carbonyl reductase with anti-Prelog stereospecificity for the production of t-butyl 6-cyano-(3 R, 5 R)-dihydroxyhexanoate. 3 Biotech 2019; 9:194. [PMID: 31065494 DOI: 10.1007/s13205-019-1722-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/17/2019] [Indexed: 11/24/2022] Open
Abstract
A novel gene (crc1) from Candida boidinii was cloned and then overexpressed in a recombinant strain BL21(DE3)/pET30a-crc1 of Escherichia coli. The resulting carbonyl reductase was prepared through fermentations using the recombinant strain. The purified enzyme showed an NADPH-dependent activity and specific activity was 4.65 U/mg using t-butyl 6-cyano-(5R)-hydroxy-3-oxohexanoate (ATS-6) as substrate. The enzyme was optimally active at 35 °C and pH 7, respectively. The apparent K m and V max of the enzyme for ATS-6 are 1.5 mM and 21.1 μmol/min mg, respectively, indicating excellent anti-Prelog stereospecificity. Under the optimum condition, t-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate (ATS-7) was prepared with the enzyme with high d.e. value (99.9%) and good conversion (94%) in 4 h, indicating high stereoselectivity and conversion efficiency in biotransformation of ATS-6 to ATS-7.
Collapse
Affiliation(s)
- Qingchao Jin
- 1School of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100 China
| | - Zhige Wu
- 1School of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100 China
| | - Yanping Dou
- Agriculture, Food & Life, SGS-CSTC Standards Technical Services Co., Ltd, Ningbo Branch, Ningbo, 315040 China
| | - Yu Yang
- 1School of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100 China
| | - Jingjing Xia
- 1School of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100 China
| | - Zhihua Jin
- 1School of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100 China
| |
Collapse
|
30
|
A Novel Thermal Stable Carbonyl Reductase from Bacillus cereus by Gene Mining as Biocatalyst for β-Carbonyl Ester Asymmetric Reduction Reaction. Catal Letters 2019. [DOI: 10.1007/s10562-018-2645-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Haq SF, Shanbhag AP, Karthikeyan S, Hassan I, Thanukrishnan K, Ashok A, Sukumaran S, Ramaswamy S, Bharatham N, Datta S, Samant S, Katagihallimath N. A strategy to identify a ketoreductase that preferentially synthesizes pharmaceutically relevant (S)-alcohols using whole-cell biotransformation. Microb Cell Fact 2018; 17:192. [PMID: 30509260 PMCID: PMC6276252 DOI: 10.1186/s12934-018-1036-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/21/2018] [Indexed: 01/10/2023] Open
Abstract
Introduction Chemical industries are constantly in search of an expeditious and environmentally benign method for producing chiral synthons. Ketoreductases have been used as catalysts for enantioselective conversion of desired prochiral ketones to their corresponding alcohol. We chose reported promiscuous ketoreductases belonging to different protein families and expressed them in E. coli to evaluate their ability as whole-cell catalysts for obtaining chiral alcohol intermediates of pharmaceutical importance. Apart from establishing a method to produce high value (S)-specific alcohols that have not been evaluated before, we propose an in silico analysis procedure to predict product chirality. Results Six enzymes originating from Sulfolobus sulfotaricus, Zygosaccharomyces rouxii, Hansenula polymorpha, Corynebacterium sp. ST-10, Synechococcus sp. PCC 7942 and Bacillus sp. ECU0013 with reported efficient activity for dissimilar substrates are compared here to arrive at an optimal enzyme for the method. Whole–cell catalysis of ketone intermediates for drugs like Aprepitant, Sitagliptin and Dolastatin using E. coli over-expressing these enzymes yielded (S)-specific chiral alcohols. We explain this chiral specificity for the best-performing enzyme, i.e., Z. rouxii ketoreductase using in silico modelling and MD simulations. This rationale was applied to five additional ketones that are used in the synthesis of Crizotinib, MA-20565 (an antifungal