1
|
Milessi TS, Sandri JP, Arruda PV, Esteves TD, Pinheiro LP, Kumar V, Chandel AK. Role of non-genetically modified or native pentose fermenting microorganisms in establishing viable lignocellulosic biorefineries in the Brazilian context. Crit Rev Biotechnol 2025:1-19. [PMID: 39978937 DOI: 10.1080/07388551.2025.2452628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 02/22/2025]
Abstract
Brazil can play a pivotal role in the development of a circular bioeconomy as the country ranks among the top five major agricultural countries in the world producing a foreseeable lignocellulosic biomass from crops, such as sugarcane, soybean, corn, rice, coffee, and eucalyptus. Considering that pentose sugars (C5 sugars) represent 20%-35% of the amount of lignocellulosic biomass components, these sugars have a great potential in the development of carbon neutral economy. From the biomass conversion economic point of view, the conversion of hemicellulose into renewable products with a satisfactory yield is the most needed. However, the biochemical conversion of pentose sugars is challenging due to the scarcity of native pentose sugars fermenting microorganisms. While recent advances in metabolic engineering have been effective in developing a strong molecular chassis for efficient pentose sugars conversion, the yields, productivities, and stability of the genetically modified organisms (GMOs) are major limiting factors for industrial-scale applications. Native lignocellulosic sugars fermenting microorganisms are competent, robust, and inhibitor-tolerant but their lower productivities continue to be a big concern. This article explains the inherent characteristics of native pentose fermenting microorganisms in establishing viable lignocellulosic biorefineries in the Brazilian context, with a special focus on their isolation from Brazilian biodiversity, along with the evaluation of nongenetic engineering techniques to improve strains for biorefinery application.
Collapse
Affiliation(s)
- Thais S Milessi
- Department of Chemical Engineering, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- Graduate Program in Energy Engineering, Institute of Natural Resources (IRN), Federal University of Itajubá, Minas Gerais, Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Juliana P Sandri
- Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Priscila V Arruda
- Department of Bioprocess Engineering and Biotechnology - COEBB/TD, Federal University of Technology of Paraná, Toledo, Paraná, Brazil
| | - Tayrone D Esteves
- Department of Biotechnology, School of Engineering of Lorena, University of São Paulo (USP), Estrada Municipal do Campinho, Lorena, São Paulo, Brazil
| | - Luisa P Pinheiro
- Graduate Program in Energy Engineering, Institute of Natural Resources (IRN), Federal University of Itajubá, Minas Gerais, Brazil
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
| | - Anuj K Chandel
- Department of Biotechnology, School of Engineering of Lorena, University of São Paulo (USP), Estrada Municipal do Campinho, Lorena, São Paulo, Brazil
| |
Collapse
|
2
|
Kato J, Matsuo T, Takemura K, Kato S, Fujii T, Wada K, Nakamichi Y, Watanabe M, Aoi Y, Morita T, Murakami K, Nakashimada Y. Isopropanol production via the thermophilic bioconversion of sugars and syngas using metabolically engineered Moorella thermoacetica. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:13. [PMID: 38281982 PMCID: PMC10823632 DOI: 10.1186/s13068-024-02460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Isopropanol (IPA) is a commodity chemical used as a solvent or raw material for polymeric products, such as plastics. Currently, IPA production depends largely on high-CO2-emission petrochemical methods that are not sustainable. Therefore, alternative low-CO2 emission methods are required. IPA bioproduction using biomass or waste gas is a promising method. RESULTS Moorella thermoacetica, a thermophilic acetogenic microorganism, was genetically engineered to produce IPA. A metabolic pathway related to acetone reduction was selected, and acetone conversion to IPA was achieved via the heterologous expression of secondary alcohol dehydrogenase (sadh) in the thermophilic bacterium. sadh-expressing strains were combined with acetone-producing strains, to obtain an IPA-producing strain. The strain produced IPA as a major product using hexose and pentose sugars as substrates (81% mol-IPA/mol-sugar). Furthermore, IPA was produced from CO, whereas acetate was an abundant byproduct. Fermentation using syngas containing both CO and H2 resulted in higher IPA production at the specific rate of 0.03 h-1. The supply of reducing power for acetone conversion from the gaseous substrates was examined by supplementing acetone to the culture, and the continuous and rapid conversion of acetone to IPA showed a sufficient supply of NADPH for Sadh. CONCLUSIONS The successful engineering of M. thermoacetica resulted in high IPA production from sugars. M. thermoacetica metabolism showed a high capacity for acetone conversion to IPA in the gaseous substrates, indicating acetone production as the bottleneck in IPA production for further improving the strain. This study provides a platform for IPA production via the metabolic engineering of thermophilic acetogens.
