1
|
Cedeno FRP, Olubiyo OJ, Ferreira S. From microbial proteins to cultivated meat for alternative meat-like products: a review on sustainable fermentation approaches. J Biol Eng 2025; 19:44. [PMID: 40369620 PMCID: PMC12077041 DOI: 10.1186/s13036-025-00509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
The global demand for protein is rapidly increasing due to population growth and changing dietary preferences, highlighting the need for sustainable alternatives to traditional animal-based proteins. This review explores cultivated meat and microbial alternative proteins, focusing on their potential to meet nutritional needs while mitigating environmental impacts. It also examines the production of cultivated meat as well as various sources of microbial proteins, including mycoproteins, bacterial proteins, and microalgae, highlighting their nutritional profiles, production methods, and commercial applications. This includes an evaluation of the state of commercialization of mycoproteins and the innovative use of agricultural and industrial by-products as substrates for microbial fermentation. The integration of microbial protein production with the bioenergy sector is evaluated as a relevant alternative to attain a synergetic effect between energy and food production systems. Ultimately, this work aims to underscore the importance of microbial proteins in advancing towards a more sustainable protein production system, offering insights into current challenges and future opportunities in the field of fermentation to produce alternative proteins.
Collapse
Affiliation(s)
- Fernando Roberto Paz Cedeno
- Department of Food Science, The University of ArkansasSystem - Division of Agriculture (UADA), , Fayetteville, AR, 72704, USA
| | - Olumide Joseph Olubiyo
- Department of Food Science, The University of ArkansasSystem - Division of Agriculture (UADA), , Fayetteville, AR, 72704, USA
| | - Sungil Ferreira
- Department of Food Science, The University of ArkansasSystem - Division of Agriculture (UADA), , Fayetteville, AR, 72704, USA.
| |
Collapse
|
2
|
Carneiro RB, Gomes GM, Camargo FP, Zaiat M, Santos-Neto ÁJ. Anaerobic co-metabolic biodegradation of pharmaceuticals and personal care products driven by glycerol fermentation. CHEMOSPHERE 2024; 357:142006. [PMID: 38621493 DOI: 10.1016/j.chemosphere.2024.142006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Anaerobic digestion in two sequential phases, acidogenesis and methanogenesis, has been shown to be beneficial for enhancing the biomethane generation from wastewater. In this work, the application of glycerol (GOH) as a fermentation co-substrate during the wastewater treatment was evaluated on the biodegradation of different pharmaceuticals and personal care products (PPCPs). GOH co-digestion during acidogenesis led to a significant increase in the biodegradation of acetaminophen (from 78 to 89%), ciprofloxacin (from 25 to 46%), naproxen (from 73 to 86%), diclofenac (from 36 to 48%), ibuprofen (from 65 to 88%), metoprolol (from 45 to 59%), methylparaben (from 64 to 78%) and propylparaben (from 68 to 74%). The heterotrophic co-metabolism of PPCPs driven by glycerol was confirmed by the biodegradation kinetics, in which kbio (biodegradation kinetics constant) values increased from 0.18 to 2.11 to 0.27-3.60 L g-1-VSS d-1, for the operational phases without and with GOH, respectively. The assessment of metabolic pathways in each phase revealed that the prevalence of aromatic compounds degradation, metabolism of xenobiotics by cytochrome P450, and benzoate degradation routes during acidogenesis are key factors for the enzymatic mechanisms linked to the PPCPs co-metabolism. The phase separation of anaerobic digestion was effective in the PPCPs biodegradation, and the co-fermentation of glycerol provided an increase in the generation potential of biomethane in the system (energetic potential of 5.0 and 6.3 kJ g-1-CODremoved, without and with GOH, respectively). This study showed evidence that glycerol co-fermentation can exert a synergistic effect on the PPCPs removal during anaerobic digestion mediated by heterotrophic co-metabolism.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo, 13566-590, Brazil; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain.
| | - Gisele M Gomes
- São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Franciele P Camargo
- Bioenergy Research Institute (IPBEN), UNESP- São Paulo State University, Rio Claro, SP, 13500-230, Brazil.
| | - Marcelo Zaiat
- São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Álvaro J Santos-Neto
- São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo, 13566-590, Brazil.
| |
Collapse
|
3
|
Dishisha T, Jain M, Hatti-Kaul R. High cell density sequential batch fermentation for enhanced propionic acid production from glucose and glycerol/glucose mixture using Acidipropionibacterium acidipropionici. Microb Cell Fact 2024; 23:91. [PMID: 38532467 DOI: 10.1186/s12934-024-02366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Propionic acid fermentation from renewable feedstock suffers from low volumetric productivity and final product concentration, which limits the industrial feasibility of the microbial route. High cell density fermentation techniques overcome these limitations. Here, propionic acid (PA) production from glucose and a crude glycerol/glucose mixture was evaluated using Acidipropionibacterium acidipropionici, in high cell density (HCD) batch fermentations with cell recycle. The agro-industrial by-product, heat-treated potato juice, was used as N-source. RESULTS Using 40 g/L glucose for nine consecutive batches yielded an average of 18.76 ± 1.34 g/L of PA per batch (0.59 gPA/gGlu) at a maximum rate of 1.15 gPA/L.h, and a maximum biomass of 39.89 gCDW/L. Succinic acid (SA) and acetic acid (AA) were obtained as major by-products and the mass ratio of PA:SA:AA was 100:23:25. When a crude glycerol/glucose mixture (60 g/L:30 g/L) was used for 6 consecutive batches with cell recycle, an average of 35.36 ± 2.17 g/L of PA was obtained per batch (0.51 gPA/gC-source) at a maximum rate of 0.35 g/L.h, and reaching a maximum biomass concentration of 12.66 gCDW/L. The PA:SA:AA mass ratio was 100:29:3. Further addition of 0.75 mg/L biotin as a supplement to the culture medium enhanced the cell growth reaching 21.89 gCDW/L, and PA productivity to 0.48 g/L.h, but also doubled AA concentration. CONCLUSION This is the highest reported productivity from glycerol/glucose co-fermentation where majority of the culture medium components comprised industrial by-products (crude glycerol and HTPJ). HCD batch fermentations with cell recycling are promising approaches towards industrialization of the bioprocess.
Collapse
Affiliation(s)
- Tarek Dishisha
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Mridul Jain
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, P.O. Box 124, 221 00, Lund, Sweden
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, P.O. Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
4
|
Atasoy M, Álvarez Ordóñez A, Cenian A, Djukić-Vuković A, Lund PA, Ozogul F, Trček J, Ziv C, De Biase D. Exploitation of microbial activities at low pH to enhance planetary health. FEMS Microbiol Rev 2024; 48:fuad062. [PMID: 37985709 PMCID: PMC10963064 DOI: 10.1093/femsre/fuad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
Awareness is growing that human health cannot be considered in isolation but is inextricably woven with the health of the environment in which we live. It is, however, under-recognized that the sustainability of human activities strongly relies on preserving the equilibrium of the microbial communities living in/on/around us. Microbial metabolic activities are instrumental for production, functionalization, processing, and preservation of food. For circular economy, microbial metabolism would be exploited to produce building blocks for the chemical industry, to achieve effective crop protection, agri-food waste revalorization, or biofuel production, as well as in bioremediation and bioaugmentation of contaminated areas. Low pH is undoubtedly a key physical-chemical parameter that needs to be considered for exploiting the powerful microbial metabolic arsenal. Deviation from optimal pH conditions has profound effects on shaping the microbial communities responsible for carrying out essential processes. Furthermore, novel strategies to combat contaminations and infections by pathogens rely on microbial-derived acidic molecules that suppress/inhibit their growth. Herein, we present the state-of-the-art of the knowledge on the impact of acidic pH in many applied areas and how this knowledge can guide us to use the immense arsenal of microbial metabolic activities for their more impactful exploitation in a Planetary Health perspective.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University & Research and Technical University Delft, Droevendaalsesteeg 4, 6708 PB,Wageningen, the Netherlands
| | - Avelino Álvarez Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Adam Cenian
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Department of Physical Aspects of Ecoenergy, 14 Fiszera St., 80-231 Gdańsk, Poland
| | - Aleksandra Djukić-Vuković
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Peter A Lund
- Institute of Microbiology and Infection,School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Fatih Ozogul
- Department of Seafood Processing and Technology, Faculty of Fisheries, Cukurova University, Balcali, 01330, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Balcali, 01330 Adana, Turkey
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization – Volcani Center, 68 HaMaccabim Road , P.O.B 15159 Rishon LeZion 7505101, Israel
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
5
|
Alessio F, Lennert D, Sandra VD, Frederik W, Verhaeghe K, Koen VL, Joris R, Rosalia D. Glycerol used for denitrification in full-scale wastewater treatment plants: nitrous oxide emissions, sludge acclimatization, and other insights. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:645-657. [PMID: 37578880 PMCID: wst_2023_240 DOI: 10.2166/wst.2023.240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Glycerol is commonly employed for denitrification purposes in full-scale wastewater treatment. In non-acclimatized biomass, the glycerol is very inefficient resulting in a high C/N ratio and low-standard denitrification rates. The acclimatization is driven by the microbial enrichment of Saccharimonadales and Propionibacteriales as found in different sampled municipal sludges flanking the dominant presence of Burkholderiales. The selective strategy is based on a very efficient process in terms of C/N ratios and standard denitrification rates, but it leads to nitrite accumulation. As a result, severe and unexpected nitrous oxide emissions were found in full-scale with emission factors up to 2.5% kgN2O (kgKJNremoved)-1. Simultaneous dosage of isobutirate in a full-scale experiment could counter the nitrous oxide emissions. As nitrous oxide emissions were found proportional to the dosed glycerol-based COD, the authors suggest that, in case of acclimatization of biomass to glycerol, an emission factor based on the dosed COD should substitute the general nitrous oxide emission factors based on incoming or removed nitrogen to the plant.