agent), Sulopenem, Rivastigmine, Talampanel and Barnidipine and predicted the yield of (S) enantiomers. Experimental evaluation matched the in silico analysis wherein ~ 95% (S)-specific alcohol with a chemical yield of 23–79% was obtained through biotransformation. Further, the cofactor re-cycling was optimized by switching the carbon source from glucose to sorbitol that improved the chemical yield to 85–99%. Conclusions Here, we present a strategy to synthesize pharmaceutically relevant chiral alcohols by ketoreductases using a cofactor balanced whole-cell catalysis scheme that is useful for the industry. Based on the results obtained in these trials, Zygosaccharomyces rouxii ketoreductase was identified as a proficient enzyme to obtain (S)-specific alcohols from their respective ketones. The whole–cell catalyst when combined with nutrient modulation of using sorbitol as a carbon source helped obtain high enantiomeric and chemical yield. Electronic supplementary material The online version of this article (10.1186/s12934-018-1036-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Anirudh P Shanbhag
- Bugworks Research India, Pvt. Ltd, Bengaluru, India.,Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Subbulakshmi Karthikeyan
- Anthem Biosciences Pvt. Ltd, Bengaluru, India.,Centre for Pharmaceutical Biotechnology, University of Illinois Chicago, Chicago, USA
| | - Imran Hassan
- Anthem Biosciences Pvt. Ltd, Bengaluru, India.,PerkinElmer, Bengaluru, India
| | - Kannan Thanukrishnan
- Anthem Biosciences Pvt. Ltd, Bengaluru, India.,Shasun Research Center, Chennai, India
| | | | | | - S Ramaswamy
- Institute for Stem Cell Biology and Regenerative Medicine, Bengaluru, India
| | | | | | | | | |
Collapse
|
32
|
Liang C, Nie Y, Mu X, Xu Y. Gene mining-based identification of aldo–keto reductases for highly stereoselective reduction of bulky ketones. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0220-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
33
|
Shah S, Agera R, Sharma P, Sunder AV, Singh H, James HM, Gaikaiwari RP, Wangikar PP. Development of biotransformation process for asymmetric reduction with novel anti-Prelog NADH-dependent alcohol dehydrogenases. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Loderer C, Wagner D, Morgenstern F, Spieß A, Ansorge-Schumacher MB. Discovery of a novel thermostable Zn 2+ -dependent alcohol dehydrogenase from Chloroflexus aurantiacus through conserved domains mining. J Appl Microbiol 2018; 124:480-490. [PMID: 29224243 DOI: 10.1111/jam.13664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022]
Abstract
AIMS The purpose of the study was to demonstrate feasibility of the Conserved Domains Database (CDD) for identification of novel biocatalysts with desirable properties from a class of well-characterized biocatalysts. METHODS AND RESULTS The thermostable ADH from Sulfolobus solfataricus with a broad substrate range was applied as a template for the search for novel thermostable ADHs via CDD. From the resulting hits, a putative ADH gene from the thermophilic organism Chloroflexus aurantiacus was cloned and expressed in Escherichia coli. The resulting enzyme was purified and characterized. With a temperature activity optimum of 70°C and a broad substrate spectrum especially for diketones, a versatile new biocatalyst was obtained. CONCLUSIONS Database-based mining in CDD is a suitable approach to obtain novel biocatalysts with desirable properties. Thereby, the available diversity of similar but not equal enzymes within this class can be increased. SIGNIFICANCE AND IMPACT OF THE STUDY For industrial applications, there is a demand for larger diversity of similar well-characterized enzymes in order to test them for a given process (biodiversity screening). For fundamental science, the comparison of enzymes with similar function but different sequence can provide insight into structure function relationships or the evolution of enzymes. This study gives a good example on how this demand can be efficiently met.
