1
|
Zhang S, Dong B, Zhao D, Yang J, Sun X, Yan L. Corrosion of carbon steel by Pseudomonas stutzeri CQ-Z5 in simulated oilfield water. Bioelectrochemistry 2025; 162:108846. [PMID: 39586224 DOI: 10.1016/j.bioelechem.2024.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/27/2024]
Abstract
Carbon steel, an important infrastructure material in the petroleum industry, experiences serious damage due to Microbially Influenced Corrosion (MIC) with untold economic impact. Pseudomonas stutzeri CQ-Z5 with solid biofilm formation and organic acid-producing ability was isolated from Changqing oilfield produced water. The corrosion behavior and mechanism of 20# carbon steel by P. stutzeri CQ-Z5 were explored in a simulated oilfield product water circulating device. Bacteria inoculation can hasten steel corrosion, the maximum corrosion rate reached 1.84 mm y-1. Pitting corrosion on rust layer was observed using SEM, and CLSM monitored the change in biofilm thickness. XRD displayed that oxides were the primary corrosion products, including Fe2O3, Fe3O4, and FeOOH. Analysis of contributions of corrosion types indicated that biofilm corrosion contributes 72 % to total corrosion, far higher than those of ion erosion and organic acid decay. Many genes involved in iron metabolism, biofilm synthesis, and organic acid production were annotated in the genome of P. stutzeri CQ-Z5. Accordingly, a hypothetical corrosion mechanism model of P. stutzeri CQ-Z5 for carbon steel involvement of initial ion erosion, then biofilm corrosion and organic acid decay was proposed. The work helped prevent carbon steel corrosion and improve corrosion mitigation strategies.
Collapse
Affiliation(s)
- Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Boyu Dong
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Jiani Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Xiufen Sun
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China; Key Laboratory of Low‑carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China; Engineering Research Center of Processing and Utilization of Grain By-products, Ministry of Education, Daqing, Heilongjiang, 163319, China.
| |
Collapse
|
2
|
Sheng Y, Zhang S, Li X, Wang S, Liu T, Wang C, Yan L. Phenotypic and genomic insights into mutant with high nattokinase-producing activity induced by carbon ion beam irradiation of Bacillus subtilis. Int J Biol Macromol 2024; 271:132398. [PMID: 38754670 DOI: 10.1016/j.ijbiomac.2024.132398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Nattokinase (NK) is found in fermented foods and has high fibrinolytic activity, which makes it promising for biological applications. In this study, a mutant strain (Bacillus subtilis ZT-S1, 5529.56 ± 183.59 U/mL) with high NK-producing activity was obtained using 12C6+ heavy ion beam mutagenesis for the first time. The surface morphology of B. subtilis is also altered by changes in functional groups caused by heavy ion beams. Furthermore, B. subtilis ZT-S1 required more carbon and nitrogen sources and reached stabilization phase later. Comparative genome analysis revealed that most of the mutant implicated genes (oppA, appA, kinA, spoIIP) were related to spore formation. And the affected rpoA is related to the synthesis of the NK-coding gene aprE. In addition, the B. subtilis ZT-S1 obtained by mutagenesis had good genetic stability. This study further explores the factors affecting NK activity and provides a promising microbial resource for NK production in commercial applications.
