1
|
Karimian S, Farahmandzad N, Mohammadipanah F. Manipulation and epigenetic control of silent biosynthetic pathways in actinobacteria. World J Microbiol Biotechnol 2024; 40:65. [PMID: 38191749 DOI: 10.1007/s11274-023-03861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Most biosynthetic gene clusters (BGCs) of Actinobacteria are either silent or expressed less than the detectable level. The non-genetic approaches including biological interactions, chemical agents, and physical stresses that can be used to awaken silenced pathways are compared in this paper. These non-genetic induction strategies often need screening approaches, including one strain many compounds (OSMAC), reporter-guided mutant selection, and high throughput elicitor screening (HiTES) have been developed. Different types of genetic manipulations applied in the induction of cryptic BGCs of Actinobacteria can be categorized as genome-wide pleiotropic and targeted approaches like manipulation of global regulatory systems, modulation of regulatory genes, ribosome and engineering of RNA polymerase or phosphopantheteine transferases. Targeted approaches including genome editing by CRISPR, mutation in transcription factors and modification of BGCs promoters, inactivation of the highly expressed biosynthetic pathways, deleting the suppressors or awakening the activators, heterologous expression, or refactoring of gene clusters can be applied for activation of pathways which are predicted to synthesize new bioactive structures in genome mining studies of Acinobacteria. In this review, the challenges and advantages of employing these approaches in induction of Actinobacteria BGCs are discussed. Further, novel natural products needed as drug for pharmaceutical industry or as biofertilizers in agricultural industry can be discovered even from known species of Actinobactera by the innovative approaches of metabolite biosynthesis elicitation.
Collapse
Affiliation(s)
- Sanaz Karimian
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | - Navid Farahmandzad
- Department of Biosystems Engineering, Auburn university, Auburn, AL 36849, USA
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| |
Collapse
|
2
|
A New Method of Preparing Aurone by Marine Actinomycetes and Its Potential Application in Agricultural Fungicides. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010017. [PMID: 36615212 PMCID: PMC9822012 DOI: 10.3390/molecules28010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
A strain of marine actinomycetes was isolated from an intertidal zone and identified as Streptomyces cinereoruber. Through the fermentation of this strain, a compound with fungicidal activity was extracted and purified. Using mass spectrometry (MS) and nuclear magnetic resonance (NMR) data, the metabolite was determined to be an aurone. The toxicity of the aurone toward four kinds of tumor cells-SH-SY5Y, HepG2, A549, and HeLa cells-was verified by the MTT method, delivering IC50 values of 41.81, 47.19, 63.95, and 51.92 μg/mL, respectively. Greenhouse bioassay showed that the aurone exhibited a high fungicidal activity against powder mildew (Botrytis cinerea), cucurbits powder mildew (Sphaerotheca fuliginea (Schlecht ex Ff.) Poll), and rice blast (Pyricularia oryzae).
Collapse
|
3
|
Zong G, Fu J, Zhang P, Zhang W, Xu Y, Cao G, Zhang R. Use of elicitors to enhance or activate the antibiotic production in streptomyces. Crit Rev Biotechnol 2021; 42:1260-1283. [PMID: 34706600 DOI: 10.1080/07388551.2021.1987856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Streptomyces is the largest and most significant genus of Actinobacteria, comprising 961 species. These Gram-positive bacteria produce many versatile and important bioactive compounds; of these, antibiotics, specifically the enhancement or activation of their production, have received extensive research attention. Recently, various biotic and abiotic elicitors have been reported to modify the antibiotic metabolism of Streptomyces, which promotes the production of new antibiotics and bioactive metabolites for improvement in the yields of endogenous products. However, some elicitors that obviously contribute to secondary metabolite production have not yet received sufficient attention. In this study, we have reviewed the functions and mechanisms of chemicals, novel microbial metabolic elicitors, microbial interactions, enzymes, enzyme inhibitors, environmental factors, and novel combination methods regarding antibiotic production in Streptomyces. This review has aimed to identify potentially valuable elicitors for stimulating the production of latent antibiotics or enhancing the synthesis of subsistent antibiotics in Streptomyces. Future applications and challenges in the discovery of new antibiotics and enhancement of existing antibiotic production using elicitors are discussed.