Collapse
Affiliation(s)
- C Loderer
- Institute for Microbiology, Technische Universität Dresden, Dresden, Germany
| | - D Wagner
- Enzyme Process Technology, RWTH Aachen University, Aachener Verfahrenstechnik, Aachen, Germany
| | - F Morgenstern
- Institute for Microbiology, Technische Universität Dresden, Dresden, Germany
| | - A Spieß
- Enzyme Process Technology, RWTH Aachen University, Aachener Verfahrenstechnik, Aachen, Germany.,Institute of Biochemical Engineering, TU Braunschweig, Braunschweig, Germany
| | | |
Collapse
|
35
|
Nitrothiophene carboxamides, a novel narrow spectrum antibacterial series: Mechanism of action and Efficacy. Sci Rep 2018; 8:7263. [PMID: 29740005 PMCID: PMC5940854 DOI: 10.1038/s41598-018-25407-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/20/2018] [Indexed: 12/24/2022] Open
Abstract
The mechanism of efflux is a tour-de-force in the bacterial armoury that has thwarted the development of novel antibiotics. We report the discovery of a novel chemical series with potent antibacterial properties that was engineered to overcome efflux liability. Compounds liable to efflux specifically via the Resistance Nodulation and cell Division (RND) pump, AcrAB-TolC were chosen for a hit to lead progression. Using structure-based design, the compounds were optimised to lose their binding to the efflux pump, thereby making them potent on wild-type bacteria. We discovered these compounds to be pro-drugs that require activation in E. coli by specific bacterial nitroreductases NfsA and NfsB. Hit to lead chemistry led to the generation of compounds that were potent on wild-type and multi-drug resistant clinical isolates of E. coli, Shigella spp., and Salmonella spp. These compounds are bactericidal and efficacious in a mouse thigh infection model.
Collapse
|
36
|
Streptomyces spp. in the biocatalysis toolbox. Appl Microbiol Biotechnol 2018; 102:3513-3536. [PMID: 29502181 DOI: 10.1007/s00253-018-8884-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
About 20,100 research publications dated 2000-2017 were recovered searching the PubMed and Web of Science databases for Streptomyces, which are the richest known source of bioactive molecules. However, these bacteria with versatile metabolism are powerful suppliers of biocatalytic tools (enzymes) for advanced biotechnological applications such as green chemical transformations and biopharmaceutical and biofuel production. The recent technological advances, especially in DNA sequencing coupled with computational tools for protein functional and structural prediction, and the improved access to microbial diversity enabled the easier access to enzymes and the ability to engineer them to suit a wider range of biotechnological processes. The major driver behind a dramatic increase in the utilization of biocatalysis is sustainable development and the shift toward bioeconomy that will, in accordance to the UN policy agenda "Bioeconomy to 2030," become a global effort in the near future. Streptomyces spp. already play a significant role among industrial microorganisms. The intention of this minireview is to highlight the presence of Streptomyces in the toolbox of biocatalysis and to give an overview of the most important advances in novel biocatalyst discovery and applications. Judging by the steady increase in a number of recent references (228 for the 2000-2017 period), it is clear that biocatalysts from Streptomyces spp. hold promises in terms of valuable properties and applicative industrial potential.
Collapse
|
37
|
Yu HL, Li T, Chen FF, Luo XJ, Li A, Yang C, Zheng GW, Xu JH. Bioamination of alkane with ammonium by an artificially designed multienzyme cascade. Metab Eng 2018; 47:184-189. [PMID: 29477859 DOI: 10.1016/j.ymben.2018.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/22/2017] [Accepted: 02/20/2018] [Indexed: 11/17/2022]
Abstract
Biocatalytic C-H amination is one of the most challenging tasks. C-H amination reaction can hardly be driven efficiently by solely one enzyme so far. Thus, enzymatic synergy represents an alternative strategy. Herein, we report an "Artificially Bioamination Pathway" for C-H amination of cyclohexane as a model substrate. Three enzymes, a monooxygenase P450BM3 mutant, an alcohol dehydrogenase ScCR from Streptomyces coelicolor and an amine dehydrogenase EsLeuDH from Exiguobacterium sibiricum, constituted a clean cascade reaction system with easy product isolation. Two independent cofactor regeneration systems were optimized to avoid interference from the endogenous NADH oxidases in the host E. coli cells. Based on a stepwise pH adjustment and ammonium supplement strategy, and using an in vitro mixture of cell-free extracts of the three enzymes, cyclohexylamine was produced in a titer of 14.9 mM, with a product content of up to 92.5%. Furthermore, designer cells coexpressing the three required enzymes were constructed and their capability of alkane bio-amination was examined. This artificially designed bioamination paves an attractive approach for enzymatic synthesis of amines from accessible and cheap alkanes.