Collapse
Affiliation(s)
- Fenu Alessio
- Aquafin NV, Dijkstraat 8, Aartselaar, Belgium E-mail:
| | | | | | | | | | | | - Roels Joris
- Aquafin NV, Dijkstraat 8, Aartselaar, Belgium
| | | |
Collapse
|
6
|
Kim SK, Lee M, Lee YQ, Lee HJ, Rho M, Kim Y, Seo JY, Youn SH, Hwang SJ, Kang NG, Lee CH, Park SY, Lee DY. Genome-scale metabolic modeling and in silico analysis of opportunistic skin pathogen Cutibacterium acnes. Front Cell Infect Microbiol 2023; 13:1099314. [PMID: 37520435 PMCID: PMC10374032 DOI: 10.3389/fcimb.2023.1099314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Cutibacterium acnes, one of the most abundant skin microbes found in the sebaceous gland, is known to contribute to the development of acne vulgaris when its strains become imbalanced. The current limitations of acne treatment using antibiotics have caused an urgent need to develop a systematic strategy for selectively targeting C. acnes, which can be achieved by characterizing their cellular behaviors under various skin environments. To this end, we developed a genome-scale metabolic model (GEM) of virulent C. acnes, iCA843, based on the genome information of a relevant strain from ribotype 5 to comprehensively understand the pathogenic traits of C. acnes in the skin environment. We validated the model qualitatively by demonstrating its accuracy prediction of propionate and acetate production patterns, which were consistent with experimental observations. Additionally, we identified unique biosynthetic pathways for short-chain fatty acids in C. acnes compared to other GEMs of acne-inducing skin pathogens. By conducting constraint-based flux analysis under endogenous carbon sources in human skin, we discovered that the Wood-Werkman cycle is highly activated under acnes-associated skin condition for the regeneration of NAD, resulting in enhanced propionate production. Finally, we proposed potential anti-C. acnes targets by using the model-guided systematic framework based on gene essentiality analysis and protein sequence similarity search with abundant skin microbiome taxa.
Collapse
Affiliation(s)
- Su-Kyung Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Minouk Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Yi Qing Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Hyun Jun Lee
- Department of Biomedical Informatics, Hanyang University, Seoul, Republic of Korea
| | - Mina Rho
- Department of Biomedical Informatics, Hanyang University, Seoul, Republic of Korea
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea
| | - Yunkwan Kim
- R&D Center, LG Household & Healthcare (LG H&H), Seoul, Republic of Korea
| | - Jung Yeon Seo
- R&D Center, LG Household & Healthcare (LG H&H), Seoul, Republic of Korea
| | - Sung Hun Youn
- R&D Center, LG Household & Healthcare (LG H&H), Seoul, Republic of Korea
| | - Seung Jin Hwang
- R&D Center, LG Household & Healthcare (LG H&H), Seoul, Republic of Korea
| | - Nae Gyu Kang
- R&D Center, LG Household & Healthcare (LG H&H), Seoul, Republic of Korea
| | - Choong-Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| |
Collapse
|
7
|
Piwowarek K, Lipińska E, Kieliszek M. Reprocessing of side-streams towards obtaining valuable bacterial metabolites. Appl Microbiol Biotechnol 2023; 107:2169-2208. [PMID: 36929188 PMCID: PMC10033485 DOI: 10.1007/s00253-023-12458-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Every year, all over the world, the industry generates huge amounts of residues. Side-streams are most often used as feed, landfilled, incinerated, or discharged into sewage. These disposal methods are far from perfect. Taking into account the composition of the side-streams, it seems that they should be used as raw materials for further processing, in accordance with the zero-waste policy and sustainable development. The article describes the latest achievements in biotechnology in the context of bacterial reprocessing of residues with the simultaneous acquisition of their metabolites. The article focuses on four metabolites - bacterial cellulose, propionic acid, vitamin B12 and PHAs. Taking into account global trends (e.g. food, packaging, medicine), it seems that in the near future there will be a sharp increase in demand for this type of compounds. In order for their production to be profitable and commercialised, cheap methods of its obtaining must be developed. The article, in addition to obtaining these bacterial metabolites from side-streams, also discusses e.g. factors affecting their production, metabolic pathways and potential and current applications. The presented chapters provide a complete overview of the current knowledge on above metabolites, which can be helpful for the academic and scientific communities and the several industries. KEY POINTS: • The industry generates millions of tons of organic side-streams each year. • Generated residues burden the natural environment. • A good and cost-effective method of side-streams management seems to be biotechnology - reprocessing with the use of bacteria. • Biotechnological disposal of side-streams gives the opportunity to obtain valuable compounds in cheaper ways: BC, PA, vitmain B12, PHAs.
Collapse
Affiliation(s)
- Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Edyta Lipińska
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
8
|
Cavero-Olguin VH, Dishisha T, Hatti-Kaul R. Membrane-based continuous fermentation with cell recycling for propionic acid production from glycerol by Acidipropionibacterium acidipropionici. Microb Cell Fact 2023; 22:43. [PMID: 36870992 PMCID: PMC9985857 DOI: 10.1186/s12934-023-02049-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Microbial production of propionic acid (PA) from renewable resources is limited by the slow growth of the producer bacteria and product-mediated inhibition. The present study evaluates high cell density continuous PA fermentation from glycerol (Gly) using Acidipropionibacterium acidipropionici DSM 4900 in a membrane-based cell recycling system. A ceramic tubular membrane filter of 0.22 μm pore size was used as the filtering device for cell recycling. The continuous fermentations were run sequentially at dilution rates of 0.05 and 0.025 1/h using varying glycerol concentrations and two different yeast extract concentrations. RESULTS PA volumetric productivity of 0.98 g/L.h with a product yield of 0.38 gPA/gGly was obtained with 51.40 g/L glycerol at a yeast extract concentration of 10 g/L. Increasing the glycerol and yeast extract concentrations to 64.50 g/L and 20 g/L, respectively, increased in PA productivity, product yield, and concentration to 1.82 g/L.h, 0.79 gPA/gGly, and 38.37 g/L, respectively. However, lowering the dilution rate to 0.025 1/h reduced the production efficiency. The cell density increased from 5.80 to 91.83 gCDW/L throughout the operation, which lasted for a period of 5 months. A tolerant variant of A. acidipropoinici exhibiting growth at a PA concentration of 20 g/L was isolated at the end of the experiment. CONCLUSIONS Applying the current approach for PA fermentation can overcome several limitations for process industrialization.
Collapse
Affiliation(s)
- Victor Hugo Cavero-Olguin
- Division of Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, 124, 221 00, Lund, Sweden.,Área de Biotecnología, Instituto de Investigaciones Fármaco Bioquímicas, Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés, 3239, La Paz, Bolivia
| | - Tarek Dishisha
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, 124, 221 00, Lund, Sweden.
| |
Collapse
|
9
|
Bhat N, Yadav AK, Karmakar M, Thakur A, Mal SS, Dutta S. Preparation of 5-(Acyloxymethyl)furfurals from Carbohydrates Using Zinc Chloride/Acetic Acid Catalyst System and Their Synthetic Value Addition. ACS OMEGA 2023; 8:8119-8124. [PMID: 36873025 PMCID: PMC9979359 DOI: 10.1021/acsomega.3c00143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
5-(Acyloxymethyl)furfurals (AMFs) have received considerable attention as hydrophobic, stable, and halogen-free congeners of 5-(hydroxymethyl)furfural (HMF) for synthesizing biofuels and biochemicals. In this work, AMFs have been prepared directly from carbohydrates in satisfactory yields using the combination of ZnCl2 as the Lewis acid catalyst and carboxylic acid as the Brønsted acid catalyst. The process was initially optimized for 5-(acetoxymethyl)furfural (AcMF) and then extended to producing other AMFs. The effects of reaction temperature, duration, loading of the substrate, and dosage of ZnCl2 on AcMF yield were explored. Fructose and glucose provided AcMF in 80% and 60% isolated yield, respectively, under optimized parameters (5 wt % substrate, AcOH, 4 equiv ZnCl2, 100 °C, 6 h). Finally, AcMF was converted into high-value chemicals, such as 5-(hydroxymethyl)furfural, 2,5-bis(hydroxymethyl)furan, 2,5-diformylfuran, levulinic acid, and 2,5-furandicarboxylic acid in satisfactory yields to demonstrate the synthetic versatility of AMFs as carbohydrate-derived renewable chemical platforms.
Collapse
Affiliation(s)
- Navya
Subray Bhat
- Department
of Chemistry, National Institute of Technology
Karnataka (NITK), Surathkal, Mangalore 575025, Karnataka, India
| | - Abhishek Kumar Yadav
- Department
of Chemistry, National Institute of Technology
Karnataka (NITK), Surathkal, Mangalore 575025, Karnataka, India
| | - Manisha Karmakar
- Department
of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Arunabha Thakur
- Department
of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Sib Sankar Mal
- Department
of Chemistry, National Institute of Technology
Karnataka (NITK), Surathkal, Mangalore 575025, Karnataka, India
| | - Saikat Dutta
- Department
of Chemistry, National Institute of Technology
Karnataka (NITK), Surathkal, Mangalore 575025, Karnataka, India
| |
Collapse
|
10
|
Ceron-Chafla P, de Vrieze J, Rabaey K, van Lier JB, Lindeboom REF. Steering the product spectrum in high-pressure anaerobic processes: CO 2 partial pressure as a novel tool in biorefinery concepts. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:27. [PMID: 36803622 PMCID: PMC9938588 DOI: 10.1186/s13068-023-02262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/05/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Elevated CO2 partial pressure (pCO2) has been proposed as a potential steering parameter for selective carboxylate production in mixed culture fermentation. It is anticipated that intermediate product spectrum and production rates, as well as changes in the microbial community, are (in)directly influenced by elevated pCO2. However, it remains unclear how pCO2 interacts with other operational conditions, namely substrate specificity, substrate-to-biomass (S/X) ratio and the presence of an additional electron donor, and what effect pCO2 has on the exact composition of fermentation products. Here, we investigated possible steering effects of elevated pCO2 combined with (1) mixed substrate (glycerol/glucose) provision; (2) subsequent increments in substrate concentration to increase the S/X ratio; and (3) formate as an additional electron donor. RESULTS Metabolite predominance, e.g., propionate vs. butyrate/acetate, and cell density, depended on interaction effects between pCO2-S/X ratio and pCO2-formate. Individual substrate consumption rates were negatively impacted by the interaction effect between pCO2-S/X ratio and were not re-established after lowering the S/X ratio and adding formate. The product spectrum was influenced by the microbial community composition, which in turn, was modified by substrate type and the interaction effect between pCO2-formate. High propionate and butyrate levels strongly correlated with Negativicutes and Clostridia predominance, respectively. After subsequent pressurized fermentation phases, the interaction effect between pCO2-formate enabled a shift from propionate towards succinate production when mixed substrate was provided. CONCLUSIONS Overall, interaction effects between elevated pCO2, substrate specificity, high S/X ratio and availability of reducing equivalents from formate, rather than an isolated pCO2 effect, modified the proportionality of propionate, butyrate and acetate in pressurized mixed substrate fermentations at the expense of reduced consumption rates and increased lag-phases. The interaction effect between elevated pCO2 and formate was beneficial for succinate production and biomass growth with a glycerol/glucose mixture as the substrate. The positive effect may be attributed to the availability of extra reducing equivalents, likely enhanced carbon fixating activity and hindered propionate conversion due to increased concentration of undissociated carboxylic acids.