Collapse
Affiliation(s)
- Gongli Zong
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Jiafang Fu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Peipei Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Yin Y, Wang J. Mechanisms of enhanced hydrogen production from sewage sludge by ferrous ion: Insights into functional genes and metabolic pathways. BIORESOURCE TECHNOLOGY 2021; 321:124435. [PMID: 33257168 DOI: 10.1016/j.biortech.2020.124435] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Hydrogen production from sewage sludge was studied in the presence of Fe2+. The results showed that the highest cumulative hydrogen production of 26 mL/100 mL was achieved with 600 mg/L Fe2+ supplementation, which was 2 times of the control test. In depth analysis of organics in liquid phase revealed that Fe2+ addition promoted sludge disintegration and protein degradation during fermentation process. Functions prediction by PICRUSt analysis indicated the effect of Fe2+ on microbial metabolism and functional genes expression. The results showed that the expression of hydrogen-producing functions, like ferredoxin hydrogenase and formate dehydrogenase was activated by Fe2+ supplementation, while the hydrogen-consuming metabolism, like methane metabolism and homoacetogenic metabolism was inhibited. Furthermore, Fe2+ addition could stimulate organics utilization. This study explored the effect of Fe2+ on functional genes abundance, revealing the mechanisms of enhanced hydrogen production by Fe2+ from the perspective of microbial metabolism.
Collapse
Affiliation(s)
- Yanan Yin
- Tsinghua University -- Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing 100084, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Tsinghua University -- Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing 100084, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
5
|
Liu Z, Zhu Z, Tang J, He H, Wan Q, Luo Y, Huang W, Yu Z, Hu Y, Ding X, Xia L. RNA-Seq-Based Transcriptomic Analysis of Saccharopolyspora spinosa Revealed the Critical Function of PEP Phosphonomutase in the Replenishment Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14660-14669. [PMID: 33258371 DOI: 10.1021/acs.jafc.0c04443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spinosyns, the secondary metabolites produced by Saccharopolyspora spinosa, are the active ingredients in a family of novel biological insecticides. Although the complete genome sequence of S. spinosa has been published, the transcriptome of S. spinosa remains poorly characterized. In this study, high-throughput RNA sequencing (RNA-seq) technology was applied to dissect the transcriptome of S. spinosa. Through transcriptomic analysis of different periods of S. spinosa growth, we found large numbers of differentially expressed genes and classified them according to their different functions. Based on the RNA-seq data, the CRISPR-Cas9 method was used to knock out the PEP phosphonomutase gene (orf 06952-4171). The yield of spinosyns A and D in S. spinosa-ΔPEP was 178.91 mg/L and 42.72 mg/L, which was 2.14-fold and 1.76-fold higher than that in the wild type (83.51 and 24.34 mg/L), respectively. The analysis of the mutant strains also verified the validity of the transcriptome data. The deletion of the PEP phosphonomutase gene leads to an increase in pyruvate content and affects the biosynthesis of spinosad. The replenishment of phosphoenol pyruvate in S. spinosa provides the substrate for the production of spinosad. We envision that these transcriptomic analysis results will contribute to the further study of secondary metabolites in actinomycetes.
