1
|
Kaya G, Ergin N. Classification of red beet and sugar beet for drought tolerance using morpho-physiological and stomatal traits. PeerJ 2025; 13:e19133. [PMID: 40130173 PMCID: PMC11932113 DOI: 10.7717/peerj.19133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/18/2025] [Indexed: 03/26/2025] Open
Abstract
Drought is a global phenomenon that endangers agricultural production by creating water scarcity. Selecting drought-tolerant cultivars, varieties, and species is essential for maintaining the food supply and advancing breeding efforts. The study aimed to compare red beet (Beta vulgaris L. var. cruenta) and sugar beet (B. vulgaris L. var. altissima Döll.) for drought tolerance at the early growth stage considering morpho-physiological and stomatal parameters. Three red beet cultivars (Bicores, BT Pancina, and Yakut) and three sugar beet cultivars (Mohican, Orthega KWS, and Valentina) were subjected to various drought stress (Control, 10%, and 20% PEG-6000) for 30 days at the four-leaf stage. Fresh and dry plant weight, leaf area, dry matter, chlorophyll content (SPAD), leaf temperature, relative water content, membrane stability index, stomatal density, and size were investigated. The results revealed that the cultivars exhibited different responses to drought stress, and a greater percentage reduction in morphological parameters was observed in red beet cultivars. Drought markedly reduced the fresh and dry weights, leaf area, relative water content, membrane stability, and stomatal size. Enhanced dry matter and stomatal density were identified. The stomatal density increased from 158 to 215 mm-2 while the stomatal size decreased from 433 to 342 µm2 in the plants subjected to 20% PEG. Moderate drought stress effectively distinguished drought-tolerant sugar beet and red beet genotypes. It was concluded that sugar beet appeared to be more drought-tolerant than red beet and that the membrane stability index, relative water content, and stomatal density could be effectively used for selecting drought-tolerant beet genotypes.
Collapse
Affiliation(s)
- Gamze Kaya
- Department of Horticulture, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Nurgül Ergin
- Department of Field Crops, Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
2
|
Xue G, Wu W, Fan Y, Ma C, Xiong R, Bai Q, Yao X, Weng W, Cheng J, Ruan J. Genome-wide identification, evolution, and role of SPL gene family in beet (Beta vulgaris L.) under cold stress. BMC Genomics 2024; 25:101. [PMID: 38262939 PMCID: PMC10804631 DOI: 10.1186/s12864-024-09995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND SPL transcription factors play vital roles in regulating plant growth, development, and abiotic stress responses. Sugar beet (Beta vulgaris L.), one of the world's main sugar-producing crops, is a major source of edible and industrial sugars for humans. Although the SPL gene family has been extensively identified in other species, no reports on the SPL gene family in sugar beet are available. RESULTS Eight BvSPL genes were identified at the whole-genome level and were renamed based on their positions on the chromosome. The gene structure, SBP domain sequences, and phylogenetic relationship with Arabidopsis were analyzed for the sugar beet SPL gene family. The eight BvSPL genes were divided into six groups (II, IV, V, VI, VII, and VIII). Of the BvSPL genes, no tandem duplication events were found, but one pair of segmental duplications was present. Multiple cis-regulatory elements related to growth and development were identified in the 2000-bp region upstream of the BvSPL gene start codon (ATG). Using quantitative real-time polymerase chain reaction (qRT-PCR), the expression profiles of the eight BvSPL genes were examined under eight types of abiotic stress and during the maturation stage. BvSPL transcription factors played a vital role in abiotic stress, with BvSPL3 and BvSPL6 being particularly noteworthy. CONCLUSION Eight sugar beet SPL genes were identified at the whole-genome level. Phylogenetic trees, gene structures, gene duplication events, and expression profiles were investigated. The qRT-PCR analysis indicated that BvSPLs play a substantial role in the growth and development of sugar beet, potentially participating in the regulation of root expansion and sugar accumulation.
