1
|
Teke GM, Anye Cho B, Bosman CE, Mapholi Z, Zhang D, Pott RWM. Towards industrial biological hydrogen production: a review. World J Microbiol Biotechnol 2023; 40:37. [PMID: 38057658 PMCID: PMC10700294 DOI: 10.1007/s11274-023-03845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
Increased production of renewable energy sources is becoming increasingly needed. Amidst other strategies, one promising technology that could help achieve this goal is biological hydrogen production. This technology uses micro-organisms to convert organic matter into hydrogen gas, a clean and versatile fuel that can be used in a wide range of applications. While biohydrogen production is in its early stages, several challenges must be addressed for biological hydrogen production to become a viable commercial solution. From an experimental perspective, the need to improve the efficiency of hydrogen production, the optimization strategy of the microbial consortia, and the reduction in costs associated with the process is still required. From a scale-up perspective, novel strategies (such as modelling and experimental validation) need to be discussed to facilitate this hydrogen production process. Hence, this review considers hydrogen production, not within the framework of a particular production method or technique, but rather outlines the work (bioreactor modes and configurations, modelling, and techno-economic and life cycle assessment) that has been done in the field as a whole. This type of analysis allows for the abstraction of the biohydrogen production technology industrially, giving insights into novel applications, cross-pollination of separate lines of inquiry, and giving a reference point for researchers and industrial developers in the field of biohydrogen production.
Collapse
Affiliation(s)
- G M Teke
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - B Anye Cho
- Department of Chemical Engineering, University of Manchester, Manchester, UK
| | - C E Bosman
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Z Mapholi
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - D Zhang
- Department of Chemical Engineering, University of Manchester, Manchester, UK
| | - R W M Pott
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
2
|
Bosman CE, Pott RWM, Bradshaw SM. The effect of light emission spectrum on biohydrogen production by Rhodopseudomonas palustris. Bioprocess Biosyst Eng 2023; 46:913-919. [PMID: 36973588 PMCID: PMC10156807 DOI: 10.1007/s00449-023-02863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Photofermentative hydrogen production has gained increasing attention as a source of green energy. To make such photofermentation processes economically competitive, operating costs need to be reduced, possibly through outdoor operation. Because photofermentation processes are light dependent, the emission spectrum and intensity of light both have a significant influence on the hydrogen production and merit investigation. This study investigates the effect of light sources on the hydrogen production and growth of Rhodopseudomonas palustris, comparing the organism's productivity under longer-wavelength light and light mimicking sunlight. Hydrogen production is enhanced under longer-wavelength light, producing 26.8% (± 7.3%) more hydrogen as compared to under light mimicking that of sunlight; however, R. palustris is still able to produce a considerable volume of hydrogen under light with a spectrum mimicking that of sunlight, providing a promising avenue for future research.
Collapse
Affiliation(s)
- Catharine Elizabeth Bosman
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | | | - Steven Martin Bradshaw
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
3
|
Lozano DA, Niño-Navarro C, Chairez I, Salgado-Manjarrez E, García-Peña EI. Intensification of Hydrogen Production by a Co-culture of Syntrophomonas wolfei and Rhodopseudomonas palustris Employing High Concentrations of Butyrate as a Substrate. Appl Biochem Biotechnol 2023; 195:1800-1822. [PMID: 36399303 DOI: 10.1007/s12010-022-04220-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/19/2022]
Abstract
The purpose of this study is to present an effective form of developing a sequential dark (DF) and photo (PF) fermentation using volatile fatty acids (VFAs) and nitrogen compounds as bonding components between both metabolic networks of microbial growing in each fermentation. A simultaneous (co-)culture of Syntrophomonas wolfei (with its ability to consume butyrate and produce acetate) and Rhodopseudomonas palustris (that can use the produced acetate as a carbon source) performed a syntrophic metabolism. The former bacteria consumed the acetate/butyrate mixture reducing the butyrate concentration below 2.0 g/L, permitting Rhodopseudomonas palustris to produce hydrogen. Considering that the inoculum composition (Syntrophomonas wolfei/Rhodopseudomonas palustris) and the nitrogen source (yeast extract) define the microbial biomass specific productivity and the butyrate consumption, a response surface methodology defined the best inoculum design and yeast extract (YE) yielding to the highest biomass concentration of 1.1 g/L after 380.00 h. A second culture process (without a nitrogen source) showed the biomass produced in the previous culture process yields to produce a total cumulated hydrogen concentration of 3.4 mmol. This value was not obtained previously with the pure strain Rhodopseudomonas palustris if the culture medium contained butyrate concentration above 2.0 g/L, representing a contribution to the sequential fermentation scheme based on DF and PF.