Collapse
Affiliation(s)
- Zhudong Liu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zirong Zhu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Jianli Tang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Haocheng He
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Qianqian Wan
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yuewen Luo
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Weitao Huang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Ziquan Yu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yibo Hu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Xuezhi Ding
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Liqiu Xia
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
6
|
Lu ZY, Zhong JJ. Effect of furfural addition on validamycin-A production in fermentation of Streptomyces hygroscopicus 5008. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Kalantari-Dehaghi S, Hatamian-Zarmi A, Ebrahimi-Hosseinzadeh B, Mokhtari-Hosseini ZB, Nojoki F, Hamedi J, Hosseinkhani S. Effects of microbial volatile organic compounds on Ganoderma lucidum growth and ganoderic acids production in Co-v-cultures (volatile co-cultures). Prep Biochem Biotechnol 2019; 49:286-297. [DOI: 10.1080/10826068.2018.1541809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Saeid Kalantari-Dehaghi
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Ashrafalsadat Hatamian-Zarmi
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Bahman Ebrahimi-Hosseinzadeh
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Zahra-Beagom Mokhtari-Hosseini
- Department of Chemical Engineering, Faculty of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Fahimeh Nojoki
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Javad Hamedi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Paz-Mireles CL, Razo-Flores E, Trejo G, Cercado B. Inhibitory effect of ethanol on the experimental electrical charge and hydrogen production in microbial electrolysis cells (MECs). J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Hamdar A, El Hage S, El Garah F, Baziard G, Roques C, Lajoie B. Yield enhancement strategy of dithiolopyrrolone from Saccharothrix algeriensis by aliphatic alcohols supplementation. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Liu R, Deng Z, Liu T. Streptomyces species: Ideal chassis for natural product discovery and overproduction. Metab Eng 2018; 50:74-84. [DOI: 10.1016/j.ymben.2018.05.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/26/2022]
|
11
|
Abstract
Pseudo-oligosaccharides are microbial-derived secondary metabolites whose chemical structures contain pseudosugars (glycomimetics). Due to their high resemblance to the molecules of life (carbohydrates), most pseudo-oligosaccharides show significant biological activities. Some of them have been used as drugs to treat human and plant diseases. Because of their significant economic value, efforts have been put into understanding their biosynthesis, optimizing their fermentation conditions, and engineering their metabolic pathways to obtain better production yields. A number of unusual enzymes participating in diverse biosynthetic pathways to pseudo-oligosaccharides have been reported. Various methods and conditions to improve the production yields of the target compounds and eliminate byproducts have also been developed. This review article describes recent studies on the biosynthesis, fermentation optimization, and metabolic engineering of high-value pseudo-oligosaccharides.
Collapse
|
12
|
Jiang J, Sun YF, Tang X, He CN, Shao YL, Tang YJ, Zhou WW. Alkaline pH shock enhanced production of validamycin A in fermentation of Streptomyces hygroscopicus. BIORESOURCE TECHNOLOGY 2018; 249:234-240. [PMID: 29045927 DOI: 10.1016/j.biortech.2017.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Validamycin A (Val-A) is produced by Streptomyces as a secondary metabolite with wide agricultural applications of controlling rice sheath blight, false smut and damping-off diseases. The effect of alkaline pH shock on enhancing Val-A production and its mechanism were investigated. A higher yield of Val-A was achieved by NaOH shock once or several times together with faster protein synthesis and sugar consumption and alkaline pH shock can increase Val-A production by 27.43%. Transcription of genes related to amino acid metabolism, carbon metabolism and electron respiratory chain was significantly up-regulated, accompanied by the substantial increase of respiratory activity and glutamate concentration. Val-A production was promoted by a series of complex mechanisms and made a response to pH stress signal, which led to the enhancement of glutamate metabolism and respiration activity. The obtained information will facilitate future studies for antibiotic yield improvement and the deep revealment of molecular mechanism.
Collapse
Affiliation(s)
- Jing Jiang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ya-Fang Sun
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xi Tang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chao-Nan He
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ye-Lin Shao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Wen-Wen Zhou
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
13
|
Induced effect of Ca 2+ on dalesconols A and B biosynthesis in the culture of Daldinia eschscholzii via calcium/calmodulin signaling. J Biosci Bioeng 2018; 125:205-210. [DOI: 10.1016/j.jbiosc.2017.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/19/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
|
14
|
Zhang H, Wang C, Li H, Nie Y, Fang L, Chen Z. Simultaneous determination of kasugamycin and validamycin-A residues in cereals by consecutive solid-phase extraction combined with liquid chromatography–tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 35:487-497. [DOI: 10.1080/19440049.2017.1411615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hong Zhang
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Sciences, Jinan, PR China
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Provincial Key Laboratory of Testing Technology for Food Quality and Security, Jinan, PR China
| | - Chenchen Wang
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Sciences, Jinan, PR China
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Provincial Key Laboratory of Testing Technology for Food Quality and Security, Jinan, PR China
| | - Huidong Li
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Sciences, Jinan, PR China
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Provincial Key Laboratory of Testing Technology for Food Quality and Security, Jinan, PR China
| | - Yan Nie
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Sciences, Jinan, PR China
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Provincial Key Laboratory of Testing Technology for Food Quality and Security, Jinan, PR China