Collapse
Affiliation(s)
- Pamela Ceron-Chafla
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands.
| | - Jo de Vrieze
- grid.5342.00000 0001 2069 7798Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Korneel Rabaey
- grid.5342.00000 0001 2069 7798Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium ,grid.510907.aCenter for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Coupure Links 653, 9000 Ghent, Belgium
| | - Jules B. van Lier
- grid.5292.c0000 0001 2097 4740Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Ralph E. F. Lindeboom
- grid.5292.c0000 0001 2097 4740Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| |
Collapse
|
11
|
Li W, Lu L, Cheng C, Ren N, Yang ST, Liu M. Biohydrogen production from brown algae fermentation: Relationship between substrate reduction degree and hydrogen production. BIORESOURCE TECHNOLOGY 2022; 364:128069. [PMID: 36208827 DOI: 10.1016/j.biortech.2022.128069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In this study, mannitol and mannitol-rich seaweed were fermented to investigate the relationship between substrate reduction degree and hydrogen production performance. The results showed that acetate was required in mannitol fermentation with an optimum acetate/mannitol mass ratio of 1:5. Hydrogen production and yield of mannitol fermentation reached 123.76 mL and 2.12 mol/mol-mannitol, respectively, 42.02 % and 26.95 % higher than that of glucose, respectively. The acetate was fully assimilated and the butyrate selectivity reached 100 % in the effluent. Redox potential and electron distribution showed that mannitol increased the overall electron input from mannitol and acetate, leading to the increase in hydrogen and butyrate generation. Hydrogen yield reached 2.33 mol/mol-mannitol with brown algae hydrolysate, which was the highest ever reported. This study demonstrated that substrate with a higher reduction degree could yield higher hydrogen and showed the great application potential of brown algae fermentation for the co-production of hydrogen and butyrate.
Collapse
Affiliation(s)
- Weiming Li
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Lihui Lu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Chi Cheng
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH, 43210, USA
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
12
|
Tu D, Ma C, Zeng Z, Xu Q, Guo Z, Song X, Zhao X. Identification of hub genes and transcription factor regulatory network for heart failure using RNA-seq data and robust rank aggregation analysis. Front Cardiovasc Med 2022; 9:916429. [PMID: 36386304 PMCID: PMC9649652 DOI: 10.3389/fcvm.2022.916429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Heart failure (HF) is the end stage of various cardiovascular diseases with a high mortality rate. Novel diagnostic and therapeutic biomarkers for HF are urgently required. Our research aims to identify HF-related hub genes and regulatory networks using bioinformatics and validation assays. Methods Using four RNA-seq datasets in the Gene Expression Omnibus (GEO) database, we screened differentially expressed genes (DEGs) of HF using Removal of Unwanted Variation from RNA-seq data (RUVSeq) and the robust rank aggregation (RRA) method. Then, hub genes were recognized using the STRING database and Cytoscape software with cytoHubba plug-in. Furthermore, reliable hub genes were validated by the GEO microarray datasets and quantitative reverse transcription polymerase chain reaction (qRT-PCR) using heart tissues from patients with HF and non-failing donors (NFDs). In addition, R packages “clusterProfiler” and “GSVA” were utilized for enrichment analysis. Moreover, the transcription factor (TF)–DEG regulatory network was constructed by Cytoscape and verified in a microarray dataset. Results A total of 201 robust DEGs were identified in patients with HF and NFDs. STRING and Cytoscape analysis recognized six hub genes, among which ASPN, COL1A1, and FMOD were confirmed as reliable hub genes through microarray datasets and qRT-PCR validation. Functional analysis showed that the DEGs and hub genes were enriched in T-cell-mediated immune response and myocardial glucose metabolism, which were closely associated with myocardial fibrosis. In addition, the TF–DEG regulatory network was constructed, and 13 significant TF–DEG pairs were finally identified. Conclusion Our study integrated different RNA-seq datasets using RUVSeq and the RRA method and identified ASPN, COL1A1, and FMOD as potential diagnostic biomarkers for HF. The results provide new insights into the underlying mechanisms and effective treatments of HF.
Collapse
Affiliation(s)
- Dingyuan Tu
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chaoqun Ma
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - ZhenYu Zeng
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qiang Xu
- Department of Cardiology, Navy 905 Hospital, Naval Medical University, Shanghai, China
| | - Zhifu Guo
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Zhifu Guo,
| | - Xiaowei Song
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Xiaowei Song,
| | - Xianxian Zhao
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Xianxian Zhao,
| |
Collapse
|
13
|
Wang G, Wang M, Liu L, Hui X, Wang B, Ma K, Yang X. Improvement of the catalytic performance of glycerol kinase from Bacillus subtilis by chromosomal site-directed mutagenesis. Biotechnol Lett 2022; 44:1051-1061. [PMID: 35922648 DOI: 10.1007/s10529-022-03281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022]
Abstract
Glycerol kinase is the key enzyme in glycerol metabolism, and its catalytic efficiency has an important effect on glycerol utilization. Based on an analysis of the glycerol utilization pathway and regulation mechanism in B. subtilis, we conducted site-directed mutagenesis of the key glycerol kinase gene (glpK) on the chromosome to improve the glycerol utilization efficiency of Bacillus subtilis. Recombinant wild-type Bacillus subtilis glycerol kinase (BsuGlpKWT) and two mutants (BsuGlpKM270I and BsuGlpKS71V) were successfully overexpressed in Escherichia coli BL21(DE3) and purified by Ni-IDA metal chelate chromatography. The specific activity of the BsuGlpKM270I mutant (62.6 U/mg) was significantly higher (296.2%) than that of wild-type BsuGlpKWT (15.8 U/mg). By contrast, the mutant BsuGlpKS71V (4.89 U/mg) exhibited lower (69.1%) activity than BsuGlpKWT, which suggested that variant S71V exhibited reduced catalytic efficiency for the substrate. Furthermore, the mutant strain B. subtilis M270I was constructed using a markerless delivery system, and exhibited a higher specific growth rate (improved by 11.3%, from 0.453 ± 0.012 to 0.511 ± 0.017 h-1) and higher maximal biomass (cell dry weight increased by 16%, from 0.577 ± 0.033 to 0.721 ± 0.015 g/L) than the parental strain with a shortened lag phase (2 ~ 4 h shorter) in M9 minimal medium with glycerol. These results indicate that the mutated glpK resulted in improved glycerol utilization, which has broad application prospects.
Collapse
Affiliation(s)
- Guanglu Wang
- Laboratory of Biotransformation and Biocatalysis, School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Dongfeng Road 5, Henan, 450000, People's Republic of China.,School of Food and Bioengineering/Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5, Zhengzhou, Henan, 450001, People's Republic of China
| | - Mengyuan Wang
- Laboratory of Biotransformation and Biocatalysis, School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Dongfeng Road 5, Henan, 450000, People's Republic of China.,School of Food and Bioengineering/Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5, Zhengzhou, Henan, 450001, People's Republic of China
| | - Lanxi Liu
- Laboratory of Biotransformation and Biocatalysis, School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Dongfeng Road 5, Henan, 450000, People's Republic of China.,School of Food and Bioengineering/Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xiaohan Hui
- Laboratory of Biotransformation and Biocatalysis, School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Dongfeng Road 5, Henan, 450000, People's Republic of China.,School of Food and Bioengineering/Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5, Zhengzhou, Henan, 450001, People's Republic of China
| | - Bingyang Wang
- Laboratory of Biotransformation and Biocatalysis, School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Dongfeng Road 5, Henan, 450000, People's Republic of China.,School of Food and Bioengineering/Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5, Zhengzhou, Henan, 450001, People's Republic of China
| | - Ke Ma
- Laboratory of Biotransformation and Biocatalysis, School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Dongfeng Road 5, Henan, 450000, People's Republic of China.,School of Food and Bioengineering/Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xuepeng Yang
- Laboratory of Biotransformation and Biocatalysis, School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Dongfeng Road 5, Henan, 450000, People's Republic of China. .,School of Food and Bioengineering/Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
14
|
Piwowarek K, Lipińska E, Hać-Szymańczuk E, Kolotylo V, Kieliszek M. Use of apple pomace, glycerine, and potato wastewater for the production of propionic acid and vitamin B12. Appl Microbiol Biotechnol 2022; 106:5433-5448. [PMID: 35879434 PMCID: PMC9418287 DOI: 10.1007/s00253-022-12076-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 12/05/2022]
Abstract
Abstract Propionic acid bacteria (PAB) are a source of valuable metabolites, including propionic acid and vitamin B12. Propionic acid, a food preservative, is synthesized from petroleum refining by-products, giving rise to ecological concerns. Due to changing food trends, the demand for vitamin B12 has been expected to increase in the future. Therefore, it is necessary to look for new, alternative methods of obtaining these compounds. This study was conducted with an aim of optimizing the production of PAB metabolites using only residues (apple pomace, waste glycerine, and potato wastewater), without any enzymatic or chemical pretreatment and enrichment. Media consisting of one, two, or three industrial side-streams were used for the production of PAB metabolites. The highest production of propionic acid was observed in the medium containing all three residues (8.15 g/L, yield: 0.48 g/g). In the same medium, the highest production of acetic acid was found — 2.31 g/L (0.13 g/g). The presence of waste glycerine in the media had a positive effect on the efficiency of propionic acid production and P/A ratio. The concentration of vitamin B12 obtained in the wet biomass of Propionibacterium freudenreichii DSM 20271 ranged from 90 to 290 µg/100 g. The highest production of cobalamin was achieved in potato wastewater and apple pomace, which may be a source of the precursors of vitamin B12 — cobalt and riboflavin. The results obtained show both propionic acid and vitamin B12 can be produced in a more sustainable manner through the fermentation of residues which are often not properly managed. Key points • The tested strain has been showed metabolic activity in the analyzed industrial side-streams (apple pomace, waste glycerine, potato wastewater). • All the side-streams were relevant for the production of propinic acid. • The addition of waste glycerine increases the propionic acid production efficiency and P/A ratio. • B12 was produced the most in the media containing potato wastewater and apple pomace as dominant ingredients.