Collapse
Affiliation(s)
- Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Xintong Li
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Shicheng Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Tao Liu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lei Yan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
3
|
Cao L, Gao Y, Wang XZ, Shu GY, Hu YN, Xie ZP, Cui W, Guo XP, Zhou X. A Series of Efficient Umbrella Modeling Strategies to Track Irradiation-Mutation Strains Improving Butyric Acid Production From the Pre-development Earlier Stage Point of View. Front Bioeng Biotechnol 2021; 9:609345. [PMID: 34222207 PMCID: PMC8242359 DOI: 10.3389/fbioe.2021.609345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridium tyrobutyricum (C. tyrobutyricum) is a fermentation strain used to produce butyric acid. A promising new biofuel, n-butanol, can be produced by catalysis of butyrate, which can be obtained through microbial fermentation. Butyric acid has various uses in food additives and flavor agents, antiseptic substances, drug formulations, and fragrances. Its use as a food flavoring has been approved by the European Union, and it has therefore been listed on the EU Lists of Flavorings. As butyric acid fermentation is a cost-efficient process, butyric acid is an attractive feedstock for various biofuels and food commercialization products. 12C6+ irradiation has advantages over conventional mutation methods for fermentation production due to its dosage conformity and excellent biological availability. Nevertheless, the effects of these heavy-ion irradiations on the specific productiveness of C. tyrobutyricum are still uncertain. We developed non-structured mathematical models to represent the heavy-ion irradiation of C. tyrobutyricum in biofermentation reactors. The kinetic models reflect various fermentation features of the mutants, including the mutant strain growth model, butyric acid formation model, and medium consumption model. The models were constructed based on the Markov chain Monte Carlo model and logistic regression. Models were verified using experimental data in response to different initial glucose concentrations (0-180 g/L). The parameters of fixed proposals are applied in the various fermentation stages. Predictions of these models were in accordance well with the results of fermentation assays. The maximum butyric acid production was 56.3 g/L. Our study provides reliable information for increasing butyric acid production and for evaluating the feasibility of using mutant strains of C. tyrobutyricum at the pre-development phase.
Collapse
Affiliation(s)
- Li Cao
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Yue Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Zhen Wang
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Guang-Yuan Shu
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Ya-Nan Hu
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Zong-Ping Xie
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Wei Cui
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Xiao-Peng Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Solyanikova IP, Golovleva LA. Hexadecane and Hexadecane-Degrading Bacteria: Mechanisms of Interaction. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261718060152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Crude Oil Degrading Fingerprint and the Overexpression of Oxidase and Invasive Genes for n-hexadecane and Crude Oil Degradation in the Acinetobacter pittii H9-3 Strain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16020188. [PMID: 30634699 PMCID: PMC6352068 DOI: 10.3390/ijerph16020188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/15/2018] [Accepted: 01/03/2019] [Indexed: 11/16/2022]
Abstract
A crude oil-degrading bacterium named strain H9-3 was isolated from crude oil contaminated soil in the Northeastern area of China. Based on its morphological characteristics and 16S rDNA sequence analysis, strain H9-3 is affiliated to Acinetobacter pittii in the group of Gammaproteobacteria. The strain was efficient in removing 36.8% of the initial 10 g·L−1 of crude oil within 21 days. GC-MS was performed and a preference was shown for n-C10, n-C11, i-C14, i-C17, i-C34, n-C12, n-C13, n-C14, n-C27, n-C32 and i-C13, over n-C16, n-C18–C22, n-C24–n-C31, and n-C36. This can be regarded as the specific fingerprint for crude oil degradation by strain H9-3 of Acinetobacter pittii. In addition to crude oil, it was shown that soybean oil and phenols can be utilized as carbon sources by strain H9-3. It was also shown that aniline and α-naphthol cannot be utilized for growth, but they can be tolerated by strain H9-3. Methylbenzene was neither utilized nor tolerated by strain H9-3. Although n-hexadecane was not preferentially consumed by strain H9-3, during culture with crude oil, it could be utilized for growth when it is the sole carbon source. The degradation of some branched alkanes (i-C14, i-C17 and i-C34) and the preferential degradation of crude oil over phenols could be used as a reference for distinguishing A. pittii from A. calcoaceticus. The difference in gene expression was very significant and was induced by diverse carbon sources, as shown in the qRT-PCR results. The oxidation and adhesion events occurred at high frequency during alkane degration by Acinetobacter pittii strain H9-3 cells.
Collapse
|
6
|
The acquisition of Clostridium tyrobutyricum mutants with improved bioproduction under acidic conditions after two rounds of heavy-ion beam irradiation. Sci Rep 2016; 6:29968. [PMID: 27426447 PMCID: PMC4947956 DOI: 10.1038/srep29968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022] Open
Abstract
End-product inhibition is a key factor limiting the production of organic acid during
fermentation. Two rounds of heavy-ion beam irradiation may be an inexpensive,
indispensable and reliable approach to increase the production of butyric acid
during industrial fermentation processes. However, studies of the application of
heavy ion radiation for butyric acid fermentation engineering are lacking. In this
study, a second 12C6+ heavy-ion irradiation-response
curve is used to describe the effect of exposure to a given dose of heavy ions on
mutant strains of Clostridium tyrobutyricum. Versatile statistical elements
are introduced to characterize the mechanism and factors contributing to improved
butyric acid production and enhanced acid tolerance in adapted mutant strains
harvested from the fermentations. We characterized the physiological properties of
the strains over a large pH value gradient, which revealed that the mutant strains
obtained after a second round of radiation exposure were most resistant to harsh
external pH values and were better able to tolerate external pH values between 4.5
and 5.0. A customized second round of heavy-ion beam irradiation may be invaluable
in process engineering.