Collapse
Affiliation(s)
- Guoxing Xue
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Weijiao Wu
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, 843199, Aksu, People's Republic of China
| | - Chao Ma
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Ruiqi Xiong
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Qing Bai
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Xin Yao
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Wenfeng Weng
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China.
| |
Collapse
|
3
|
Yolcu S, Alavilli H, Ganesh P, Asif M, Kumar M, Song K. An Insight into the Abiotic Stress Responses of Cultivated Beets ( Beta vulgaris L.). PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010012. [PMID: 35009016 PMCID: PMC8747243 DOI: 10.3390/plants11010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 05/03/2023]
Abstract
Cultivated beets (sugar beets, fodder beets, leaf beets, and garden beets) belonging to the species Beta vulgaris L. are important sources for many products such as sugar, bioethanol, animal feed, human nutrition, pulp residue, pectin extract, and molasses. Beta maritima L. (sea beet or wild beet) is a halophytic wild ancestor of all cultivated beets. With a requirement of less water and having shorter growth period than sugarcane, cultivated beets are preferentially spreading from temperate regions to subtropical countries. The beet cultivars display tolerance to several abiotic stresses such as salt, drought, cold, heat, and heavy metals. However, many environmental factors adversely influence growth, yield, and quality of beets. Hence, selection of stress-tolerant beet varieties and knowledge on the response mechanisms of beet cultivars to different abiotic stress factors are most required. The present review discusses morpho-physiological, biochemical, and molecular responses of cultivated beets (B. vulgaris L.) to different abiotic stresses including alkaline, cold, heat, heavy metals, and UV radiation. Additionally, we describe the beet genes reported for their involvement in response to these stress conditions.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
- Correspondence: (S.Y.); (H.A.); (K.S.)
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
- Correspondence: (S.Y.); (H.A.); (K.S.)
| | - Pushpalatha Ganesh
- Department of Plant Biotechnology, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India;
| | - Muhammad Asif
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea;
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
- Correspondence: (S.Y.); (H.A.); (K.S.)
| |
Collapse
|
4
|
Yolcu S, Alavilli H, Ganesh P, Panigrahy M, Song K. Salt and Drought Stress Responses in Cultivated Beets ( Beta vulgaris L.) and Wild Beet ( Beta maritima L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:1843. [PMID: 34579375 PMCID: PMC8472689 DOI: 10.3390/plants10091843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Cultivated beets, including leaf beets, garden beets, fodder beets, and sugar beets, which belong to the species Beta vulgaris L., are economically important edible crops that have been originated from a halophytic wild ancestor, Beta maritima L. (sea beet or wild beet). Salt and drought are major abiotic stresses, which limit crop growth and production and have been most studied in beets compared to other environmental stresses. Characteristically, beets are salt- and drought-tolerant crops; however, prolonged and persistent exposure to salt and drought stress results in a significant drop in beet productivity and yield. Hence, to harness the best benefits of beet cultivation, knowledge of stress-coping strategies, and stress-tolerant beet varieties, are prerequisites. In the current review, we have summarized morpho-physiological, biochemical, and molecular responses of sugar beet, fodder beet, red beet, chard (B. vulgaris L.), and their ancestor, wild beet (B. maritima L.) under salt and drought stresses. We have also described the beet genes and noncoding RNAs previously reported for their roles in salt and drought response/tolerance. The plant biologists and breeders can potentiate the utilization of these resources as prospective targets for developing crops with abiotic stress tolerance.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| | - Pushpalatha Ganesh
- Department of Plant Biotechnology, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Khurda 761211, Odisha, India;
| | - Madhusmita Panigrahy
- Biofuel & Bioprocessing Research Center, Institute of Technical Education & Research, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar 751030, Odisha, India;
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| |
Collapse
|
5
|
Zou C, Wang Y, Wang B, Liu D, Liu L, Gai Z, Li C. Long non-coding RNAs in the alkaline stress response in sugar beet (Beta vulgaris L.). BMC PLANT BIOLOGY 2020; 20:227. [PMID: 32434543 PMCID: PMC7241001 DOI: 10.1186/s12870-020-02437-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/10/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play crucial roles in regulating numerous biological processes in which complicated mechanisms are involved. Nonetheless, little is known about the number, features, sequences, and possible effects of lncRNAs on plant responses to alkaline stress. RESULTS Leaf samples collected based on the control Beta vulgaris L., as well as those under short-term and long-term alkaline treatments, were subjected to high-throughput RNA sequencing, through which a total of 8535 lncRNAs with reliable expression were detected. Of these lncRNAs, 102 and 49 lncRNA expression profiles were altered after short- and long-term alkaline stress, respectively. Moreover, 7 lncRNAs were recognized as precursors to 17 previously identified miRNAs. Four lncRNAs responsive to alkaline stress were estimated as targets for 8 miRNAs. Moreover, computational analysis predicted 4318 potential target genes as lncRNAs responsive to alkaline stress. Analysis of functional annotations showed that the abovementioned possible target genes were involved in various bioprocesses, such as kinase activity, structural constituents of ribosomes, the ribonucleoprotein complex and protein metabolic processes. Association analysis provided convincing proof of the interplay of specific candidate target genes with lncRNAs. CONCLUSION LncRNAs likely exert vital roles during the regulation of the alkaline stress response and adaptation in plants through interaction with protein-coding genes. The findings of this study contribute to comprehensively examining lncRNAs in Beta vulgaris L. and shed more light on the possible roles and modulating interplays of lncRNAs responsive to alkaline stress, thereby laying a certain basis for functional analyses of these types of Beta vulgaris L. lncRNAs in the future.