Collapse
Affiliation(s)
- D A Lozano
- Bioprocesses Department, UPIBI, Instituto Politécnico Nacional, Mexico City, Mexico
| | - C Niño-Navarro
- Bioprocesses Department, UPIBI, Instituto Politécnico Nacional, Mexico City, Mexico
| | - I Chairez
- Bioprocesses Department, UPIBI, Instituto Politécnico Nacional, Mexico City, Mexico.
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico.
| | - E Salgado-Manjarrez
- Bioengineering Department, UPIBI, Instituto Politécnico Nacional, Mexico City, Mexico
| | - E I García-Peña
- Bioengineering Department, UPIBI, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
4
|
Penhaul Smith J, Hughes A, McEvoy L, Day J. Use of crude glycerol for mixotrophic culture of Phaeodactylum tricornutum. ALGAL RES 2023. [DOI: 10.1016/j.algal.2022.102929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Syed Z, Sogani M, Sharma G, Sonu K, Rajvanshi J, Gupta NS. Framework to improve biohydrogen generation with estrogen co-metabolism under complete suppression of nitrogen source. BIORESOURCE TECHNOLOGY 2022; 360:127595. [PMID: 35803446 DOI: 10.1016/j.biortech.2022.127595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
The current work provides insights for improving the hydrogen output while degrading emerging contaminants using Rhodopseudomonas palustris. The changes in the growth rate of a microorganism due to different substrate inputs affects the hydrogen production due to metabolic route changes. The different ratios of glutamate and glycerol as nitrogen and carbon sources along with the presence of ethinylestradiol (EE2) in the photofermenter affected the flux of electrons being directed towards biosynthesis and biohydrogen generation. The combination of glutamate and glycerol in different ratios (Glu:Gly; 0, 0.20 and 0.54) along with estrogen showed no significant difference in the bacteriochlorophyll concentrations. The highest biomass concentration (0.013 h-1) was in ratio of 0.54 while maximum specific hydrogen production (1.9 ± 0.05 ml g-1 biomass h-1) was observed under complete suppression of nitrogen (0; without Glu; non-growing condition) with resultant improved estrogen degradation of about 78% in 168 h by R. palustris strain MDOC01.
Collapse
Affiliation(s)
- Zainab Syed
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Monika Sogani
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India.
| | - Gopesh Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Kumar Sonu
- Department of Mechanical Engineering, Kashi Institute of Technology, Varanasi 221307, Uttar Pradesh, India
| | - Jayana Rajvanshi
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Nishan Sen Gupta
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| |
Collapse
|
6
|
A Thermosiphon Photobioreactor for Photofermentative Hydrogen Production by Rhodopseudomonas palustris. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9080344. [PMID: 35892758 PMCID: PMC9332759 DOI: 10.3390/bioengineering9080344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022]
Abstract
A thermosiphon photobioreactor (TPBR) can potentially be used for biohydrogen production, circumventing the requirement for external mixing energy inputs. In this study, a TPBR is evaluated for photofermentative hydrogen production by Rhodopseudomonas palustris (R. palustris). Experiments were conducted in a TPBR, and response surface methodology (RSM), varying biomass concentration, and light intensity and temperature were employed to determine the operating conditions for the enhancement of both hydrogen production as well as biomass suspension. Biomass concentration was found to have had the most pronounced effect on both hydrogen production as well as biomass suspension. RSM models predicted maximum specific hydrogen production rates of 0.17 mol m−3h−1 and 0.21 mmol gCDW−1h−1 at R. palustris concentrations of 1.21 and 0.4 g L−1, respectively. The experimentally measured hydrogen yield was in the range of 45 to 77% (±3.8%), and the glycerol consumption was 8 to 19% (±0.48). At a biomass concentration of 0.40 g L−1, the highest percentage of biomass (72.3%), was predicted to remain in suspension in the TPBR. Collectively, the proposed novel photobioreactor was shown to produce hydrogen as well as passively circulate biomass.