Collapse
Affiliation(s)
- Hui-Lei Yu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China.
| | - Tuo Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Fei-Fei Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xiao-Jing Luo
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Aitao Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Friendship Avenue, Wuchang District, Wuhan, Hubei, 430062, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Gao-Wei Zheng
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China.
| |
Collapse
|
38
|
Musa MM, Bsharat O, Karume I, Vieille C, Takahashi M, Hamdan SM. Expanding the Substrate Specificity of Thermoanaerobacter pseudoethanolicus
Secondary Alcohol Dehydrogenase by a Dual Site Mutation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701351] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Musa M. Musa
- Chemistry Department; King Fahd University of Petroleum and Minerals; 31261 Dhahran KSA
| | - Odey Bsharat
- Chemistry Department; King Fahd University of Petroleum and Minerals; 31261 Dhahran KSA
| | - Ibrahim Karume
- Chemistry Department; King Fahd University of Petroleum and Minerals; 31261 Dhahran KSA
| | - Claire Vieille
- Department of Microbiology and Molecular Genetics and Department of Biochemistry and Molecular Biology; Michigan State University; 48824 East Lansing MI USA
| | - Masateru Takahashi
- Division of Biological and Environmental Sciences and Engineering; King Abdullah University of Science and Technology; 23955-6900 Thuwal KSA
| | - Samir M. Hamdan
- Division of Biological and Environmental Sciences and Engineering; King Abdullah University of Science and Technology; 23955-6900 Thuwal KSA
| |
Collapse
|
39
|
Liu ZQ, Wu L, Zheng L, Wang WZ, Zhang XJ, Jin LQ, Zheng YG. Biosynthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate by carbonyl reductase from Rhodosporidium toruloides in mono and biphasic media. BIORESOURCE TECHNOLOGY 2018; 249:161-167. [PMID: 29040850 DOI: 10.1016/j.biortech.2017.09.204] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
tert-Butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate ((3R,5S)-CDHH) is the key intermediate for synthesis of atorvastatin and rosuvastatin. Carbonyl reductase exhibits excellent activity toward tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) to synthesize (3R,5S)-CDHH. In this study, a whole cell biosynthesis reaction system to produce (3R,5S)-CDHH was constructed in organic solvents. A solution of 10% (v/v) Tween-80 was introduced to the reaction system as a co-solvent, which greatly enhanced biotransformation process, giving 98.9% yield, >99% ee and 1.8-fold higher space time yield in 5 h bioconversion of 1 M (S)-CHOH, compared with 98.7% yield and >99% ee in 9 h bioconversion of a purely aqueous reaction system. Moreover, a water-octanol biphasic reaction system was built and 20% of octanol was added as reservoir of substrate resulting in 98% yield, >99% ee and 4.08 mmol L-1 h-1 g-1 (wet cell weight) space time yield. This study paved a way for the whole cell biosynthesis of (3R,5S)-CDHH in mono and biphasic media.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lin Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ling Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wen-Zhong Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiao-Jian Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
40
|
He YC, Jiang CX, Chong GG, Di JH, Ma CL. Biological synthesis of 2,5-bis(hydroxymethyl)furan from biomass-derived 5-hydroxymethylfurfural by E. coli CCZU-K14 whole cells. BIORESOURCE TECHNOLOGY 2018; 247:1215-1220. [PMID: 28943097 DOI: 10.1016/j.biortech.2017.09.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/23/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
Biocatalytic upgrading of bio-based platform chemical 5-hydroxymethylfurfural (5-HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) is currently of great interest due to the product specificity, mild reaction and high efficiency. In this work, 200mM 5-HMF could be effectively biotransformed to BHMF at 90.6% with highly 5-HMF-tolerant recombinant E. coli CCZU-K14 whole cells at pH 6.5 and 30°C under the optimum reaction conditions (cosubstrate glucose 1.0mol glucose/(mol 5-HMF), D-xylose 400mM, l-glutamic acid 250mM, Mg2+ 1.5mM, 0.2mol β-cyclodextrin/(mol 5-HMF), CTAB (cetyltrimethyl ammonium bromide) 12.5mM, and 0.1g wet cells/mL). It was found that E. coli CCZU-K14 was highly tolerant to 5-HMF (up to 400mM). Effective bioreduction of biomass-derived 5-HMF (≤200) to BHMF was successfully demonstrated in this study. In conclusion, this strategy showed high potential application for the synthesis of BHMF.