Collapse
Affiliation(s)
- Chunlei Zou
- College of Agronomy, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Yubo Wang
- College of Agronomy, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Bin Wang
- College of Agronomy, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Dan Liu
- College of Agronomy, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Lei Liu
- College of Agronomy, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Zhijia Gai
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154000 People’s Republic of China
| | - Caifeng Li
- College of Agronomy, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| |
Collapse
|
6
|
Zou C, Liu D, Wu P, Wang Y, Gai Z, Liu L, Yang F, Li C, Guo G. Transcriptome analysis of sugar beet (Beta vulgaris L.) in response to alkaline stress. PLANT MOLECULAR BIOLOGY 2020; 102:645-657. [PMID: 32040759 DOI: 10.1007/s11103-020-00971-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/18/2020] [Indexed: 05/20/2023]
Abstract
RNA-seq was used to analyze the transcriptional changes in sugar beet (Beta vulgaris L.) triggered by alkaline solution to elucidate the molecular mechanism underlying alkaline tolerance in sugar beet. Several differentially expressed genes related to stress tolerance were identified. Our results provide a valuable resource for the breeding of new germplasms with high alkaline tolerance. Alkalinity is a highly stressful environmental factor that limits plant growth and production. Sugar beet own the ability to acclimate to various abiotic stresses, especially salt and alkaline stress. Although substantial previous studies on response of sugar beet to saline stress has been conducted, the expressions of alkali-responsive genes in sugar beet have not been comprehensively investigated. In this study, we conducted transcriptome analysis of leaves in sugar beet seedlings treated with alkaline solutions for 0 day (control, C), 3 days (short-term alkaline treatment, ST) and 7 days (long-term alkaline treatment, LT). The clean reads were obtained and assembled into 25,507 unigenes. Among them, 975 and 383 differentially expressed genes (DEGs) were identified in the comparison groups ST_vs_C and LT_vs_C, respectively. Gene ontology (GO) analysis revealed that oxidation-reduction process and lipid metabolic process were the most enriched GO term among the DEGs in ST_vs_C and LT_vs_C, respectively. According to Kyoto Encyclopedia of Genes and Genomes pathway, carbon fixation in photosynthetic organisms pathway were significantly enriched under alkaline stress. Besides, expression level of genes encoding D-3-phosphoglycerate dehydrogenase 1, glutamyl-tRNA reductase 1, fatty acid hydroperoxide lyase, ethylene-insensitive protein 2, metal tolerance protein 11 and magnesium-chelatase subunit ChlI, etc., were significantly altered under alkaline stress. Additionally, among the DEGs, 136 were non-annotated genes and 24 occurred with differential alternative splicing. Our results provide a valuable resource on alkali-responsive genes and should benefit the improvement of alkaline stress tolerance in sugar beet.
Collapse
Affiliation(s)
- Chunlei Zou
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Dan Liu
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Peiran Wu
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Yubo Wang
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Zhijia Gai
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Lei Liu
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Fangfang Yang
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Caifeng Li
- College of Agronomy, Northeast Agricultural University, Harbin, China.