Collapse
|
7
|
Li M, Ning P, Sun Y, Luo J, Yang J. Characteristics and Application of Rhodopseudomonas palustris as a Microbial Cell Factory. Front Bioeng Biotechnol 2022; 10:897003. [PMID: 35646843 PMCID: PMC9133744 DOI: 10.3389/fbioe.2022.897003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/27/2022] [Indexed: 01/20/2023] Open
Abstract
Rhodopseudomonas palustris, a purple nonsulfur bacterium, is a bacterium with the properties of extraordinary metabolic versatility, carbon source diversity and metabolite diversity. Due to its biodetoxification and biodegradation properties, R. palustris has been traditionally applied in wastewater treatment and bioremediation. R. palustris is rich in various metabolites, contributing to its application in agriculture, aquaculture and livestock breeding as additives. In recent years, R. palustris has been engineered as a microbial cell factory to produce valuable chemicals, especially photofermentation of hydrogen. The outstanding property of R. palustris as a microbial cell factory is its ability to use a diversity of carbon sources. R. palustris is capable of CO2 fixation, contributing to photoautotrophic conversion of CO2 into valuable chemicals. R. palustris can assimilate short-chain organic acids and crude glycerol from industrial and agricultural wastewater. Lignocellulosic biomass hydrolysates can also be degraded by R. palustris. Utilization of these feedstocks can reduce the industry cost and is beneficial for environment. Applications of R. palustris for biopolymers and their building blocks production, and biofuels production are discussed. Afterward, some novel applications in microbial fuel cells, microbial electrosynthesis and photocatalytic synthesis are summarized. The challenges of the application of R. palustris are analyzed, and possible solutions are suggested.
Collapse
Affiliation(s)
- Meijie Li
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Peng Ning
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yi Sun
- Haiyang Comprehensive Administrative Law Enforcement Bureau (Agriculture), Haiyang, China
| | - Jie Luo
- Qingdao Garden Forestry Technology School, Qingdao, China
- *Correspondence: Jie Luo, ; Jianming Yang,
| | - Jianming Yang
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Jie Luo, ; Jianming Yang,
| |
Collapse
|
8
|
Ross BS, Pott RWM. Investigating and modelling the effect of light intensity on Rhodopseudomonas palustris growth. Biotechnol Bioeng 2021; 119:907-921. [PMID: 34953072 DOI: 10.1002/bit.28026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 11/09/2022]
Abstract
Photosynthetic bacteria can be useful biotechnological tools - they produce a variety of valuable products, including high purity hydrogen, and can simultaneously treat recalcitrant wastewaters. However, while photobioreactors have been designed and modelled for photosynthetic algae and cyanobacteria, there has been less work on understanding the effect of light in photosynthetic bacterial fermentations. In order to design photobioreactors, and processes using these organisms, robust models of light penetration, utilisation and conversion are needed. This article uses experimental data from a tubular photobioreactor designed to focus in on light intensity effects, to model the effect of light intensity on the growth of Rhodopseudomonas palustris, a model photosynthetic bacterium. The work demonstrates that growth is controlled by light intensity, and that this organism does experience photolimitation below 200 W/m2 and photoinhibition above 600 W/m2. This has implications for outdoor applications, as there will be low growth during the periods of limited light, and growth may be inhibited during the light intensive hours of mid-day. Further, the work presents a model for light penetration in cylindrical photobioreactors, which tends to be the most common geometry. The model developed showed good fit to the experimental data for each light intensity investigated, with high R2 values and NRMSE values all below 20%. The work extends the modelling tools for these organisms, and will allow for better photobioreactor design, and the integration of modelling tools in designing processes which use photosynthetic bacteria. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Brandon Sean Ross
- Department of Process Engineering at Stellenbosch University, Banghoek Rd, Stellenbosch, South Africa
| | - Robert W M Pott
- Department of Process Engineering at Stellenbosch University, Banghoek Rd, Stellenbosch, South Africa
| |
Collapse
|
9
|
Ong ES, Rabbani AH, Habashy MM, Abdeldayem OM, Al-Sakkari EG, Rene ER. Palm oil industrial wastes as a promising feedstock for biohydrogen production: A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118160. [PMID: 34562690 DOI: 10.1016/j.envpol.2021.118160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/05/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
By the year 2050, it is estimated that the demand for palm oil is expected to reach an enormous amount of 240 Mt. With a huge demand in the future for palm oil, it is expected that oil palm by-products will rise with the increasing demand. This represents a golden opportunity for sustainable biohydrogen production using oil palm biomass and palm oil mill effluent (POME) as the renewable feedstock. Among the different biological methods for biohydrogen production, dark fermentation and photo-fermentation have been widely studied for their potential to produce biohydrogen by using various waste materials as feedstock, including POME and oil palm biomass. However, the complex structure of oil palm biomass and POME, such as the lignocellulosic composition, limits fermentable substrate available for conversion to biohydrogen. Therefore, proper pre-treatment and suitable process conditions are crucial for effective biohydrogen generation from these feedstocks. In this review, the characteristics of palm oil industrial waste, the process used for biohydrogen production using palm oil industrial waste, their pros and cons, and the influence of various factors have been discussed, as well as a comparison between studies in terms of types of reactors, pre-treatment strategies, the microbial culture used, and optimum operating condition have been presented. Through biological production, hydrogen production rates up to 52 L-H2/L-medium/h and 6 L-H2/L-medium/h for solid and liquid palm oil industrial waste, respectively, can be achieved. In short, the continuous supply of palm oil production by-product and relatively, the low cost of the biological method for hydrogen production indicates the potential source of renewable energy.