Collapse
Affiliation(s)
- Yu-Cai He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China.
| | - Chun-Xia Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Gang-Gang Chong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Jun-Hua Di
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Cui-Luan Ma
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
41
|
Enzymatic conversion of CO 2 to CH 3 OH via reverse dehydrogenase cascade biocatalysis: Quantitative comparison of efficiencies of immobilized enzyme systems. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.08.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
42
|
Crystal structure and iterative saturation mutagenesis of ChKRED20 for expanded catalytic scope. Appl Microbiol Biotechnol 2017; 101:8395-8404. [DOI: 10.1007/s00253-017-8556-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/05/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022]
|
43
|
Is literature data useful for identifying enzyme catalysts for new substrates? A case study on reduction of 1-aryl-2-alkanoates. Bioorg Chem 2017; 74:260-271. [DOI: 10.1016/j.bioorg.2017.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 01/04/2023]
|
44
|
Zheng GW, Liu YY, Chen Q, Huang L, Yu HL, Lou WY, Li CX, Bai YP, Li AT, Xu JH. Preparation of Structurally Diverse Chiral Alcohols by Engineering Ketoreductase CgKR1. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01933] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gao-Wei Zheng
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuan-Yang Liu
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qi Chen
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Huang
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hui-Lei Yu
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wen-Yong Lou
- Lab
of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chun-Xiu Li
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun-Peng Bai
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ai-Tao Li
- Department
of Biocatalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| | - Jian-He Xu
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
45
|
Gong XM, Zheng GW, Liu YY, Xu JH. Identification of a Robust Carbonyl Reductase for Diastereoselectively Building syn-3,5-Dihydroxy Hexanoate: a Bulky Side Chain of Atorvastatin. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00194] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xu-Min Gong
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Gao-Wei Zheng
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - You-Yan Liu
- School
of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, P. R. China
- Guangxi
Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning 530003, Guangxi, P. R. China
| | - Jian-He Xu
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
46
|
Basak S, Sahoo NG, Pavanasam AK. Genome mining, in silico validation and phase selection of a novel aldo-keto reductase from Candida glabrata for biotransformation. Bioengineered 2017. [PMID: 28644714 PMCID: PMC5972913 DOI: 10.1080/21655979.2017.1342911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Previously, we published cloning, overexpression, characterization and subsequent exploitation of a carbonyl reductase (cr) gene, belonging to general family aldo-keto reductase from Candida glabrata CBS138 to convert keto ester (COBE) to a chiral alcohol (ethyl-4-chloro-3-hydroxybutanoate or CHBE). Exploiting global transcription factor CRP, rDNA and transporter engineering, we have improved batch production of CHBE by trinomial bioengineering. Herein, we present the exploration of cr gene in Candida glabrata CBS138 through genome mining approach, in silico validation of its activity and selection of its biocatalytic phase. For exploration of the gene under investigation, 3 template genes were chosen namely Saccharomyces cerevisae YDR541c, YGL157w and YOL151w. The CR showed significant homology match, overlapping of substrate binding site and NADPH binding site with the template proteins. The binding affinity of COBE toward CR (-4.6 Kcal/ mol) was found higher than that of the template proteins (-3.5 to -4.5 Kcal/ mol). Biphasic biocatalysis with cofactor regeneration improved product titer 4∼5 times better than monophasic biotransformation. Currently we are working on DNA Shuffling as a next level of strain engineering and we demonstrate this approach herein as a future strategy of biochemical engineering.