Collapse
|
7
|
Hu W, Chen JH, Wang SY, Liu J, Song Y, Wu QF, Li WJ. Changes in the physiological properties and kinetics of citric acid accumulation via carbon ion irradiation mutagenesis of Aspergillus niger. J Zhejiang Univ Sci B 2016. [DOI: 10.1631/jzus.b1500120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Hu W, Liu J, Chen JH, Wang SY, Lu D, Wu QH, Li WJ. A mutation of Aspergillus niger for hyper-production of citric acid from corn meal hydrolysate in a bioreactor. J Zhejiang Univ Sci B 2015; 15:1006-10. [PMID: 25367793 DOI: 10.1631/jzus.b1400132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The properties of the screened mutants for hyper-production of citric acid induced by carbon ((12)C(6+)) ion beams and X-ray irradiation were investigated in our current study. Among these mutants, mutant H4002 screened from (12)C(6+) ion irradiation had a higher yield of citric acid production than the parental strain in a 250-ml shaking flash. These expanded submerged experiments in a bioreactor were also carried out for mutant H4002. The results showed that (177.7-196.0) g/L citric acid was accumulated by H4002 through exploiting corn meal hydrolysate (containing initial 200.0-235.7 g/L sugar) with the productivity of (2.96-3.27) g/(L∙h). This was especially true when the initial sugar concentration was 210 g/L, and the best economical citric acid production reached (187.5±0.7) g/L with a productivity of 3.13 g/(L∙h). It was observed that mutant H4002 can utilize low-cost corn meal as a feedstock to efficiently produce citric acid. These results imply that the H4002 strain has the industrial production potentiality for citric acid and offers strong competition for the citric acid industry.
Collapse
Affiliation(s)
- Wei Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key laboratory of Microbial Resources Exploition and Application, Lanzhou 730000, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
A method for designing the operating parameters (surface light intensity, operating temperature and agitation rate) was proposed for microalgal protein production. Furthermore, quadratic model was established and validated (R(2) > 0.90) with experimental data. It was recorded that temperature and agitation rate were slightly interdependent. The microalgal protein performance could be estimated using the simulated experimental setup and procedure developed in this study. The results also showed a holistic approach for opening a new avenue on simulation design for microalgal protein optimization.
Collapse
Affiliation(s)
- Esra Imamoglu
- a Department of Bioengineering ; Faculty of Engineering; University of Ege ; Bornova , Izmir , Turkey
| |
Collapse
|
10
|
Shivlata L, Satyanarayana T. Thermophilic and alkaliphilic Actinobacteria: biology and potential applications. Front Microbiol 2015; 6:1014. [PMID: 26441937 PMCID: PMC4585250 DOI: 10.3389/fmicb.2015.01014] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications.
Collapse
|
11
|
Khazra B, Mousavi SM, Mehrabi S, Hashemi M, Shojaosadati SA. Biodegradation of heptadecane in hydrocarbon polluted dune sands using a newly-isolated thermophilic bacterium, Brevibacillus borstelensis TMU30: statistical evaluation and process optimization. RSC Adv 2015. [DOI: 10.1039/c5ra00678c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An enrichment culture was established to isolate a thermophilic hydrocarbon-degrading bacterium from contaminated soil samples from the Tehran Petroleum Refinery.