Collapse
Affiliation(s)
- Ee Shen Ong
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands.
| | - Alija Haydar Rabbani
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | - Mahmoud M Habashy
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | - Omar M Abdeldayem
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | | | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| |
Collapse
|
10
|
Policastro G, Giugliano M, Luongo V, Napolitano R, Fabbricino M. Carbon catabolite repression occurrence in photo fermentation of ethanol-rich substrates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113371. [PMID: 34325364 DOI: 10.1016/j.jenvman.2021.113371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The paper investigates the phenomenon of Carbon Catabolite Repression occurring during photo fermentation of ethanol-rich effluents, which usually contain ethanol as main carbon source, and glycerol as secondary one. The study was conducted using mixed phototrophic cultures, adopting, as substrate, the effluent produced by the alcoholic fermentation of sugar cane bagasse. In order to elucidate the phenomenon, experimental tests were carried out using two different ethanol to glycerol ratios. Results were compared with those resulting from pure ethanol and glycerol conversion. According to the obtained data, as a result of Carbon Catabolite Repression occurrence, the presence of glycerol negatively affects hydrogen production. Indeed, part of the ethanol source is converted to biomass and polyhydroxybutyrate rather than to hydrogen. In more details, the presence of glycerol determines a drop of the hydrogen production, which goes from 12 % to 32 %, according to the ethanol/glycerol ratio, compared to the production obtained from fermentation of ethanol alone. Therefore, to promote the hydrogen production, it is advisable to apply strategies to produce low glycerol concentrations in the ethanol production stage.
Collapse
Affiliation(s)
- Grazia Policastro
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy.
| | - Marco Giugliano
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy.
| | - Vincenzo Luongo
- Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, Via Cintia, Monte S. Angelo, 80126, Naples, Italy.
| | - Raffaele Napolitano
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy.
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy.
| |
Collapse
|
11
|
du Toit JP, Lea-Smith DJ, Git A, Hervey JRD, Howe CJ, Pott RWM. Expression of Alternative Nitrogenases in Rhodopseudomonas palustris Is Enhanced Using an Optimized Genetic Toolset for Rapid, Markerless Modifications. ACS Synth Biol 2021; 10:2167-2178. [PMID: 34431288 DOI: 10.1021/acssynbio.0c00496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The phototrophic bacterium Rhodopseudomonas palustris is emerging as a promising biotechnological chassis organism, due to its resilience to a range of harsh conditions, a wide metabolic repertoire, and the ability to quickly regenerate ATP using light. However, realization of this promise is impeded by a lack of efficient, rapid methods for genetic modification. Here, we present optimized tools for generating chromosomal insertions and deletions employing electroporation as a means of transformation. Generation of markerless strains can be completed in 12 days, approximately half the time for previous conjugation-based methods. This system was used for overexpression of alternative nitrogenase isozymes with the aim of improving biohydrogen productivity. Insertion of the pucBa promoter upstream of vnf and anf nitrogenase operons drove robust overexpression up to 4000-fold higher than wild-type. Transcript quantification was facilitated by an optimized high-quality RNA extraction protocol employing lysis using detergent and heat. Overexpression resulted in increased nitrogenase protein levels, extending to superior hydrogen productivity in bioreactor studies under nongrowing conditions, where promoter-modified strains better utilized the favorable energy state created by reduced competition from cell division. Robust heterologous expression driven by the pucBa promoter is thus attractive for energy-intensive biosyntheses suited to the capabilities of R. palustris. Development of this genetic modification toolset will accelerate the advancement of R. palustris as a biotechnological chassis organism, and insights into the effects of nitrogenase overexpression will guide future efforts in engineering strains for improved hydrogen production.