| | - Guanghao Guo
- College of Agronomy, Northeast Agricultural University, Harbin, China
| |
Collapse
|
7
|
Geng G, Li R, Stevanato P, Lv C, Lu Z, Yu L, Wang Y. Physiological and Transcriptome Analysis of Sugar Beet Reveals Different Mechanisms of Response to Neutral Salt and Alkaline Salt Stresses. FRONTIERS IN PLANT SCIENCE 2020; 11:571864. [PMID: 33193507 PMCID: PMC7604294 DOI: 10.3389/fpls.2020.571864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/28/2020] [Indexed: 05/20/2023]
Abstract
The salinization and alkalization of soil are widespread environmental problems. Sugar beet (B. vulgaris L.) is a moderately salt tolerant glycophyte, but little is known about the different mechanisms of sugar beet response to salt and alkaline stresses. The aim of this study was to investigate the influence of neutral salt (NaCl:Na2SO4, 1:1) and alkaline salt (Na2CO3) treatment on physiological and transcriptome changes in sugar beet. We found that a low level of neutral salt (NaCl:Na2SO4; 1:1, Na+ 25 mM) or alkaline salt (Na2CO3, Na+ 25 mM) significantly enhanced total biomass, leaf area and photosynthesis indictors in sugar beet. Under a high concentration of alkaline salt (Na2CO3, Na+ 100 mM), the growth of plants was not significantly affected compared with the control. But a high level of neutral salt (NaCl: Na2SO4; 1:1, Na+ 100 mM) significantly inhibited plant growth and photosynthesis. Furthermore, sugar beet tends to synthesize higher levels of soluble sugar and reducing sugar to cope with high neutral salt stress, and more drastic changes in indole acetic acid (IAA) and abscisic acid (ABA) contents were detected. We used next-generation RNA-Seq technique to analyze transcriptional changes under neutral salt and alkaline salt treatment in sugar beet. Overall, 4,773 and 2,251 differentially expressed genes (DEGs) were identified in leaves and roots, respectively. Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that genes involving cutin, suberine and wax biosynthesis, sesquiterpenoid and triterpenoid biosynthesis and flavonoid biosynthesis had simultaneously changed expression under low neutral salt or alkaline salt, so these genes may be related to stimulating sugar beet growth in both low salt treatments. Genes enriched in monoterpenoid biosynthesis, amino acids metabolism and starch and sucrose metabolism were specifically regulated to respond to the high alkaline salt. Meanwhile, compared with high alkaline salt, high neutral salt induced the expression change of genes involved in DNA replication, and decreased the expression of genes participating in cutin, suberine and wax biosynthesis, and linoleic acid metabolism. These results indicate the presence of different mechanisms responsible for sugar beet responses to neutral salt and alkaline salt stresses.
Collapse
Affiliation(s)
- Gui Geng
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Renren Li
- College of Life Sciences, Heilongjiang University, Harbin, China
| | - Piergiorgio Stevanato
- DAFNAE, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università degli Studi di Padova, Legnaro, Padua, Italy
| | - Chunhua Lv
- College of Life Sciences, Heilongjiang University, Harbin, China
| | - Zhengyu Lu
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Lihua Yu
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yuguang Wang
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- *Correspondence: Yuguang Wang,
| |
Collapse
|
8
|
Effect of the Architecture of Fiber-Optic Probes Designed for Soluble Solid Content Prediction in Intact Sugar Beet Slices. SENSORS 2019; 19:s19132995. [PMID: 31284649 PMCID: PMC6651724 DOI: 10.3390/s19132995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 11/22/2022]
Abstract
Sugar beet is the second biggest world contributor to sugar production and the only one grown in Europe. One of the main limitations for its competitiveness is the lack of effective tools for assessing sugar content in unprocessed sugar beet roots, especially in breeding programs. In this context, a dedicated near infrared (NIR) fiber-optic probe based approach is proposed. NIR technology is widely used for the estimation of sugar content in vegetable products, while optic fibers allow a wide choice of technical properties and configurations. The objective of this research was to study the best architecture through different technical choices for the estimation of sugar content in intact sugar beet roots. NIR spectral measurements were taken on unprocessed sugar beet samples using two types of geometries, single and multiple fiber-probes. Sugar content estimates were more accurate when using multiple fiber-probes (up to R2 = 0.93) due to a lesser disruption of light specular reflection. In turn, on this configuration, the best estimations were observed for the smallest distances between emitting and collecting fibers, reducing the proportion of multiply scattered light in the spectra. Error of prediction (RPD) values of 3.95, 3.27 and 3.09 were obtained for distances between emitting and collecting fibers of 0.6, 1.2 and 1.8 µm respectively. These high RPD values highlight the good predictions capacities of the multi-fiber probes. Finally, this study contributes to a better understanding of the effects of the technical properties of optical fiber-probes on the quality of spectral models. In addition, and beyond this specificity related to sugar beet, these findings could be extended to other turbid media for quantitative optical spectroscopy and eventually to validate considered fiber-optic probe design obtained in this experimental study.