Collapse
Affiliation(s)
- Bahram Khazra
- Biotechnology Group
- Chemical Engineering Department
- Tarbiat Modares University
- Tehran
- Iran
| | | | - Sadaf Mehrabi
- Biotechnology Group
- Chemical Engineering Department
- Tarbiat Modares University
- Tehran
- Iran
| | - Maryam Hashemi
- Department of Microbial Biotechnology & Biosafety
- Agricultural Biotechnology Research Institute of Iran (ABRII)
- AREEO
- Karaj
- Iran
| | | |
Collapse
|
12
|
Imamoglu E, Demirel Z, Dalay MC. Evaluation of culture conditions of locally isolated Dunaliella salina strain EgeMacc-024. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Li H, Song Y, Li Q, He J, Song Y. Effective microbial calcite precipitation by a new mutant and precipitating regulation of extracellular urease. BIORESOURCE TECHNOLOGY 2014; 167:269-275. [PMID: 24994684 DOI: 10.1016/j.biortech.2014.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 06/03/2023]
Abstract
Microbial calcite precipitation is a promising and environmental friendly biological technology in remediation of the surface and subsurface of porous media, especially for in situ soil remediation. The present study isolate a urea-degrading strain LH1 from soil on soybean root, identified as Bacillus niabensis strain (99% similarity) by 16S rRNA gene sequencing analysis. Then, using ultraviolet mutagenesis method, a mutant LHUM107 with outstanding urease-producing ability was further obtained to study its effects on calcite precipitation. The mutant LHUM107 had good genome stability and exhibited 92.2% urea-degrading efficiency till 21st generation. Response surface methodology (RSM) noted that the urea degradation was more dependent on initial urea addition, and brought forward the optimal conditions. Adapting to these optimal conditions, calcite precipitation by mutant LHUM107 and extracellular urease was respectively further investigated. It was shown that extracellular urease excreted from mutant LHUM107 was more effective and more targeted for CaCO3 precipitation.
Collapse
Affiliation(s)
- Hui Li
- Province Key Laboratory of Animal Resource and Epidemic Disease Prevention, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Youxin Song
- Affiliated Hospital, Chengde Medical University, Chengde 067000, China
| | - Qijiu Li
- Province Key Laboratory of Animal Resource and Epidemic Disease Prevention, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Jianwei He
- Province Key Laboratory of Animal Resource and Epidemic Disease Prevention, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Youtao Song
- Province Key Laboratory of Animal Resource and Epidemic Disease Prevention, School of Life Science, Liaoning University, Shenyang 110036, China; School of Environmental Science, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
14
|
Zhou X, Wang SY, Lu XH, Liang JP. Comparison of the effects of high energy carbon heavy ion irradiation and Eucommia ulmoides Oliv. on biosynthesis butyric acid efficiency in Clostridium tyrobutyricum. BIORESOURCE TECHNOLOGY 2014; 161:221-229. [PMID: 24704888 DOI: 10.1016/j.biortech.2014.03.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
Clostridium tyrobutyricum is well documented as a fermentation strain for the production of butyric acid. In this work, using high-energy carbon heavy ion irradiated C. tyrobutyricum, then butyric acid fermentation using glucose or alkali and acid pretreatments of Eucommia ulmoides Oliv. as a carbon source was carried out. Initially, the modes at pH 5.7-6.5 and 37°C were compared using a model medium containing glucose as a carbon source. When the 72gL(-1) glucose concentration was found to be the highest yield, the maximum butyric acid production from glucose increased significantly, from 24gL(-1) for the wild type strains to 37gL(-1) for the strain irradiated at 126AMeV and a dose of 35Gy and a 10(7)ions/pulse. By feeding 100gL(-1) acid pretreatments of E. ulmoides Oliv. into the fermentations, butyrate yields (5.8gL(-1)) and butyrate/acetate (B/A) ratio (4.32) were achieved.
Collapse
Affiliation(s)
- Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu 730000, PR China.
| | - Shu-Yang Wang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu 730000, PR China
| | - Xi-Hong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu 730000, PR China
| | - Jian-Ping Liang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
15
|
Zhang HL, Cui SH, Zha XQ, Bansal V, Xue L, Li XL, Hao R, Pan LH, Luo JP. Jellyfish skin polysaccharides: Extraction and inhibitory activity on macrophage-derived foam cell formation. Carbohydr Polym 2014; 106:393-402. [DOI: 10.1016/j.carbpol.2014.01.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/11/2014] [Indexed: 01/10/2023]
|