Collapse
Affiliation(s)
- Jan-Pierre du Toit
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, 7600, South Africa
| | - David J. Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| | - Anna Git
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| | - John R. D. Hervey
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| | - Christopher J. Howe
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| | - Robert W. M. Pott
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, 7600, South Africa
| |
Collapse
|
12
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
13
|
Valorization of Biodiesel Byproduct Crude Glycerol for the Production of Bioenergy and Biochemicals. Catalysts 2020. [DOI: 10.3390/catal10060609] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The rapid growth of global biodiesel production requires simultaneous effective utilization of glycerol obtained as a by-product of the transesterification process. Accumulation of the byproduct glycerol from biodiesel industries can lead to considerable environment issues. Hence, there is extensive research focus on the transformation of crude glycerol into value-added products. This paper makes an overview of the nature of crude glycerol and ongoing research on its conversion to value-added products. Both chemical and biological routes of glycerol valorization will be presented. Details of crude glycerol conversion into microbial lipid and subsequent products will also be highlighted.
Collapse
|
14
|
Pankan AO, Yunus K, Fisher AC. Mechanistic evaluation of the exoelectrogenic activity of Rhodopseudomonas palustris under different nitrogen regimes. BIORESOURCE TECHNOLOGY 2020; 300:122637. [PMID: 31891855 DOI: 10.1016/j.biortech.2019.122637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
The operation of bioelectrochemical systems (BESs) relies on the ability of microbes to export electrons outside of their cells. However, microorganisms are not evolutionary conceived to power BESs as most of the redox processes occur within. In this study, a low cost strategy equivalent to the one used to improve hydrogen production is employed to divert electrons from the metabolism to an electrode. Varying the ratio of nitrogen to carbon concentration (0, 0.20 and 0.54) determines what fraction of the electron flux is directed towards biosynthesis, biohydrogen generation and extracellular electron transfer. The ratio of 0.54 produced a higher specific growth rate while the ratio of 0.20 resulted in combined higher maximum specific hydrogen production and exoelectrogenic activity, translating into a maximum power density of 2.39 ± 0.13 mW m-2 in a novel hybrid hydrogen-photosynthetic microbial fuel cell. The current work sets a framework for the optimisation of R. palustris for bioenergy recovery.
Collapse
Affiliation(s)
- Aazraa O Pankan
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Kamran Yunus
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Adrian C Fisher
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom.
| |
Collapse
|
15
|
du Toit JP, Pott RWM. Transparent polyvinyl-alcohol cryogel as immobilisation matrix for continuous biohydrogen production by phototrophic bacteria. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:105. [PMID: 32536970 PMCID: PMC7285740 DOI: 10.1186/s13068-020-01743-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/01/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Phototrophic purple non-sulfur bacteria (PNSB) have gained attention for their ability to produce a valuable clean energy source in the form biohydrogen via photofermentation of a wide variety of organic wastes. For maturation of these phototrophic bioprocesses towards commercial feasibility, development of suitable immobilisation materials is required to allow continuous production from a stable pool of catalytic biomass in which energy is not diverted towards biomass accumulation, and optimal hydrogen production rates are realised. Here, the application of transparent polyvinyl-alcohol (PVA) cryogel beads to immobilisation of Rhodopseudomonas palustris for long-term hydrogen production is described. PVA cryogel properties are characterised and demonstrated to be well suited to the purpose of continuous photofermentation. Finally, analysis of the long-term biocompatibility of the material is illustrated. RESULTS The addition of glycerol co-solvent induces favourable light transmission properties in normally opaque PVA cryogels, especially well-suited to the near-infrared light requirements of PNSB. Material characterisation showed high mechanical resilience, low resistance to diffusion of substrates and high biocompatibility of the material and immobilisation process. The glycerol co-solvent in transparent cryogels offered additional benefit by reinforcing physical interactions to the extent that only a single freeze-thaw cycle was required to form durable cryogels, extending utility beyond only phototrophic bioprocesses. In contrast, conventional PVA cryogels require multiple cycles which compromise viability of entrapped organisms. Hydrogen production studies of immobilised Rhodopseudomonas palustris in batch photobioreactors showed higher specific hydrogen production rates which continued longer than planktonic cultures. Continuous cultivation yielded hydrogen production for at least 67 days from immobilised bacteria, demonstrating the suitability of PVA cryogel immobilisation for long-term phototrophic bioprocesses. Imaged organisms immobilised in cryogels showed a monolithic structure to PVA cryogels, and demonstrated a living, stable, photofermentative population after long-term immobilisation. CONCLUSION Transparent PVA cryogels offer ideal properties as an immobilisation matrix for phototrophic bacteria and present a low-cost photobioreactor technology for the further advancement of biohydrogen from waste as a sustainable energy source, as well as development of alternative photo-bioprocesses exploiting the unique capabilities of purple non-sulfur bacteria.