Collapse
Affiliation(s)
- Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Edyta Lipińska
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Elżbieta Hać-Szymańczuk
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Vitaliy Kolotylo
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
15
|
Hocq R, Sauer M. An artificial coculture fermentation system for industrial propanol production. FEMS MICROBES 2022. [DOI: 10.1093/femsmc/xtac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ABSTRACT
Converting plant biomass into biofuels and biochemicals via microbial fermentation has received considerable attention in the quest for finding renewable energies and materials. Most approaches have so far relied on cultivating a single microbial strain, tailored for a specific purpose. However, this contrasts to how nature works, where microbial communities rather than single species perform all tasks. In artificial coculture systems, metabolic synergies are rationally designed by carefully selecting and simultaneously growing different microbes, taking advantage of the broader metabolic space offered by the use of multiple organisms.
1-propanol and 2-propanol, as biofuels and precursors for propylene, are interesting target molecules to valorize plant biomass. Some solventogenic Clostridia can naturally produce 2-propanol in the so-called Isopropanol-Butanol-Ethanol (IBE) fermentation, by coupling 2-propanol synthesis to acetate and butyrate reduction into ethanol and 1-butanol.
In this work, we hypothesized propanoate would be converted into 1-propanol by the IBE metabolism, while driving at the same time 2-propanol synthesis. We first verified this hypothesis and chose two propionic acid bacteria (PAB) strains as propanoate producers. While consecutive PAB and IBE fermentations only resulted in low propanol titers, coculturing Propionibacterium freudenreichii and Clostridium beijerinckii at various inoculation ratios yielded much higher solvent concentrations, with as much as 21 g/L of solvents (58% increase compared to C. beijerinckii monoculture) and 12 g/L of propanol (98% increase). Taken together, our results underline how artificial cocultures can be used to foster metabolic synergies, increasing fermentative performances and orienting the carbon flow towards a desired product.
Collapse
Affiliation(s)
- Rémi Hocq
- CD-Laboratory for Biotechnology of Glycerol, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Sauer
- CD-Laboratory for Biotechnology of Glycerol, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
16
|
Collograi KC, da Costa AC, Ienczak JL. Fermentation strategies to improve propionic acid production with propionibacterium ssp.: a review. Crit Rev Biotechnol 2022; 42:1157-1179. [PMID: 35264026 DOI: 10.1080/07388551.2021.1995695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Propionic acid (PA) is a carboxylic acid applied in a variety of processes, such as food and feed preservative, and as a chemical intermediate in the production of polymers, pesticides and drugs. PA production is predominantly performed by petrochemical routes, but environmental issues are making it necessary to use sustainable processes based on renewable materials. PA production by fermentation with the Propionibacterium genus is a promising option in this scenario, due to the ability of this genus to consume a variety of renewable carbon sources with higher productivity than other native microorganisms. However, Propionibacterium fermentation processes present important challenges that must be faced to make this route competitive, such as: a high fermentation time, product inhibition and low PA final titer, which increase the cost of product recovery. This article summarizes the state of the art regarding strategies to improve PA production by fermentation with the Propionibacterium genus. Firstly, strategies associated with environmental fermentation conditions and nutrition requirements are discussed. Subsequently, advantages and disadvantages of various strategies proposed to improve process performance (high cell concentration by immobilization or recycle, co-culture fermentation, genome shuffling, evolutive and metabolic engineering, and in situ recovery) are evaluated.
Collapse
Affiliation(s)
| | | | - Jaciane Lutz Ienczak
- Chemical Engineering and Food Engineering Department- Santa Catarina, Federal University, Florianópolis, Brazil
| |
Collapse
|
17
|
de Assis DA, Machado C, Matte C, Ayub MAZ. High Cell Density Culture of Dairy Propionibacterium sp. and Acidipropionibacterium sp.: A Review for Food Industry Applications. FOOD BIOPROCESS TECH 2022; 15:734-749. [PMID: 35069966 PMCID: PMC8761093 DOI: 10.1007/s11947-021-02748-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022]
Abstract
The dairy bacteria Propionibacterium sp. and Acidipropionibacterium sp. are versatile and potentially probiotic microorganisms showing outstanding functionalities for the food industry, such as the production of propionic acid and vitamin B12 biosynthesis. They are the only food grade microorganisms able to produce vitamin B12. However, the fermentation batch process using these bacteria present some bioprocess limitations due to strong end-product inhibition, cells slow-growing rates, low product titer, yields and productivities, which reduces the bioprocess prospects for industrial applications. The high cell density culture (HCDC) bioprocess system is known as an efficient approach to overcome most of those problems. The main techniques applied to achieve HCDC of dairy Propionibacterium are the fed-batch cultivation, cell recycling, perfusion, extractive fermentation, and immobilization. In this review, the techniques available and reported to achieve HCDC of Propionibacterium sp. and Acidipropionibacterium sp. are discussed, and the advantages and drawbacks of this system of cultivation in relation to biomass formation, vitamin B12 biosynthesis, and propionic acid production are evaluated.
Collapse
Affiliation(s)
- Dener Acosta de Assis
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, PO Box 15090, ZC 91501-970 Porto Alegre, RS Brazil
| | - Camille Machado
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, PO Box 15090, ZC 91501-970 Porto Alegre, RS Brazil
| | - Carla Matte
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, PO Box 15090, ZC 91501-970 Porto Alegre, RS Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, PO Box 15090, ZC 91501-970 Porto Alegre, RS Brazil
| |
Collapse
|
18
|
Chen Y, Zhang X, Chen Y. Propionic acid-rich fermentation (PARF) production from organic wastes: A review. BIORESOURCE TECHNOLOGY 2021; 339:125569. [PMID: 34303105 DOI: 10.1016/j.biortech.2021.125569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, increasing attention has been drawn to biological valorization of organic wastes. Wherein, propionic acid-rich fermentation (PARF) has become a focal point of research. The objective of this review is to make a thorough investigation on the potential of PARF production and give future outlook. By discussing the key factors affecting PARF including substrate types, pH, temperature, retention time, etc., and various improving methods to enhance PARF including different pretreatments, inoculation optimization and immobilization, a comprehensive summary on how to achieve PARF from organic waste is presented. Then, current application of PARF liquid is concluded, which is found to play an essential role in the efficient denitrification and phosphorus removal of wastewater and preparation of microbial lipids. Finally, the environmental performance of PARF production is reviewed through life cycle assessment studies, and environmentally sensitive sectors are summarized for process optimization, providing a reference for waste management in low carbon scenarios.
Collapse
Affiliation(s)
- Yuexi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
19
|
Fermentative production of propionic acid: prospects and limitations of microorganisms and substrates. Appl Microbiol Biotechnol 2021; 105:6199-6213. [PMID: 34410439 DOI: 10.1007/s00253-021-11499-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Propionic acid is an important organic acid with wide industrial applications, especially in the food industry. It is currently produced from petrochemicals via chemical routes. Increasing concerns about greenhouse gas emissions from fossil fuels and a growing consumer preference for bio-based products have led to interest in fermentative production of propionic acid, but it is not yet competitive with chemical production. To improve the economic feasibility and sustainability of bio-propionic acid, fermentation performance in terms of concentration, yield, and productivity must be improved and the cost of raw materials must be reduced. These goals require robust microbial producers and inexpensive renewable feedstocks, so the present review focuses on bacterial producers of propionic acid and promising sources of substrates as carbon sources. Emphasis is placed on assessing the capacity of propionibacteria and the various approaches pursued in an effort to improve their performance through metabolic engineering. A wide range of substrates employed in propionic acid fermentation is analyzed with particular interest in the prospects of inexpensive renewable feedstocks, such as cellulosic biomass and industrial residues, to produce cost-competitive bio-propionic acid. KEY POINTS: • Fermentative propionic acid production emerges as competitor to chemical synthesis. • Various bacteria synthesize propionic acid, but propionibacteria are the best producers. • Biomass substrates hold promise to reduce propionic acid fermentation cost.
Collapse
|
20
|
Use of Propionibacterium freudenreichii T82 Strain for Effective Biosynthesis of Propionic Acid and Trehalose in a Medium with Apple Pomace Extract and Potato Wastewater. Molecules 2021; 26:molecules26133965. [PMID: 34209563 PMCID: PMC8271679 DOI: 10.3390/molecules26133965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 01/15/2023] Open
Abstract
Propionic acid bacteria are the source of many metabolites, e.g., propionic acid and trehalose. Compared to microbiological synthesis, the production of these metabolites by petrochemical means or enzymatic conversion is more profitable. The components of microbiological media account for a large part of the costs associated with propionic fermentation, due to the high nutritional requirements of Propionibacterium. This problem can be overcome by formulating a medium based on the by-products of technological processes, which can act as nutritional sources and at the same time replace expensive laboratory preparations (e.g., peptone and yeast extract). The metabolic activity of P. freudenreichii was investigated in two different breeding environments: in a medium containing peptone, yeast extract, and biotin, and in a waste-based medium consisting of only apple pomace and potato wastewater. The highest production of propionic acid amounting to 14.54 g/L was obtained in the medium containing apple pomace and pure laboratory supplements with a yield of 0.44 g/g. Importantly, the acid production parameters in the waste medium reached almost the same level (12.71 g/L, 0.42 g/g) as the medium containing pure supplements. Acetic acid synthesis was more efficient in the waste medium; it was also characterized by a higher level of accumulated trehalose (59.8 mg/g d.s.). Thus, the obtained results show that P. freudenreichii bacteria exhibited relatively high metabolic activity in an environment with apple pomace used as a carbon source and potato wastewater used as a nitrogen source. This method of propioniate production could be cheaper and more sustainable than the chemical manner.
Collapse
|
21
|
Li X, Wei L, Wang Z, Wang Y, Su Z. Efficient co-production of propionic acid and succinic acid by Propionibacterium acidipropionici using membrane separation coupled technology. Eng Life Sci 2021; 21:429-437. [PMID: 34140853 PMCID: PMC8182284 DOI: 10.1002/elsc.202000103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/04/2022] Open
Abstract
To improve the fermentation efficiency of Propionibacterium acidipropionici, a semi-continuous coupled fermentation process was established to achieve co-production of propionic acid (PA) and succinic acid (SA). First, the optimal proportion of glucose (Glc) and glycerol (Gl) as a mixed carbon source was determined, and the feeding procedure of Gl was optimized to make more energy flow in the direction of product synthesis. Then, ZGD630 anion exchange resin was used for efficient adsorption of PA, thereby eliminating the feedback inhibition effect of PA. Finally, an efficient, coupled fermentation process of P. acidipropionici characterized by membrane separation and chromatography technology was developed. The concentrations of PA and SA reached 62.22 ± 2.32 and 20.45 ± 1.34 g L-1, with corresponding productivity of 0.43 and 0.14 g L-1 h-1, increased by 65.38% and 48.54%, respectively. Membrane separation coupled fermentation of PA and SA could significantly improve the process economics of P. acidipropionici, and has good prospects for industrial application.