Collapse
|
9
|
Lv X, Chen S, Wang Y. Advances in Understanding the Physiological and Molecular Responses of Sugar Beet to Salt Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1431. [PMID: 31781145 PMCID: PMC6851198 DOI: 10.3389/fpls.2019.01431] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/15/2019] [Indexed: 05/04/2023]
Abstract
Soil salinity is a major environmental stress on crop growth and productivity. A better understanding of the molecular and physiological mechanisms underlying salt tolerance will facilitate efforts to improve crop performance under salinity. Sugar beet is considered to be a salt-tolerant crop, and it is therefore a good model for studying salt acclimation in crops. Recently, many determinants of salt tolerance and regulatory mechanisms have been studied by using physiological and 'omics approaches. This review provides an overview of recent research advances regarding sugar beet response and tolerance to salt stress. We summarize the physiological and molecular mechanisms involved, including maintenance of ion homeostasis, accumulation of osmotic-adjustment substances, and antioxidant regulation. We focus on progress in deciphering the mechanisms using 'omic technologies and describe the key candidate genes involved in sugar beet salt tolerance. Understanding the response and tolerance of sugar beet to salt stress will enable translational application to other crops and thus will have significant impacts on agricultural sustainability and global food security.
Collapse
Affiliation(s)
- Xiaoyan Lv
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Harbin, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Yuguang Wang
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Harbin, China
- *Correspondence: Yuguang Wang;
| |
Collapse
|
10
|
Su WH, Sun DW. Advanced Analysis of Roots and Tubers by Hyperspectral Techniques. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 87:255-303. [PMID: 30678816 DOI: 10.1016/bs.afnr.2018.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hyperspectral techniques in terms of spectroscopy and hyperspectral imaging have become reliable analytical tools to effectively describe quality attributes of roots and tubers (such as potato, sweet potato, cassava, yam, taro, and sugar beet). In addition to the ability for obtaining rapid information about food external or internal defects including sprout, bruise, and hollow heart, and identifying different grades of food quality, such techniques have also been implemented to determine physical properties (such as color, texture, and specific gravity) and chemical constituents (such as protein, vitamins, and carotenoids) in root and tuber products with avoidance of extensive sample preparation. Developments of related quality evaluation systems based on hyperspectral data that determine food quality parameters would bring about economic and technical values to the food industry. Consequently, a comprehensive review of hyperspectral literature is carried out in this chapter. The spectral data acquired, the multivariate statistical methods used, and the main breakthroughs of recent studies on quality determinations of root and tuber products are discussed and summarized. The conclusion elaborates the promise of how hyperspectral techniques can be applied for non-invasive and rapid evaluations of tuber quality properties.
Collapse
Affiliation(s)
- Wen-Hao Su
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture & Food Science Centre, University College Dublin (UCD), National University of Ireland, Dublin, Ireland
| | - Da-Wen Sun
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture & Food Science Centre, University College Dublin (UCD), National University of Ireland, Dublin, Ireland.
| |
Collapse
|
11
|
Hossain MS, ElSayed AI, Moore M, Dietz KJ. Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1283-1298. [PMID: 28338762 PMCID: PMC5441856 DOI: 10.1093/jxb/erx019] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fine-tuned and coordinated regulation of transport, metabolism and redox homeostasis allows plants to acclimate to osmotic and ionic stress caused by high salinity. Sugar beet is a highly salt tolerant crop plant and is therefore an interesting model to study sodium chloride (NaCl) acclimation in crops. Sugar beet plants were subjected to a final level of 300 mM NaCl for up to 14 d in hydroponics. Plants acclimated to NaCl stress by maintaining its growth rate and adjusting its cellular redox and reactive oxygen species (ROS) network. In order to understand the unusual suppression of ROS accumulation under severe salinity, the regulation of elements of the redox and ROS network was investigated at the transcript level. First, the gene families of superoxide dismutase (SOD), peroxiredoxins (Prx), alternative oxidase (AOX), plastid terminal oxidase (PTOX) and NADPH oxidase (RBOH) were identified in the sugar beet genome. Salinity induced the accumulation of Cu-Zn-SOD, Mn-SOD, Fe-SOD3, all AOX isoforms, 2-Cys-PrxB, PrxQ, and PrxIIF. In contrast, Fe-SOD1, 1-Cys-Prx, PrxIIB and PrxIIE levels decreased in response to salinity. Most importantly, RBOH transcripts of all isoforms decreased. This pattern offers a straightforward explanation for the low ROS levels under salinity. Promoters of stress responsive antioxidant genes were analyzed in silico for the enrichment of cis-elements, in order to gain insights into gene regulation. The results indicate that special cis-elements in the promoters of the antioxidant genes in sugar beet participate in adjusting the redox and ROS network and are fundamental to high salinity tolerance of sugar beet.