Collapse
Affiliation(s)
- Jan-Pierre du Toit
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, South Africa
| | - Robert W. M. Pott
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, South Africa
| |
Collapse
|
16
|
Reungsang A, Zhong N, Yang Y, Sittijunda S, Xia A, Liao Q. Hydrogen from Photo Fermentation. GREEN ENERGY AND TECHNOLOGY 2018. [DOI: 10.1007/978-981-10-7677-0_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
17
|
Qin L, Liu Q, Meng Q, Fan Z, He J, Liu T, Shen C, Zhang G. Anoxic oscillating MBR for photosynthetic bacteria harvesting and high salinity wastewater treatment. BIORESOURCE TECHNOLOGY 2017; 224:69-77. [PMID: 28341096 DOI: 10.1016/j.biortech.2016.10.067] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 06/06/2023]
Abstract
In this study, photosynthetic bacteria (PSB) were first harvested by MBR with pendulum type oscillation (PTO) hollow fiber module in succession and on a large scale. Based on unique properties of PSB, PSB/MBR was successfully applied for high-salinity wastewater treatment. Compared with control PSB-MBR (CMBR), PSB/PTO-MBR exhibited more excellent organics removal, which was mainly attributed to much higher biomass production for utilization. Meanwhile, the influence of light irradiation and aeration on activity of PSB was investigated in detail. Results showed that PTO-MBR with 12h light irradiation proved to be a promising and economical alternative. The cycle of dark/light and anoxic had a positive effect on PSB cultivating. Moreover, PTO-MBR exhibited much higher flux than CMBR even if large amounts of biomass existed, which demonstrated that the strong shear stress on interface of liquid-membrane played important roles on membrane fouling reduction.
Collapse
Affiliation(s)
- Lei Qin
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qiuhua Liu
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qin Meng
- Department of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Zheng Fan
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jinzhe He
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tao Liu
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chong Shen
- Department of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
18
|
Plácido J, Capareda S. Conversion of residues and by-products from the biodiesel industry into value-added products. BIORESOUR BIOPROCESS 2016. [DOI: 10.1186/s40643-016-0100-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
19
|
Sarma SJ, Brar SK, LeBihan Y, Buelna G. Potential Application of Biohydrogen Production Liquid Waste as Phosphate Solubilizing Agent-A Study Using Soybean Plants. Appl Biochem Biotechnol 2016; 178:865-75. [PMID: 26541163 DOI: 10.1007/s12010-015-1914-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
Abstract
With CO2 free emission and a gravimetric energy density higher than gasoline, diesel, biodiesel, and bioethanol, biohydrogen is a promising green renewable energy carrier. During fermentative hydrogen production, 60-70 % of the feedstock is converted to different by-products, dominated by organic acids. In the present investigation, a simple approach for value addition of hydrogen production liquid waste (HPLW) containing these compounds has been demonstrated. In soil, organic acids produced by phosphate solubilizing bacteria chelate the cations of insoluble inorganic phosphates (e.g., Ca3 (PO4)2) and make the phosphorus available to the plants. Organic acid-rich HPLW, therefore, has been evaluated as soil phosphate solubilizer. Application of HPLW as soil phosphate solubilizer was found to improve the phosphorus uptake of soybean plants by 2.18- to 2.74-folds. Additionally, 33-100 % increase in seed germination rate was also observed. Therefore, HPLW has the potential to be an alternative for phosphate solubilizing biofertilizers available in the market. Moreover, the strategy can be useful for phytoremediation of phosphorus-rich soil.
Collapse
Affiliation(s)
- Saurabh Jyoti Sarma
- Institut National de la Recherche Scientifique (INRS), Centre Eau, Terre & Environnement (ETE), 490, Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Satinder Kaur Brar
- Institut National de la Recherche Scientifique (INRS), Centre Eau, Terre & Environnement (ETE), 490, Rue de la Couronne, Québec, QC, G1K 9A9, Canada.
| | - Yann LeBihan
- Centre de Recherche Industrielle du Québec (CRIQ), Québec, QC, G1P 4C7, Canada
| | - Gerardo Buelna
- Centre de Recherche Industrielle du Québec (CRIQ), Québec, QC, G1P 4C7, Canada
| |
Collapse
|
20
|
Garlapati VK, Shankar U, Budhiraja A. Bioconversion technologies of crude glycerol to value added industrial products. ACTA ACUST UNITED AC 2015; 9:9-14. [PMID: 28352587 PMCID: PMC5360980 DOI: 10.1016/j.btre.2015.11.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/14/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022]
Abstract
Crude glycerol that is produced as the by-product from biodiesel, has to be effectively utilized to contribute to the viability of biodiesel. Crude glycerol in large amounts can pose a threat to the environment. Therefore, there is a need to convert this crude glycerol into valued added products using biotechnological processes, which brings new revenue to biodiesel producers. Crude glycerol can serve as a feedstock for biopolymers, poly unsaturated fatty acids, ethanol, hydrogen and n-butanol production and as a raw material for different value added industrial products. Hence, in this review we have presented different bioconversion technologies of glycerol to value added industrial products.