Collapse
Affiliation(s)
- Xiaolian Li
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Liquan Wei
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Ziqiang Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Yunshan Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Zhiguo Su
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
22
|
Piwowarek K, Lipińska E, Hać-Szymańczuk E, Pobiega K. Propionic acid production from apple pomace in bioreactor using Propionibacterium freudenreichii: an economic analysis of the process. 3 Biotech 2021; 11:60. [PMID: 33489679 PMCID: PMC7801545 DOI: 10.1007/s13205-020-02582-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Propionic acid and its salts are widely used as food and feed preservative. Currently, these compounds are chemically produced, which is more profitable compared to biotechnological production using bacteria of the Propionibacterium genus. Appropriate steps can enable reducing the production costs; for example, cheap industrial byproducts can be used as culture media. One such cost-effective raw material is apple pomace, a low-value byproduct from the food industry. It contains sugars such as glucose and fructose which can serve as potential carbon sources for microorganisms. This paper discusses the possibility of using apple pomace in the production of propionic acid and presents an economic analysis of the production process. The tested strain produced 8.01 g/L of propionic acid (yield 0.40 g/g) and 2.29 g/L of acetic acid (yield 0.11 g/g) from apple pomace extract. The economic analysis showed that the production of 1 kg of propionic acid (considering only waste) from 1000 kg of apple pomace would cost approximately 1.25 USD. The manufacturing cost (consumables, including feedstock, labor, and utilities) would be approximately 2.35 USD/kg, and the total cost including taxes would be approximately 3.05 USD/kg. From the economic point of view, it is necessary to improve the production of propionic acid from apple pomace, to increase the yield of fermentation and thus decrease the total production costs. This can be achieved, for example, using industrial byproducts as nitrogen and vitamin sources, instead of high-cost substrates such as yeast extract or peptone. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02582-x.
Collapse
Affiliation(s)
- Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776 Warsaw, Poland
| | - Edyta Lipińska
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776 Warsaw, Poland
| | - Elżbieta Hać-Szymańczuk
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776 Warsaw, Poland
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776 Warsaw, Poland
| |
Collapse
|
23
|
Zhang B, Jiang Y, Li Z, Wang F, Wu XY. Recent Progress on Chemical Production From Non-food Renewable Feedstocks Using Corynebacterium glutamicum. Front Bioeng Biotechnol 2021; 8:606047. [PMID: 33392171 PMCID: PMC7775722 DOI: 10.3389/fbioe.2020.606047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/31/2020] [Indexed: 11/13/2022] Open
Abstract
Due to the non-renewable nature of fossil fuels, microbial fermentation is considered a sustainable approach for chemical production using glucose, xylose, menthol, and other complex carbon sources represented by lignocellulosic biomass. Among these, xylose, methanol, arabinose, glycerol, and other alternative feedstocks have been identified as superior non-food sustainable carbon substrates that can be effectively developed for microbe-based bioproduction. Corynebacterium glutamicum is a model gram-positive bacterium that has been extensively engineered to produce amino acids and other chemicals. Recently, in order to reduce production costs and avoid competition for human food, C. glutamicum has also been engineered to broaden its substrate spectrum. Strengthening endogenous metabolic pathways or assembling heterologous ones enables C. glutamicum to rapidly catabolize a multitude of carbon sources. This review summarizes recent progress in metabolic engineering of C. glutamicum toward a broad substrate spectrum and diverse chemical production. In particularly, utilization of lignocellulosic biomass-derived complex hybrid carbon source represents the futural direction for non-food renewable feedstocks was discussed.
Collapse
Affiliation(s)
- Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Yan Jiang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Zhimin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Xiao-Yu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
24
|
Ali R, Saravia F, Hille-Reichel A, Gescher J, Horn H. Propionic acid production from food waste in batch reactors: Effect of pH, types of inoculum, and thermal pre-treatment. BIORESOURCE TECHNOLOGY 2021; 319:124166. [PMID: 32992271 DOI: 10.1016/j.biortech.2020.124166] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
In this study, lab-scale batch fermentation tests were carried out at mesophilic temperature (30 °C) to examine the influence of inoculum type, pH-value, and thermal pretreatment of substrate on propionic acid (PA) production from dog food. The selected inocula comprised a mixed bacterial culture, milk, and soft goat cheese. The batch tests were performed at pH 4, pH 6, and pH 8 for both, untreated and thermally pretreated food. Results show that the production of PA and volatile fatty acids (VFAs) in general were significantly dependent on the chosen inoculum and adjusted pH value. The maximum PA production rates and yields were determined for the cheese inoculum at pH 6 using untreated and pretreated dog food. PA concentration reached 10 gL-1and 26.5 gL-1, respectively. Our findings show that by selecting optimal process parameters, an efficient PA production from model food waste can be achieved.
Collapse
Affiliation(s)
- Rowayda Ali
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Florencia Saravia
- DVGW-Research Center at Engler-Bunte-Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Andrea Hille-Reichel
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Johannes Gescher
- Institute for Applied Biology (IAB), Department of Applied Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Harald Horn
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany; DVGW-Research Center at Engler-Bunte-Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
25
|
Biosynthesis of myo-inositol in Escherichia coli by engineering myo-inositol-1-phosphate pathway. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Propionic acid production by Propionibacterium freudenreichii using sweet sorghum bagasse hydrolysate. Appl Microbiol Biotechnol 2020; 104:9619-9629. [PMID: 33047167 DOI: 10.1007/s00253-020-10953-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Propionic acid, a widely used food preservative and intermediate in the manufacture of various chemicals, is currently produced from petroleum-based chemicals, raising concerns about its long-term sustainability. A key way to make propionic acid more sustainable is through fermentation of low-cost renewable and inedible sugar sources, such as lignocellulosic biomass. To this end, we utilized the cellulosic hydrolysate of sweet sorghum bagasse (SSB), a residue from a promising biomass source that can be cultivated around the world, for fermentative propionic acid production using Propionibacterium freudenreichii. In serum bottles, SSB hydrolysate supported a higher propionic acid yield than glucose (0.51 vs. 0.44 g/g, respectively), which can be attributed to the presence of additional nutrients in the hydrolysate enhancing propionic acid biosynthesis and the pH buffering capacity of the hydrolysate. Additionally, SSB hydrolysate supported better cell growth kinetics and higher tolerance to product inhibition by P. freudenreichii. The yield was further improved by co-fermenting glycerol, a renewable byproduct of the biodiesel industry, reaching up to 0.59 g/g, whereas volumetric productivity was enhanced by running the fermentation with high cell density inoculum. In the bioreactor, although the yield was slightly lower than in serum bottles (0.45 g/g), higher final concentration and overall productivity of propionic acid were achieved. Compared to glucose (this study) and hydrolysates from other biomass species (literature), use of SSB hydrolysate as a renewable glucose source resulted in comparable or even higher propionic acid yields. KEY POINTS: • Propionic acid yield and cell growth were higher in SSB hydrolysate than glucose. • The yield was enhanced by co-fermenting SSB hydrolysate and glycerol. • The productivity was enhanced under high cell density fermentation conditions. • SSB hydrolysate is equivalent or superior to other reported hydrolysates.
Collapse
|
27
|
Castro PGM, Maeda RN, Rocha VAL, Fernandes RP, Pereira N. Improving propionic acid production from a hemicellulosic hydrolysate of sorghum bagasse by means of cell immobilization and sequential batch operation. Biotechnol Appl Biochem 2020; 68:1120-1127. [PMID: 32942342 DOI: 10.1002/bab.2031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Propionic acid (PA) is an important organic compound with extensive application in different industrial sectors and is currently produced by petrochemical processes. The production of PA by large-scale fermentation processes presents a bottleneck, particularly due to low volumetric productivity. In this context, the present work aimed to produce PA by a biochemical route from a hemicellulosic hydrolysate of sorghum bagasse using the strain Propionibacterium acidipropionici CIP 53164. Conditions were optimized to increase volumetric productivity and process efficiency. Initially, in simple batch fermentation, a final concentration of PA of 17.5 g⋅L-1 was obtained. Next, fed batch operation with free cells was adopted to minimize substrate inhibition. Although a higher concentration of PA was achieved (38.0 g⋅L-1 ), the response variables (YP/S = 0.409 g⋅g-1 and QP = 0.198 g⋅L-1 ⋅H-1 ) were close to those of the simple batch experiment. Finally, the fermentability of the hemicellulosic hydrolysate was investigated in a sequential batch with immobilized cells. The PA concentration achieved a maximum of 35.3 g⋅L-1 in the third cycle; moreover, the volumetric productivity was almost sixfold higher (1.17 g⋅L-1 ⋅H-1 ) in sequential batch than in simple batch fermentation. The results are highly promising, providing preliminary data for studies on scaling up the production of this organic acid.
Collapse
Affiliation(s)
- Patrycia G M Castro
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| | - Roberto N Maeda
- Novozymes Latin America, Barigui, Rua Professor Francisco Ribeiro, Araucaria, Parana, CEP, Brazil
| | - Vanessa A L Rocha
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| | - Rodrigo P Fernandes
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| | - Nei Pereira
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| |
Collapse
|
28
|
Serna-Jiménez JA, Uribe-Bohórquez MA, Rodríguez-Bernal JM, Klotz-Ceberio B, Quintanilla-Carvajal MX. Control of spoilage fungi in yogurt using MicroGARD 200™, Lyofast-FPR2™ and HOLDBAC-YMC™ as bioprotectants. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2019-0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe aim of this study was to assess the inhibitory effect of three commercial bioprotectant agents on the growth of yogurt-spoiling fungi. Mucor circinelloides, Mucor racemosus, Penicillium spp., Saccharomyces exiguus, and Candida intermedia, commonly involved in the spoilage of dairy products, were isolated from spoiled yogurt and were fully characterized using molecular and phenotypic methods. HOLDBAC-YMC™, Lyofast-FPR2™ and MicroGARD 200™ were used as antifungal products. An optimized experimental mixture design was applied to determine the proportion of each bioprotectant in terms of growth-inhibition response against the fungal strains in standard laboratory media. The results of the challenge tests showed that the application of bioprotectants inhibited the growth of the moulds in the range of 85–100% and the growth of yeast between 1.23 and 5.40 log cycles. The optimal combination of the bioprotectants was determined, tested in standard laboratory media and found to inhibit fungal growth. The antifungal effect of the optimal combination of the bioprotectants was validated in yogurt against the most resistant fungal species of the study, M. circinelloides and C. intermedia. The bioprotectants elicited antifungal effect in yogurt by completely inhibiting all of the tested fungi compared to controls. To the best of our knowledge, this is the first time a mixture of commercial bioprotectants has been tested on yogurt as a potential alternative for the biopreservation of yogurt in order to reduce spoilage of fermented dairy products and economic losses.