Collapse
Affiliation(s)
- M Sazzad Hossain
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, D-33501 Bielefeld, Germany
| | - Abdelaleim Ismail ElSayed
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, D-33501 Bielefeld, Germany
- Biochemistry Department, Faculty of Agriculture, Zagazig University, 44519 Zagazig, Egypt
| | - Marten Moore
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, D-33501 Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, D-33501 Bielefeld, Germany
| |
Collapse
|
12
|
Guimarães CC, Simeone MLF, Parrella RA, Sena MM. Use of NIRS to predict composition and bioethanol yield from cell wall structural components of sweet sorghum biomass. Microchem J 2014. [DOI: 10.1016/j.microc.2014.06.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Holtgräwe D, Sörensen TR, Viehöver P, Schneider J, Schulz B, Borchardt D, Kraft T, Himmelbauer H, Weisshaar B. Reliable in silico identification of sequence polymorphisms and their application for extending the genetic map of sugar beet (Beta vulgaris). PLoS One 2014; 9:e110113. [PMID: 25302600 PMCID: PMC4193868 DOI: 10.1371/journal.pone.0110113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/07/2014] [Indexed: 02/03/2023] Open
Abstract
Molecular markers are a highly valuable tool for creating genetic maps. Like in many other crops, sugar beet (Beta vulgaris L.) breeding is increasingly supported by the application of such genetic markers. Single nucleotide polymorphism (SNP) based markers have a high potential for automated analysis and high-throughput genotyping. We developed a bioinformatics workflow that uses Sanger and 2nd-generation sequence data for detection, evaluation and verification of new transcript-associated SNPs from sugar beet. RNAseq data from one parent of an established mapping population were produced by 454-FLX sequencing and compared to Sanger ESTs derived from the other parent. The workflow established for SNP detection considers the quality values of both types of reads, provides polymorphic alignments as well as selection criteria for reliable SNP detection and allows painless generation of new genetic markers within genes. We obtained a total of 14,323 genic SNPs and InDels. According to empirically optimised settings for the quality parameters, we classified these SNPs into four usability categories. Validation of a subset of the in silico detected SNPs by genotyping the mapping population indicated a high success rate of the SNP detection. Finally, a total of 307 new markers were integrated with existing data into a new genetic map of sugar beet which offers improved resolution and the integration of terminal markers.
Collapse
Affiliation(s)
- Daniela Holtgräwe
- CeBiTec & Department of Biology, University of Bielefeld, Bielefeld, Germany
- * E-mail:
| | | | - Prisca Viehöver
- CeBiTec & Department of Biology, University of Bielefeld, Bielefeld, Germany
| | - Jessica Schneider
- CeBiTec & Department of Biology, University of Bielefeld, Bielefeld, Germany
| | - Britta Schulz
- Molecular Breeding Sugarbeet, KWS Saat AG, Einbeck, Germany
| | | | | | - Heinz Himmelbauer
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Centre for Genomic Regulation, Barcelona, Spain
| | - Bernd Weisshaar
- CeBiTec & Department of Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
14
|
Abstract
Cellulose and hemicelluloses are the main building block of plant cell wall and are known as a natural polymer that usually used in the industries. Cellulose and hemicelluloses could be used as a feedstock for second generation biofuel production where it is subjected to hydrolysis into sugar after which it can be converted into bioethanol through fermentation process. In this study, the matured banana pseudo-stem is used as the source of hydrolyzing sugar from natural material. The objective of this research is to study the effects of different chemical pretreatments (sodium hydroxide, mixture of sodium hydroxide and hydrogen peroxide, sulphuric acid, mixture of sulphuric acid and hydrogen peroxide) and hydrolysis time (1-5 hours) on the sugar yield from banana pseudo-stem. Results showed that, after 3 hours hydrolysis most of the sugars from all chemical pretreatments reduced gradually. Analysis of sugar contents from acid hydrolysis process using High Pressure Liquid Chromatography (HPLC) showed that all the samples contained glucose, xylose, and arabinose where the highest glucose (16.02 mg/L) obtained from fiber treated with mixture of 1.0 M sulphuric acid and hydrogen peroxide. In addition, both highest xylose (64.23 mg/L) and arabinose (45.78 mg/L) are obtained from fiber treated with 0.5 M sodium hydroxide.
Collapse
|