Collapse
|
21
|
Zhang D, Vassiliadis VS. Chlamydomonas reinhardtii Metabolic Pathway Analysis for Biohydrogen Production under Non-Steady-State Operation. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b02034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dongda Zhang
- Department of Chemical Engineering
and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, United Kingdom
| | - Vassilios S. Vassiliadis
- Department of Chemical Engineering
and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, United Kingdom
| |
Collapse
|
22
|
A New Hydrogen-Producing Strain and Its Characterization of Hydrogen Production. Appl Biochem Biotechnol 2015; 177:1676-89. [DOI: 10.1007/s12010-015-1845-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
|
23
|
Pradhan N, Dipasquale L, d'Ippolito G, Panico A, Lens PNL, Esposito G, Fontana A. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana. Int J Mol Sci 2015; 16:12578-600. [PMID: 26053393 PMCID: PMC4490462 DOI: 10.3390/ijms160612578] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 11/18/2022] Open
Abstract
As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production.
Collapse
Affiliation(s)
- Nirakar Pradhan
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043 Cassino, FR, Italy.
| | - Laura Dipasquale
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Giuliana d'Ippolito
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Antonio Panico
- Telematic University Pegaso, piazza Trieste e Trento, 48, 80132 Naples, Italy.
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611-AX Delft, The Netherlands.
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043 Cassino, FR, Italy.
| | - Angelo Fontana
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| |
Collapse
|
24
|
Mekjinda N, Ritchie RJ. Breakdown of food waste by anaerobic fermentation and non-oxygen producing photosynthesis using a photosynthetic bacterium. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 35:199-206. [PMID: 25465509 DOI: 10.1016/j.wasman.2014.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/20/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
Large volumes of food waste are produced by restaurants, hotels, etc generating problems in its collection, processing and disposal. Disposal as garbage increases the organic matter in landfills and leachates. The photosynthetic bacterium Rhodopseudomonas palustris (CGA 009) easily broke down food waste. R. palustris produces H2 under anaerobic conditions and digests a very wide range of organic compounds. R. palustris reduced BOD by ≈70% and COD by ≈33%, starch, ammonia, nitrate, was removed but had little effect on reducing sugar or the total phosphorus, lipid, protein, total solid in a 7-day incubation. R. palustris produced a maximum of 80ml H2/g COD/day. A two-stage anaerobic digestion using yeast as the first stage, followed by a R. palustris digestion was tested but production of H2 was low.
Collapse
Affiliation(s)
- N Mekjinda
- Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120, Thailand
| | - R J Ritchie
- Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120, Thailand.
| |
Collapse
|
25
|
Liu BF, Xie GJ, Wang RQ, Xing DF, Ding J, Zhou X, Ren HY, Ma C, Ren NQ. Simultaneous hydrogen and ethanol production from cascade utilization of mono-substrate in integrated dark and photo-fermentative reactor. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:8. [PMID: 25648915 PMCID: PMC4308915 DOI: 10.1186/s13068-014-0191-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/18/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Integrating hydrogen-producing bacteria with complementary capabilities, dark-fermentative bacteria (DFB) and photo-fermentative bacteria (PFB), is a promising way to completely recover bioenergy from waste biomass. However, the current coupled models always suffer from complicated pretreatment of the effluent from dark-fermentation or imbalance between dark and photo-fermentation, respectively. In this work, an integrated dark and photo-fermentative reactor (IDPFR) was developed to completely convert an organic substrate into bioenergy. RESULTS In the IDPFR, Ethanoligenens harbinese B49 and Rhodopseudomonas faecalis RLD-53 were separated by a membrane into dark and photo chambers, while the acetate produced by E. harbinese B49 in the dark chamber could freely pass through the membrane into the photo chamber and serve as a carbon source for R. faecalis RLD-53. The hydrogen yield increased with increasing working volume of the photo chamber, and reached 3.38 mol H2/mol glucose at the dark-to-photo chamber ratio of 1:4. Hydrogen production by the IDPFR was also significantly affected by phosphate buffer concentration, glucose concentration, and ratio of dark-photo bacteria. The maximum hydrogen yield (4.96 mol H2/mol glucose) was obtained at a phosphate buffer concentration of 20 mmol/L, a glucose concentration of 8 g/L, and a ratio of dark to photo bacteria of 1:20. As the glucose and acetate were used up by E. harbinese B49 and R. faecalis RLD-53, ethanol produced by E. harbinese B49 was the sole end-product in the effluent from the IDPFR, and the ethanol concentration was 36.53 mmol/L with an ethanol yield of 0.82 mol ethanol/mol glucose. CONCLUSIONS The results indicated that the IDPFR not only circumvented complex pretreatments on the effluent in the two-stage process, but also overcame the imbalance of growth and metabolic rate between DFB and PFB in the co-culture process, and effectively enhanced cooperation between E. harbinense B49 and R. faecalis RLD-53. Moreover, simultaneous hydrogen and ethanol production were achieved by coupling E. harbinese B49 and R. faecalis RLD-53 in the IDPFR. According to stoichiometry, the hydrogen and ethanol production efficiencies were 82.67% and 82.19%, respectively. Therefore, IDPFR was an effective strategy for coupling DFB and PFB to fulfill efficient energy recovery from waste biomass.