Collapse
Affiliation(s)
- Johanna Andrea Serna-Jiménez
- Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá. Chía, Cundinamarca, Colombia
| | - María Angélica Uribe-Bohórquez
- Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá. Chía, Cundinamarca, Colombia
| | | | | | - María Ximena Quintanilla-Carvajal
- Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá. Chía, Cundinamarca, Colombia
| |
Collapse
|
29
|
Kittler S, Kopp J, Veelenturf PG, Spadiut O, Delvigne F, Herwig C, Slouka C. The Lazarus Escherichia coli Effect: Recovery of Productivity on Glycerol/Lactose Mixed Feed in Continuous Biomanufacturing. Front Bioeng Biotechnol 2020; 8:993. [PMID: 32903513 PMCID: PMC7438448 DOI: 10.3389/fbioe.2020.00993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Continuous cultivation with Escherichia coli has several benefits compared to classical fed-batch cultivation. The economic benefits would be a stable process, which leads to time independent quality of the product, and hence ease the downstream process. However, continuous biomanufacturing with E. coli is known to exhibit a drop of productivity after about 4–5 days of cultivation depending on dilution rate. These cultivations are generally performed on glucose, being the favorite carbon source for E. coli and used in combination with isopropyl β-D-1 thiogalactopyranoside (IPTG) for induction. In recent works, harsh induction with IPTG was changed to softer induction using lactose for T7-based plasmids, with the result of reducing the metabolic stress and tunability of productivity. These mixed feed systems based on glucose and lactose result in high amounts of correctly folded protein. In this study we used different mixed feed systems with glucose/lactose and glycerol/lactose to investigate productivity of E. coli based chemostats. We tested different strains producing three model proteins, with the final aim of a stable long-time protein expression. While glucose fed chemostats showed the well-known drop in productivity after a certain process time, glycerol fed cultivations recovered productivity after about 150 h of induction, which corresponds to around 30 generation times. We want to further highlight that the cellular response upon galactose utilization in E. coli BL21(DE3), might be causing fluctuating productivity, as galactose is referred to be a weak inducer. This “Lazarus” phenomenon has not been described in literature before and may enable a stabilization of continuous cultivation with E. coli using different carbon sources.
Collapse
Affiliation(s)
- Stefan Kittler
- Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Julian Kopp
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical, Environmental and Bioscience Engineering, TU Vienna, Vienna, Austria
| | - Patrick Gwen Veelenturf
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical, Environmental and Bioscience Engineering, TU Vienna, Vienna, Austria
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Frank Delvigne
- TERRA Teaching and Research Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech - Université de Liège, Gembloux, Belgium
| | - Christoph Herwig
- Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria.,Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical, Environmental and Bioscience Engineering, TU Vienna, Vienna, Austria
| | - Christoph Slouka
- Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
30
|
Selder L, Sabra W, Jürgensen N, Lakshmanan A, Zeng AP. Co-cultures with integrated in situ product removal for lactate-based propionic acid production. Bioprocess Biosyst Eng 2020; 43:1027-1035. [PMID: 32055977 PMCID: PMC7196089 DOI: 10.1007/s00449-020-02300-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/20/2020] [Indexed: 12/01/2022]
Abstract
Propionic acid (PA) is a valuable organic acid for the food and feed industry, but no bioproduction at industrial scale exists so far. As product inhibition is a major burden for bioprocesses producing organic acids, in situ product removal (ISPR) is desirable. Here, we demonstrate a new strategy to produce PA with a co-culture coupled with ISPR using electrodialysis. Specifically, Bacillus coagulans first produces lactic acid (LA) from sugar(s) and LA is converted to PA using Veillonella criceti. Applying ISPR to the mentioned co-culture, the specific PA yield was increased from 0.35 to 0.39 g g−1 compared to no ISPR usage. Furthermore, the productivity was increased from 0.63 to 0.7 g L−1 h−1 by applying ISPR. Additionally, it was shown that co-consumption of xylose and glucose led to a higher PA productivity of 0.73 g L−1 h−1, although PA yield was only increased slightly up to 0.36 g g−1.
Collapse
Affiliation(s)
- Ludwig Selder
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Wael Sabra
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Nikolai Jürgensen
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Alagappan Lakshmanan
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, 21073, Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, 21073, Hamburg, Germany.
| |
Collapse
|
31
|
Guan N, Liu L. Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol 2020; 104:51-65. [PMID: 31773206 PMCID: PMC6942593 DOI: 10.1007/s00253-019-10226-1] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
Microorganisms encounter acid stress during multiple bioprocesses. Microbial species have therefore developed a variety of resistance mechanisms. The damage caused by acidic environments is mitigated through the maintenance of pH homeostasis, cell membrane integrity and fluidity, metabolic regulation, and macromolecule repair. The acid tolerance mechanisms can be used to protect probiotics against gastric acids during the process of food intake, and can enhance the biosynthesis of organic acids. The combination of systems and synthetic biology technologies offers new and wide prospects for the industrial applications of microbial acid tolerance mechanisms. In this review, we summarize acid stress response mechanisms of microbial cells, illustrate the application of microbial acid tolerance in industry, and prospect the introduction of systems and synthetic biology to further explore the acid tolerance mechanisms and construct a microbial cell factory for valuable chemicals.
Collapse
Affiliation(s)
- Ningzi Guan
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
32
|
Coban HB. Organic acids as antimicrobial food agents: applications and microbial productions. Bioprocess Biosyst Eng 2019; 43:569-591. [PMID: 31758240 DOI: 10.1007/s00449-019-02256-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022]
Abstract
Food safety is a global health and socioeconomic concern since many people still suffer from various acute and life-long diseases, which are caused by consumption of unsafe food. Therefore, ensuring safety of the food is one of the most essential issues in the food industry, which needs to be considered during not only food composition formulation but also handling and storage. For safety purpose, various chemical preservatives have been used so far in the foods. Recently, there has been renewed interest in replacing chemically originated food safety compounds with natural ones in the industry, which can also serve as antimicrobial agents. Among these natural compounds, organic acids possess the major portion. Therefore, in this paper, it is aimed to review and compile the applications, effectiveness, and microbial productions of various widely used organic acids as antimicrobial agents in the food industry.
Collapse
Affiliation(s)
- Hasan Bugra Coban
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University Health Campus, Balcova, 35340, Izmir, Turkey.
| |
Collapse
|
33
|
Zheng X, Feng D, Yang L, Hui J, Yu J, Meng Q, Liu H, Fan D. Mild stir-assisted membrane dispersion for enhancing propionic acid extraction. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Rocha Martin VN, Schwab C, Krych L, Voney E, Geirnaert A, Braegger C, Lacroix C. Colonization of Cutibacterium avidum during infant gut microbiota establishment. FEMS Microbiol Ecol 2019; 95:5154911. [PMID: 30388209 DOI: 10.1093/femsec/fiy215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/31/2018] [Indexed: 01/07/2023] Open
Abstract
Establishment of the infant gut microbiota affects gut maturation and influences long-term health. Cutibacterium (formerly Propionibacterium) have been identified as early colonizers, but little is known about their function. Using a cultivation-dependent and -independent approach, we determined Cutibacterium prevalence, diversity and functional potential. In feces from a Swiss infant cohort (n = 38), prevalence of Propionibacterium/Cutibacterium decreased from 84% at 2 weeks, to 65% at 4 weeks, 47% at 8 weeks and 41% at 12 weeks of age. Abundance varied among individuals, and persistence depended on the colonization levels at 2 weeks. Cutibacterium isolates (n = 87) were obtained from 10 infants from a smaller cohort (n = 12); restriction fragment length polymorphism clustered isolates in four groups, and all identified as Cutibacterium avidum. Colonization potential and metabolic effects of C. avidum addition were tested in an in vitro continuous intestinal fermentation model mimicking infant proximal colon conditions. Cutibacterium avidum spiked daily at 108 or 109 cells mL-1 colonized, decreased formate and persisted during the washout period. Significant correlations were observed between Propionibacterium/Cutibacterium and lactate-producers and protein-degraders in both reactors and infant feces. Our findings highlight the natural presence of C. avidum and its role as a lactate-consumer and propionate-producer in infants younger than 3 months.
Collapse
Affiliation(s)
- Vanesa Natalin Rocha Martin
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland.,Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland
| | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen 1958, Denmark
| | - Evelyn Voney
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland
| | - Annelies Geirnaert
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland
| | - Christian Braegger
- Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
35
|
Ganigué R, Naert P, Candry P, de Smedt J, Stevens CV, Rabaey K. Fruity flavors from waste: A novel process to upgrade crude glycerol to ethyl valerate. BIORESOURCE TECHNOLOGY 2019; 289:121574. [PMID: 31247530 DOI: 10.1016/j.biortech.2019.121574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Valeric acid and its ester derivatives are chemical compounds with a high industrial interest. Here we report a new approach to produce them from crude glycerol, by combining propionic acid fermentation with chain elongation. Propionic acid was produced by Propionibacterium acidipropionici (8.49 ± 1.40 g·L-1). In the subsequent mixed population chain elongation, valeric acid was the dominant product (5.3 ± 0.69 g·L-1) of the chain elongation process. Residual glycerol negatively impacted the selectivity of mixed culture chain elongation towards valeric acid, whereas this was unaffected when Clostridium kluyveri was used as bio-catalyst. Valeric acid could be selectively isolated and upgraded to ethyl valerate by using dodecane as extractant and medium for esterification, whereas shorter-chain carboxylic acids could be recovered by using a 10 wt% solution of trioctylphosphine oxide (TOPO) in dodecane. Overall, our work shows that the combined fermentation, electrochemistry and homogeneous catalysis enables fine chemical production from side streams.