| | - Liping Fang
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Sciences, Jinan, PR China
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Provincial Key Laboratory of Testing Technology for Food Quality and Security, Jinan, PR China
| | - Zilei Chen
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Sciences, Jinan, PR China
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Provincial Key Laboratory of Testing Technology for Food Quality and Security, Jinan, PR China
| |
Collapse
|
15
|
Liu M, Grkovic T, Liu X, Han J, Zhang L, Quinn RJ. A systems approach using OSMAC, Log P and NMR fingerprinting: An approach to novelty. Synth Syst Biotechnol 2017; 2:276-286. [PMID: 29552652 PMCID: PMC5851912 DOI: 10.1016/j.synbio.2017.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/03/2017] [Accepted: 10/09/2017] [Indexed: 01/23/2023] Open
Abstract
The growing number of sequenced microbial genomes has revealed a remarkably large number of secondary metabolite biosynthetic clusters for which the compounds are still unknown. The aim of the present work was to apply a strategy to detect newly induced natural products by cultivating microorganisms in different fermentation conditions. The metabolomic analysis of 4160 fractions generated from 13 actinomycetes under 32 different culture conditions was carried out by 1H NMR spectroscopy and multivariate analysis. The principal component analysis (PCA) of the 1H NMR spectra showed a clear discrimination between those samples within PC1 and PC2. The fractions with induced metabolites that are only produced under specific growth conditions was identified by PCA analysis. This method allows an efficient differentiation within a large dataset with only one fractionation step. This work demonstrates the potential of NMR spectroscopy in combination with metabolomic data analysis for the screening of large sets of fractions.
Collapse
Affiliation(s)
- Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Tanja Grkovic
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Xueting Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianying Han
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lixin Zhang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| |
Collapse
|
16
|
Feng J, Jiang J, Liu Y, Li W, Azat R, Zheng X, Zhou WW. Significance of oxygen carriers and role of liquid paraffin in improving validamycin A production. ACTA ACUST UNITED AC 2016; 43:1365-72. [DOI: 10.1007/s10295-016-1822-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/30/2016] [Indexed: 11/28/2022]
Abstract
Abstract
Validamycin A (Val-A) synthesized by Streptomyces hygroscopicus 5008 is widely used as a high-efficient antibiotic to protect plants from sheath blight disease. A novel fermentation strategy was introduced to stimulate Val-A production by adding oxygen carriers. About 58 % increase in Val-A production was achieved using liquid paraffin. Further, biomass, carbon source, metabolic genes, and metabolic enzymes were studied. It was also found that the supplementation of liquid paraffin increased the medium dissolved oxygen and intracellular oxidative stress level. The expression of the global regulators afsR and soxR sensitive to ROS, ugp catalyzing synthesis of Val-A precursor, and Val-A structural genes was enhanced. The change of the activities of glucose-6-phosphate dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase was observed, which reflected the redirection of carbon metabolic flux. Based on these results, liquid paraffin addition as an oxygen carrier could be a useful technique in industrial production of Val-A and our study revealed a redox-based secondary metabolic regulation in S. hygroscopicus 5008, which provided a new insight into the regulation of the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Jinsong Feng
- grid.13402.34 000000041759700X College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing Zhejiang University 310058 Hangzhou Zhejiang China
| | - Jing Jiang
- grid.13402.34 000000041759700X College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing Zhejiang University 310058 Hangzhou Zhejiang China
| | - Yan Liu
- grid.13402.34 000000041759700X College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing Zhejiang University 310058 Hangzhou Zhejiang China
| | - Wei Li
- grid.13402.34 000000041759700X College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing Zhejiang University 310058 Hangzhou Zhejiang China
| | - Ramila Azat
- grid.13402.34 000000041759700X College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing Zhejiang University 310058 Hangzhou Zhejiang China
| | - Xiaodong Zheng
- grid.13402.34 000000041759700X College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing Zhejiang University 310058 Hangzhou Zhejiang China
| | - Wen-Wen Zhou
- grid.13402.34 000000041759700X College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing Zhejiang University 310058 Hangzhou Zhejiang China
| |
Collapse
|
17
|
Li W, Feng J, Liu Y, Jiang J, Zheng X, Zhou WW. Novel spectrophotometric approach for determination of validamycin A in fermentation of Streptomyces hygroscopicus. J Biosci Bioeng 2016; 122:736-739. [PMID: 27296090 DOI: 10.1016/j.jbiosc.2016.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
Abstract
Validamycin A (Val-A), produced by Streptomyces hygroscopicus 5008 in industrial fermentation, is one of the most widely used anti-fungal agro-antibiotics in Asia and high performance liquid chromatography (HPLC) assay is usually used to determine the production of Val-A. A new approach to determine Val-A by spectrophotometer is developed. During the fermentation of S. hygroscopicus 5008, a pigment secretion was found along with the Val-A biosynthesis. There was a stable relationship between the concentration of Val-A and spectral absorption (SA) value of this pigment at 450 nm, even in different fermentation cultures or conditions. Using SA value as interior label, a rapid spectrophotometric method for determining Val-A production was established. In comparing Val-A productivity by HPLC method with that by SA method, the relative standard deviation (R.S.D.) was 0.007 (less than 0.05, no variation) and the conditional probability [Pr(T < t)] was 0.3491 (greater than 0.05, no difference) at the optimal time point of Val-A fermentation, which demonstrated SA method was as stable and accurate as standard HPLC method. It was applied successfully to finding positive strains with high Val-A productivity and short fermentation time. SA assay is an accurate and cost-effective method for measuring Val-A and screening high-producing strains, and this work provides a new insight for rapid quantitative analysis of antibiotics in fermentation of pigment-producing strains.