Collapse
Affiliation(s)
- Bing-Feng Liu
- />State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Guo-Jun Xie
- />State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
- />Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Rui-Qing Wang
- />State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - De-Feng Xing
- />State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Jie Ding
- />State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Xu Zhou
- />Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Hong-Yu Ren
- />State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Chao Ma
- />State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Nan-Qi Ren
- />State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China
| |
Collapse
|
26
|
Biotechnological potential of yeast isolates from cachaça: the Brazilian spirit. J Ind Microbiol Biotechnol 2014; 42:237-46. [PMID: 25540045 DOI: 10.1007/s10295-014-1528-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/17/2014] [Indexed: 01/13/2023]
Abstract
This study identified phenotypic traits appropriate for biotechnological applications of 118 yeasts isolated from cachaça distilleries. Different properties were verified: capacity to use alternative carbon sources; ability to tolerate high concentrations of sucrose, ethanol, methanol, aluminum and zinc as well as different pH values and foam production. Pichia guilliermondii and Pichia anomala strains were identified as the most promising ones for application in the second-generation biofuel industry, showing ability to grow on high glycerol concentrations. Other isolates, identified as Saccharomyces cerevisiae, produced bioethanol comparable to the industrial strains, and were therefore ideal for use in the first-generation ethanol industry. Some of these strains also showed high resistance to aluminum, as observed in sugarcane juice, and to inter-cycle washings with diluted sulphuric acid, as performed in the industrial bioethanol production process. In summary, yeast isolates from cachaça distilleries displayed robustness and phenotypic plasticity, which makes them interesting for biotechnological applications.
Collapse
|
27
|
Pott RWM, Howe CJ, Dennis JS. The purification of crude glycerol derived from biodiesel manufacture and its use as a substrate by Rhodopseudomonas palustris to produce hydrogen. BIORESOURCE TECHNOLOGY 2014; 152:464-70. [PMID: 24326037 DOI: 10.1016/j.biortech.2013.10.094] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/22/2013] [Accepted: 10/28/2013] [Indexed: 05/21/2023]
Abstract
Crude glycerol (CG) from biodiesel production is often contaminated with several compounds, including saponified fatty acids (SFAs). Photofermentative growth of Rhodopseudomonas palustris on glycerol leads to hydrogen production; however, R. palustris is inhibited by SFAs. This study examines inhibition of R. palustris by SFAs, finding that, with increasing concentration of SFA, growth rate falls, reaching zero at an SFA concentration of 0.2 mM. Methods for purifying CG were examined, namely (i) treatment with ethanol and activated carbon, (ii) pH adjustment, (iii) solvent extraction, and (iv) precipitation of the fatty acids with calcium. The rates of growth and production of hydrogen were investigated using CG treated by these methods. It was found that treatment with activated carbon, pH reduction, and calcium precipitation reduced inhibition, while solvent extraction was effective only when used in conjunction with pH adjustment. These treatments allow crude glycerol to be used for hydrogen production by R. palustris.
Collapse
Affiliation(s)
- Robert W M Pott
- University of Cambridge, Department of Chemical Engineering and Biotechnology, New Museums Site, Pembroke Street, Cambridge CB2 3RA, UK.
| | - Christopher J Howe
- University of Cambridge, Department of Biochemistry, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - John S Dennis
- University of Cambridge, Department of Chemical Engineering and Biotechnology, New Museums Site, Pembroke Street, Cambridge CB2 3RA, UK.
| |
Collapse
|