Collapse
Affiliation(s)
- Ramon Ganigué
- Center for Microbiology Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium(2); CAPTURE, Belgium(3).
| | - Pieter Naert
- Center for Microbiology Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium(2); SynBioC, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Pieter Candry
- Center for Microbiology Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium(2)
| | - Jonas de Smedt
- Center for Microbiology Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium(2)
| | - Christian V Stevens
- SynBioC, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Korneel Rabaey
- Center for Microbiology Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium(2); CAPTURE, Belgium(3)
| |
Collapse
|
36
|
Piwowarek K, Lipińska E, Hać-Szymańczuk E, Rudziak A, Kieliszek M. Optimization of propionic acid production in apple pomace extract with Propionibacterium freudenreichii. Prep Biochem Biotechnol 2019; 49:974-986. [PMID: 31403887 DOI: 10.1080/10826068.2019.1650376] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sequential optimization of propionate production using apple pomace was studied. All experiments were performed in a static flask in anaerobic conditions. Effect of apple pomace as nitrogen source against conventional N sources (yeast extract, peptone) was studied. The double increase was observed in propionic acid production while using yeast extract and peptone (0.29 ± 0.01 g/g), as against the use of only apple pomace extract (APE) (0.14 ± 0.01 g/g). Intensification of propionic acid fermentation was also achieved by increasing the pH control frequency of the culture medium from 24-(0.29 ± 0.01 g/g) to 12-hour intervals (30 °C) (0.30 ± 0.02 g/g) and by increasing the temperature of the culture from 30 to 37 °C (12-hour intervals of pH control) (0.32 ± 0.01 g/g). An important factor in improving the parameters of fermentation was the addition of biotin to the medium. The 0.2 mg/L dose of biotin allowed to attain 7.66 g/L propionate with a yield of 0.38 ± 0.03 g/g (12-hour intervals of pH control, 37 °C).
Collapse
Affiliation(s)
- Kamil Piwowarek
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Biotechnology and Food Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW) , Warsaw , Poland
| | - Edyta Lipińska
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Biotechnology and Food Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW) , Warsaw , Poland
| | - Elżbieta Hać-Szymańczuk
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Biotechnology and Food Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW) , Warsaw , Poland
| | - Anna Rudziak
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Biotechnology and Food Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW) , Warsaw , Poland
| | - Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Biotechnology and Food Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW) , Warsaw , Poland
| |
Collapse
|
37
|
Massoud R, Khosravi-Darani K, Bagheri SM, Mortazavian AM, Sohrabvandi S. Vitamin B12: From Deficiency to Biotechnological Solution. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401314666171207145429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vitamin B12 production by using propionibacteria and enriching food to produce functional foods is an important subject for researches. Some microorganisms have the potential to produce a wide range of components that are health promoting for human. Among them Propionibacteria has been identified as an effective producer of vitamin B12 and anti-microbial compounds such as propionic acid for decades. In this study at first, the structure, health beneficial effects and properties of vitamin B12 as well as scaled up production of vitamin are mentioned. Then biotechnological strategy is described as a solution to overcome vitamin deficiency and production of functional food. Finally, the specification of propionibacteria and its growth condition as well as bacterium ability to produce some other interesting metabolite in human food as byproduct are discussed.
Collapse
Affiliation(s)
- Ramona Massoud
- Department of Food Research, Standards Organization, Tehran, Iran
| | - Kianoush Khosravi-Darani
- Research Department of Food Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4741, Tehran, Iran
| | - Seyed M.H. Bagheri
- Department of Food Sciences and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M. Mortazavian
- Department of Food Sciences and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Research Department of Food Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4741, Tehran, Iran
| |
Collapse
|
38
|
Rocha Martin VN, Lacroix C, Killer J, Bunesova V, Voney E, Braegger C, Schwab C. Cutibacterium avidum is phylogenetically diverse with a subpopulation being adapted to the infant gut. Syst Appl Microbiol 2019; 42:506-516. [PMID: 31128887 DOI: 10.1016/j.syapm.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
The infant gut harbors a diverse microbial community consisting of several taxa whose persistence depends on adaptation to the ecosystem. In healthy breast-fed infants, the gut microbiota is dominated by Bifidobacterium spp.. Cutibacterium avidum is among the initial colonizers, however, the phylogenetic relationship of infant fecal isolates to isolates from other body sites, and C. avidum carbon utilization related to the infant gut ecosystem have been little investigated. In this study, we investigated the phylogenetic and phenotypic diversity of 28 C. avidum strains, including 16 strains isolated from feces of healthy infants. We investigated the in vitro capacity of C. avidum infant isolates to degrade and consume carbon sources present in the infant gut, and metabolic interactions of C. avidum with infant associated Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum. Isolates of C. avidum showed genetic heterogeneity. C. avidum consumed d- and l-lactate, glycerol, glucose, galactose, N-acetyl-d-glucosamine and maltodextrins. Alpha-galactosidase- and β-glucuronidase activity were a trait of a group of non-hemolytic strains, which were mostly isolated from infant feces. Beta-glucuronidase activity correlated with the ability to ferment glucuronic acid. Co-cultivation with B. infantis and B. bifidum enhanced C. avidum growth and production of propionate, confirming metabolic cross-feeding. This study highlights the phylogenetic and functional diversity of C. avidum, their role as secondary glycan degraders and propionate producers, and suggests adaptation of a subpopulation to the infant gut.
Collapse
Affiliation(s)
- Vanesa Natalin Rocha Martin
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland; Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland
| | - Jiri Killer
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Czech Republic
| | - Vera Bunesova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol 165 00, Czech Republic
| | - Evelyn Voney
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland
| | - Christian Braegger
- Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
39
|
Kinetic models for production of propionic acid by Propionibacter freudenrechii subsp. shermanii and Propionibacterium freudenreichii subsp. freudenreichii in date syrup during sonication treatments. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Yang B, Liang S, Liu H, Liu J, Cui Z, Wen J. Metabolic engineering of Escherichia coli for 1,3-propanediol biosynthesis from glycerol. BIORESOURCE TECHNOLOGY 2018; 267:599-607. [PMID: 30056370 DOI: 10.1016/j.biortech.2018.07.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
In this study, the engineered E. coli was constructed for efficient transformation of glycerol to 1,3-propanediol (1,3-PDO). To regenerate NADPH, the key bottleneck in 1,3-PDO production, heterologous NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDN, encoded by gapN) pathway was introduced, and the gapN expression level was fine-tuned with specific 5'-untranslated regions (5'-UTR) to balance the carbon flux distribution between the metabolic pathways of NADPH regeneration and 1,3-PDO biosynthesis. Additionally, glucose was added to the medium to promote glycerol utilization and cell growth. To elevate the utilization of glycerol in the presence of glucose, E. coli JA11 was constructed through destroying PEP-dependent glucose transport system while strengthening the ATP-dependent transport system. Subsequent optimization of nitrogen sources further improved 1,3-PDO production. Finally, under the optimal fermentation condition, E. coli JA11 produced 13.47 g/L 1,3-PDO, with a yield of 0.64 mol/mol, increased by 325% and 100% compared with the original engineered E. coli JA03, respectively.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shaoxiong Liang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huanhuan Liu
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology), Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, China
| | - Jiao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhenzhen Cui
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
41
|
Huang L, Chen Z, Xiong D, Wen Q, Ji Y. Oriented acidification of wasted activated sludge (WAS) focused on odd-carbon volatile fatty acid (VFA): Regulation strategy and microbial community dynamics. WATER RESEARCH 2018; 142:256-266. [PMID: 29890474 DOI: 10.1016/j.watres.2018.05.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/26/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
As the main intermediate metabolite in anaerobic digestion of wasted activated sludge (WAS), volatile fatty acids (VFAs) are proper substrate for mixed culture (MC) polyhydroxyalkanoate (PHA) synthesis. To further optimize the performance of MC PHA production process, VFA_odd (i.e., VFA with odd carbon atoms) oriented acidification process was proposed and conducted in this study. Three regulation factors including reaction pH, fraction of added β-cyclodextrin (β-CD) and glycerol were selected and response surface methodology (RSM) was used to enhance and effectively regulate the VFA_odd production while maintaining enough acidification degree in the WAS acidification. High percentage of VFA_odd (larger than 60% and dominated by propionic acid) can be obtained in the operating condition area with glycerol addition ratio (quantified by C/N) ranging from 15 to 20 and reaction pH ranging from 8.0 to 9.5 when β-CD addition was held at zero level (0.2 g/gTSS) according to the RSM. Semi-continuous acidification and MC PHA production assays further verified the reliability and effectiveness of the VFA_odd oriented acidification strategy. Microbial function group related to propionic acid production (Gprop) was defined based on the relationships between system function and microbial community structure, and 13 frequent species were found being involved in the Gprop. Roles of the group members in the oriented acidification were analyzed to understand the mechanisms of the regulation of VFA_odd production at microbial ecological level. A synergistic effect of WAS and glycerol on the VFA_odd production in the acidification process was revealed based on the ecological analysis.
Collapse
Affiliation(s)
- Long Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dandan Xiong
- Shenzhen Shenshui Baoan Water Group CO.LTD, Shenzhen, 518133, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Ye Ji
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
42
|
Braz GHR, Fernandez-Gonzalez N, Lema JM, Carballa M. The time response of anaerobic digestion microbiome during an organic loading rate shock. Appl Microbiol Biotechnol 2018; 102:10285-10297. [PMID: 30276715 DOI: 10.1007/s00253-018-9383-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/04/2018] [Accepted: 09/09/2018] [Indexed: 01/30/2023]
Abstract
Knowledge of connections between operational conditions, process stability, and microbial community dynamics is essential to enhance anaerobic digestion (AD) process efficiency and management. In this study, the detailed temporal effects of a sudden glycerol-based organic overloading on the AD microbial community and process imbalance were investigated in two replicate anaerobic digesters by a time-intensive sampling scheme. The microbial community time response to the overloading event was shorter than the shifts of reactor performance parameters. An increase in bacterial community dynamics and in the abundances of several microbial taxa, mainly within the Firmicutes, Tenericutes, and Chloroflexi phyla and Methanoculleus genera, could be detected prior to any shift on the reactor operational parameters. Reactor acidification already started within the first 24 h of the shock and headed the AD process to total inhibition in 72 h alongside with the largest shifts on microbiome, mostly the increase of Anaerosinus sp. and hydrogenotrophic methanogenic Archaea. In sum, this work proved that AD microbial community reacts very quickly to an organic overloading and some shifts occur prior to alterations on the performance parameters. The latter is very interesting as it can be used to improve AD process management protocols.