Collapse
Affiliation(s)
- Wei Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Jinsong Feng
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Yan Liu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Jing Jiang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Xiaodong Zheng
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Wen-Wen Zhou
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
18
|
Stimulatory effect of ethanol on libertellenone H biosynthesis by Arctic fungus Eutypella sp. D-1. Bioprocess Biosyst Eng 2015; 39:353-60. [DOI: 10.1007/s00449-015-1515-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/24/2015] [Indexed: 11/25/2022]
|
19
|
Reen FJ, Romano S, Dobson ADW, O'Gara F. The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in Marine Microorganisms. Mar Drugs 2015; 13:4754-83. [PMID: 26264003 PMCID: PMC4557003 DOI: 10.3390/md13084754] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 06/05/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022] Open
Abstract
Unlocking the rich harvest of marine microbial ecosystems has the potential to both safeguard the existence of our species for the future, while also presenting significant lifestyle benefits for commercial gain. However, while significant advances have been made in the field of marine biodiscovery, leading to the introduction of new classes of therapeutics for clinical medicine, cosmetics and industrial products, much of what this natural ecosystem has to offer is locked in, and essentially hidden from our screening methods. Releasing this silent potential represents a significant technological challenge, the key to which is a comprehensive understanding of what controls these systems. Heterologous expression systems have been successful in awakening a number of these cryptic marine biosynthetic gene clusters (BGCs). However, this approach is limited by the typically large size of the encoding sequences. More recently, focus has shifted to the regulatory proteins associated with each BGC, many of which are signal responsive raising the possibility of exogenous activation. Abundant among these are the LysR-type family of transcriptional regulators, which are known to control production of microbial aromatic systems. Although the environmental signals that activate these regulatory systems remain unknown, it offers the exciting possibility of evoking mimic molecules and synthetic expression systems to drive production of potentially novel natural products in microorganisms. Success in this field has the potential to provide a quantum leap forward in medical and industrial bio-product development. To achieve these new endpoints, it is clear that the integrated efforts of bioinformaticians and natural product chemists will be required as we strive to uncover new and potentially unique structures from silent or cryptic marine gene clusters.
Collapse
Affiliation(s)
- F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork-National University of Ireland, Cork, Ireland.
| | - Stefano Romano
- BIOMERIT Research Centre, School of Microbiology, University College Cork-National University of Ireland, Cork, Ireland.
| | - Alan D W Dobson
- School of Microbiology, University College Cork-National University of Ireland, Cork, Ireland.
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork-National University of Ireland, Cork, Ireland.