Collapse
Affiliation(s)
- Souvik Basak
- a Dr. B.C. Roy College of Pharmacy & Allied Health Sciences , Durgapur , WB , India
| | - Nanda Gopal Sahoo
- b Nanoscience and Nanotechnology Centre, Department of Chemistry , Kumaun University , Nainital , Uttarakhand , India
| | - Angayar K Pavanasam
- c International College of Engineering and Management (University of Central Lancashire, UK Affiliation) , Muscat , Oman
| |
Collapse
|
47
|
|
48
|
An NADPH-dependent Lactobacillus composti short-chain dehydrogenase/reductase: characterization and application to (R)-1-phenylethanol synthesis. World J Microbiol Biotechnol 2017. [DOI: 10.1007/s11274-017-2311-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
49
|
Chen LF, Fan HY, Zhang YP, Wei W, Lin JP, Wei DZ, Wang HL. Enhancement of ethyl ( S )-4-chloro-3-hydroxybutanoate production at high substrate concentration by in situ resin adsorption. J Biotechnol 2017; 251:68-75. [DOI: 10.1016/j.jbiotec.2017.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/09/2017] [Accepted: 04/15/2017] [Indexed: 10/19/2022]
|
50
|
Engineering Streptomyces coelicolor Carbonyl Reductase for Efficient Atorvastatin Precursor Synthesis. Appl Environ Microbiol 2017; 83:AEM.00603-17. [PMID: 28389544 DOI: 10.1128/aem.00603-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/04/2017] [Indexed: 11/20/2022] Open
Abstract
Streptomyces coelicolor CR1 (ScCR1) has been shown to be a promising biocatalyst for the synthesis of an atorvastatin precursor, ethyl-(S)-4-chloro-3-hydroxybutyrate [(S)-CHBE]. However, limitations of ScCR1 observed for practical application include low activity and poor stability. In this work, protein engineering was employed to improve the catalytic efficiency and stability of ScCR1. First, the crystal structure of ScCR1 complexed with NADH and cosubstrate 2-propanol was solved, and the specific activity of ScCR1 was increased from 38.8 U/mg to 168 U/mg (ScCR1I158V/P168S) by structure-guided engineering. Second, directed evolution was performed to improve the stability using ScCR1I158V/P168S as a template, affording a triple mutant, ScCR1A60T/I158V/P168S, whose thermostability (T5015, defined as the temperature at which 50% of initial enzyme activity is lost following a heat treatment for 15 min) and substrate tolerance (C5015, defined as the concentration at which 50% of initial enzyme activity is lost following incubation for 15 min) were 6.2°C and 4.7-fold higher than those of the wild-type enzyme. Interestingly, the specific activity of the triple mutant was further increased to 260 U/mg. Protein modeling and docking analysis shed light on the origin of the improved activity and stability. In the asymmetric reduction of ethyl-4-chloro-3-oxobutyrate (COBE) on a 300-ml scale, 100 g/liter COBE could be completely converted by only 2 g/liter of lyophilized ScCR1A60T/I158V/P168S within 9 h, affording an excellent enantiomeric excess (ee) of >99% and a space-time yield of 255 g liter-1 day-1 These results suggest high efficiency of the protein engineering strategy and good potential of the resulting variant for efficient synthesis of the atorvastatin precursor.IMPORTANCE Application of the carbonyl reductase ScCR1 in asymmetrically synthesizing (S)-CHBE, a key precursor for the blockbuster drug Lipitor, from COBE has been hindered by its low catalytic activity and poor thermostability and substrate tolerance. In this work, protein engineering was employed to improve the catalytic efficiency and stability of ScCR1. The catalytic efficiency, thermostability, and substrate tolerance of ScCR1 were significantly improved by structure-guided engineering and directed evolution. The engineered ScCR1 may serve as a promising biocatalyst for the biosynthesis of (S)-CHBE, and the protein engineering strategy adopted in this work would serve as a useful approach for future engineering of other reductases toward potential application in organic synthesis.
Collapse
|