Collapse
Affiliation(s)
- G H R Braz
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Constantino Candeira s/n, 15782, Santiago de Compostela, Galicia, Spain
| | - N Fernandez-Gonzalez
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Constantino Candeira s/n, 15782, Santiago de Compostela, Galicia, Spain.
| | - J M Lema
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Constantino Candeira s/n, 15782, Santiago de Compostela, Galicia, Spain
| | - M Carballa
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Constantino Candeira s/n, 15782, Santiago de Compostela, Galicia, Spain
| |
Collapse
|
43
|
Martin Vincent N, Wei Y, Zhang J, Yu D, Tong J. Characterization and Dynamic Shift of Microbial Communities during Start-Up, Overloading and Steady-State in an Anaerobic Membrane Bioreactor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071399. [PMID: 29970829 PMCID: PMC6068774 DOI: 10.3390/ijerph15071399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/19/2018] [Accepted: 06/26/2018] [Indexed: 01/10/2023]
Abstract
A lab-scale anaerobic membrane bioreactor (AnMBR) with a side stream tubular membrane was developed to treat synthetic domestic sewage to evaluate its performance and the dynamic shift of bacterial and archaeal communities during the start-up, steady-state, overloading and recovery periods of operation at mesophilic temperatures. During the start-up period, the bacterial and archaeal communities changed drastically, and Proteobacteria and Bacteroidetes predominated. During the steady-state period, the AnMBR exhibited excellent COD removal above 91%, and COD of the effluent was below 50 mg/L. High-throughput sequencing analysis results revealed that bacterial and archaeal communities shifted significantly from the start-up to the steady-state period, and that the Proteobacteria phylum predominated on days 140, 162 and 190, and the archaea community hydrogenotrophic methanogen genus Methanolinea (1.5–6.64%) predominated over the aceticlastic methanogen genus Methanothrix (1.35–3.07%). During the overloading period, significant changes occurred in microbial community on day 210, e.g., the phyla Bacteroidetes (30%), Proteobacteria (23%) and Firmicutes (18%) predominated and the archaeal community was completely suppressed, and Methanobrevibacter (0.7%) was the only methanogen genus that emerged in the overloading period. After a shock loading period, the microbial communities exhibited significant changes within the ranks of methanogens and shifted to dominance of the aceticlastic methanogen pathway. In addition, the TVFAs to alkalinity ratio in this study was suitable as an indicator of monitoring performance in the AnMBR operation.
Collapse
Affiliation(s)
- Nsanzumukiza Martin Vincent
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dawei Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Juan Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
44
|
Valorization of the Crude Glycerol for Propionic Acid Production Using an Anaerobic Fluidized Bed Reactor with Grounded Tires as Support Material. Appl Biochem Biotechnol 2018; 186:400-413. [PMID: 29644593 DOI: 10.1007/s12010-018-2754-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
This study evaluated the propionic acid (HPr) production from crude glycerol (CG) (5000 mg L-1) in an anaerobic fluidized bed reactor (AFBR). Grounded tire particles (2.8-3.35 mm) were used as support material for microbial adhesion. The reactor was operated with hydraulic retention times (HRT) varying from 8 to 0.5 h under mesophilic (30 °C) conditions. The HPr was the main metabolite produced, increasing in composition from 66.5 to 99.6% by decreasing the HRT from 8 to 0.5 h. Other metabolic products were 1,3-propanediol, with a maximum of 29.4% with an HRT of 6 h, ethanol, acetic, and butyric acids. The decrease in HRT from 8 to 0.5 h decreased the HPr yield, with a maximum of 0.48 ± 0.06 g HPr g COD-1 and an HRT of 6 h, and favored HPr productivity, with a maximum of 4.09 ± 1.24 g L-1 h-1 and HRT of 0.5 h. In the biogas, the H2 content increased from 12.5 to 81.2% by decreasing the HRT from 8 to 0.5 h. These results indicate the potential application of the AFBR for HPr production using an immobilized mixed culture.
Collapse
|
45
|
Yang H, Wang Z, Lin M, Yang ST. Propionic acid production from soy molasses by Propionibacterium acidipropionici: Fermentation kinetics and economic analysis. BIORESOURCE TECHNOLOGY 2018; 250:1-9. [PMID: 29153644 DOI: 10.1016/j.biortech.2017.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Propionic acid (PA) is a specialty chemical; its calcium salt is widely used as food preservative. Soy molasses (SM), a low-value byproduct from soybean refinery, contains sucrose and raffinose-family oligosaccharides (RFO), which are difficult to digest for most animals and industrial microorganisms. The feasibility of using SM for PA production by P. acidipropionici, which has genes encoding enzymes necessary for RFO hydrolysis, was studied. With corn steep liquor as the nitrogen source, stable long-term PA production from SM was demonstrated in sequential batch fermentations, achieving PA productivity of >0.8 g/L h and yield of 0.42 g/g sugar at pH 6.5. Economic analysis showed that calcium propionate as the main component (63.5%) in the product could be produced at US $1.55/kg for a 3000-MT plant with a capital investment of US $10.82 million. At $3.0/kg for the product, the process offers attractive 40% return of investment and is promising for commercial application.
Collapse
Affiliation(s)
- Hopen Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Zhongqiang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Meng Lin
- Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
46
|
Piwowarek K, Lipińska E, Hać-Szymańczuk E, Kieliszek M, Ścibisz I. Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry. Appl Microbiol Biotechnol 2018; 102:515-538. [PMID: 29167919 PMCID: PMC5756557 DOI: 10.1007/s00253-017-8616-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 01/09/2023]
Abstract
Bacteria from the Propionibacterium genus consists of two principal groups: cutaneous and classical. Cutaneous Propionibacterium are considered primary pathogens to humans, whereas classical Propionibacterium are widely used in the food and pharmaceutical industries. Bacteria from the Propionibacterium genus are capable of synthesizing numerous valuable compounds with a wide industrial usage. Biomass of the bacteria from the Propionibacterium genus constitutes sources of vitamins from the B group, including B12, trehalose, and numerous bacteriocins. These bacteria are also capable of synthesizing organic acids such as propionic acid and acetic acid. Because of GRAS status and their health-promoting characteristics, bacteria from the Propionibacterium genus and their metabolites (propionic acid, vitamin B12, and trehalose) are commonly used in the cosmetic, pharmaceutical, food, and other industries. They are also used as additives in fodders for livestock. In this review, we present the major species of Propionibacterium and their properties and provide an overview of their functions and applications. This review also presents current literature concerned with the possibilities of using Propionibacterium spp. to obtain valuable metabolites. It also presents the biosynthetic pathways as well as the impact of the genetic and environmental factors on the efficiency of their production.
Collapse
Affiliation(s)
- Kamil Piwowarek
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland.
| | - Edyta Lipińska
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Elżbieta Hać-Szymańczuk
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Iwona Ścibisz
- Department of Food Technology, Division of Fruit and Vegetable Technology, Faculty of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| |
Collapse
|
47
|
Piwowarek K, Lipińska E, Hać-Szymańczuk E, Bzducha-Wróbel A, Synowiec A. Research on the ability of propionic acid and vitamin B12 biosynthesis by Propionibacterium freudenreichii strain T82. Antonie van Leeuwenhoek 2017; 111:921-932. [PMID: 29178013 PMCID: PMC5945763 DOI: 10.1007/s10482-017-0991-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/20/2017] [Indexed: 01/03/2023]
Abstract
The purpose of this study was to determine the potential for biosynthesis of propionic acid and vitamin B12 by Propionibacterium freudenreichii T82 in a medium containing various sources of carbon (glucose, fructose, and saccharose). These sugars are present in apple pomaces, which are the waste from the production of apple juice. Using statistical analysis design of experiments (DoE), the results allowed us to determine which sugars (carbon sources) exert the most beneficial influence on the biosynthesis of propionic acid and cobalamin. The highest production of propionic acid by the tested bacterial strain was obtained in a medium in which glucose accounted for at least 50% of the available carbon sources. Depending on the culture medium, the concentration of this metabolite ranged from 23 to 40 g/L. P. freudenreichii T82 produced the smallest amount of acid in medium in which the dominant nutrient source was saccharose. The results obtained indicated an inverse relationship between the amount of acid produced by the bacteria and vitamin B12 biosynthesis. Because of the high efficiency of propionic acid biosynthesis by P. freudenreichii T82, the prospect of using this strain to obtain propionate with the simultaneous disposal of waste materials (such as apple pomaces) which contain glucose and/or fructose is very promising.
Collapse
Affiliation(s)
- Kamil Piwowarek
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland.
| | - Edyta Lipińska
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Elżbieta Hać-Szymańczuk
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Anna Bzducha-Wróbel
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Alicja Synowiec
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| |
Collapse
|
48
|
Wang X, Salvachúa D, Sànchez i Nogué V, Michener WE, Bratis AD, Dorgan JR, Beckham GT. Propionic acid production from corn stover hydrolysate by Propionibacterium acidipropionici. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:200. [PMID: 28824710 PMCID: PMC5561626 DOI: 10.1186/s13068-017-0884-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/09/2017] [Indexed: 05/31/2023]
Abstract
BACKGROUND The production of value-added chemicals alongside biofuels from lignocellulosic hydrolysates is critical for developing economically viable biorefineries. Here, the production of propionic acid (PA), a potential building block for C3-based chemicals, from corn stover hydrolysate is investigated using the native PA-producing bacterium Propionibacterium acidipropionici. RESULTS A wide range of culture conditions and process parameters were examined and experimentally optimized to maximize titer, rate, and yield of PA. The effect of gas sparging during fermentation was first examined, and N2 was found to exhibit improved performance over CO2. Subsequently, the effects of different hydrolysate concentrations, nitrogen sources, and neutralization agents were investigated. One of the best combinations found during batch experiments used yeast extract (YE) as the primary nitrogen source and NH4OH for pH control. This combination enabled PA titers of 30.8 g/L with a productivity of 0.40 g/L h from 76.8 g/L biomass sugars, while successfully minimizing lactic acid production. Due to the economic significance of downstream separations, increasing titers using fed-batch fermentation was examined by changing both feeding media and strategy. Continuous feeding of hydrolysate was found to be superior to pulsed feeding and combined with high YE concentrations increased PA titers to 62.7 g/L and improved the simultaneous utilization of different biomass sugars. Additionally, applying high YE supplementation maintains the lactic acid concentration below 4 g/L for the duration of the fermentation. Finally, with the aim of increasing productivity, high cell density fed-batch fermentations were conducted. PA titers increased to 64.7 g/L with a productivity of 2.35 g/L h for the batch stage and 0.77 g/L h for the overall process. CONCLUSION These results highlight the importance of media and fermentation strategy to improve PA production. Overall, this work demonstrates the feasibility of producing PA from corn stover hydrolysate.
Collapse
Affiliation(s)
- Xiaoqing Wang
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Davinia Salvachúa
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | | | - William E. Michener
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Adam D. Bratis
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - John R. Dorgan
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401 USA
| | - Gregg T. Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| |
Collapse
|
49
|
An overview of biotechnological production of propionic acid: From upstream to downstream processes. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
50
|
|