- School of Biomedical Sciences, Curtin University, Perth WA 6845, Australia.
| |
Collapse
|
20
|
Enhanced production of validamycin A in Streptomyces hygroscopicus 5008 by engineering validamycin biosynthetic gene cluster. Appl Microbiol Biotechnol 2014; 98:7911-22. [DOI: 10.1007/s00253-014-5943-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/24/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
|
21
|
Qi H, Zhao S, Wen J, Chen Y, Jia X. Analysis of ascomycin production enhanced by shikimic acid resistance and addition in Streptomyces hygroscopicus var. ascomyceticus. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2013.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Yoon V, Nodwell JR. Activating secondary metabolism with stress and chemicals. J Ind Microbiol Biotechnol 2013; 41:415-24. [PMID: 24326978 DOI: 10.1007/s10295-013-1387-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/22/2013] [Indexed: 10/25/2022]
Abstract
The available literature on the secondary or nonessential metabolites of the streptomycetes bacteria suggests that there may be poorly expressed or "cryptic" compounds that have yet to be identified and that may have significant medical utility. In addition, it is clear that there is a large and complex regulatory network that controls the production of these molecules in the laboratory and in nature. Two approaches that have been taken to manipulating the yields of secondary metabolites are the use of various stress responses and, more recently, the use of precision chemical probes. Here, we review the status of this work and outline the challenges and opportunities afforded by each of them.
Collapse
Affiliation(s)
- Vanessa Yoon
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | | |
Collapse
|
23
|
Rao AA, Patkari M, Reddy PJ, Srivastava R, Pendharkar N, Rapole S, Mehra S, Srivastava S. Proteomic analysis of Streptomyces coelicolor in response to Ciprofloxacin challenge. J Proteomics 2013; 97:222-34. [PMID: 23994098 DOI: 10.1016/j.jprot.2013.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/17/2013] [Accepted: 08/10/2013] [Indexed: 11/19/2022]
Abstract
UNLABELLED Multi-drug tolerance is an important phenotypic property that complicates treatment of infectious diseases and reshapes drug discovery. Hence a systematic study of the origins and mechanisms of resistance shown by microorganisms is imperative. Since soil-dwelling bacteria are constantly challenged with a myriad of antibiotics, they are potential reservoirs of resistance determinants that can be mobilized into pathogens over a period of time. Elucidating the resistance mechanisms in such bacteria could help future antibiotic discoveries. This research is a preliminary study conducted to determine the effects of ciprofloxacin (CIP) on the intrinsically resistant Gram-positive soil bacterium Streptomyces coelicolor. The effect was investigated by performing 2-DE on total protein extracts of cells exposed to sub-lethal concentrations of ciprofloxacin as compared to the controls. Protein identification by MALDI-TOF/TOF revealed 24 unique differentially expressed proteins, which were statistically significant. The down-regulation of proteins involved in carbohydrate metabolism indicated a shift in the cell physiology towards a state of metabolic shutdown. Furthermore, the observed decline in protein levels involved in transcription and translation machinery, along with depletion of enzymes involved in amino acid biosynthesis and protein folding could be a cellular response to DNA damage caused by CIP, thereby minimizing the effect of defective and energetically wasteful metabolic processes. This could be crucial for the initial survival of the cells before gene level changes could come into play to ensure survival under prolonged adverse conditions. These results are a first attempt towards profiling the proteome of S. coelicolor in response to antibiotic stress. This article is part of a Special Issue entitled: Trends in Microbial Proteomics. BIOLOGICAL SIGNIFICANCE Soil-dwelling bacteria could serve as a reservoir of resistance determinants for clinically important bacteria. In this work, we investigated, for the first time, the differential proteomic profile of S. coelicolor cells in response to sub-inhibitory concentrations of Ciprofloxacin using 2-DE. Results indicate a shift in the cell physiology towards a state of metabolic shutdown, possibly to counter the DNA damage by ciprofloxacin. Further, up-regulation of GAPDH, RNA pol mRNA and Translation IF2 protein indicates a reprogramming of the cell for long-term survival. This study could serve as a basis for further investigations to elucidate the general mechanism by which soil bacteria exhibit resistance to fluroquinolones. This may help in developing new drug protocols and inventing novel drugs to counter resistance to this class of antibiotics in pathogenic bacteria.
Collapse
Affiliation(s)
- Aishwarya Anand Rao
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Minal Patkari
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Panga Jaipal Reddy
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rajneesh Srivastava
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Namita Pendharkar
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Sarika Mehra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Sanjeeva Srivastava
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
24
|
Enhancement of ε-poly-l-lysine production coupled with precursor l-lysine feeding in glucose–glycerol co-fermentation by Streptomyces sp. M-Z18. Bioprocess Biosyst Eng 2013; 36:1843-9. [DOI: 10.1007/s00449-013-0958-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/13/2013] [Indexed: 10/26/2022]
|