Collapse
Affiliation(s)
- Junya Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Takeshi Matsuo
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Kaisei Takemura
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Setsu Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Tatsuya Fujii
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Keisuke Wada
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yusuke Nakamichi
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Masahiro Watanabe
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Yoshiteru Aoi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Tomotake Morita
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Katsuji Murakami
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Yutaka Nakashimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan.
| |
Collapse
|
3
|
Zhang F, Zhang K, Zhang Z, Chen HQ, Chen XW, Xian XY, Wu YR. Efficient isopropanol-butanol-ethanol (IBE) fermentation by a gene-modified solventogenic Clostridium species under the co-utilization of Fe(III) and butyrate. BIORESOURCE TECHNOLOGY 2023; 373:128751. [PMID: 36805829 DOI: 10.1016/j.biortech.2023.128751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
To elevate the efficiency of acetone-butanol-ethanol (ABE) fermentation by the wild-type strain WK, an optimal co-utilization system (20 mM Fe3+ and 5 g/L butyrate) was established to bring about a 22.22% increment in the yield of ABE mixtures with a significantly enhanced productivity (0.32 g/L/h). With the heterologous introduction of the secondary alcohol dehydrogenase encoded gene (adh), more than 95% of acetone was eliminated to convert 4.5 g/L isopropanol with corresponding increased butanol and ethanol production by 21.08% and 65.45% in the modified strain WK::adh. Under the optimal condition, strain WK::adh was capable of producing a total of 25.46 g/L IBE biosolvents with an enhanced productivity of 0.35 g/L/h by 45.83% over the original conditions. This work for the first time successfully established a synergetic system of co-utilizing Fe(III) and butyrate to demonstrate a feasible and efficient manner for generating the value-added biofuels through the metabolically engineered solventogenic clostridial strain.
Collapse
Affiliation(s)
- Feifei Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong 510000, China
| | - Kan Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong 510000, China
| | - Zhiqian Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong 510000, China
| | - Hai-Qi Chen
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong 510000, China
| | - Xiao-Wei Chen
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong 510000, China
| | - Xing-You Xian
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong 510000, China
| | - Yi-Rui Wu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong 510000, China.
| |
Collapse
|
4
|
Lee JY, Huang TY, Belle Marie Yap Ang M, Huang SH, Tsai HA, Jeng RJ. Effects of monomer rigidity on microstructures and properties of novel polyamide thin-film composite membranes prepared through interfacial polymerization for pervaporation dehydration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Sang Y, Chen H, Khalifeh M, Li Y. Catalysis and chemistry of lignin depolymerization in alcohol solvents - A review. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Yao X, Zhang Q, Fan Y, Xu X, Liu Z. Butanol-isopropanol fermentation with oxygen-tolerant Clostridium beijerinckii XH29. AMB Express 2022; 12:57. [PMID: 35567691 PMCID: PMC9107568 DOI: 10.1186/s13568-022-01399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Acetone–butanol–ethanol (ABE) fermentation is a traditional way for solvents production through bioconversion by Clostridium species. It is still a challenge to obtain metabolic engineering strains with high ABE yield. Screening strains with remarkable characteristics from nature and improving ABE yield by mutation are viable approaches. Clostridium beijerinckii XH 0906, a newly isolated strain, produces butanol and isopropanol (BI) as the main end-products (9.1 g/L BI) during fermentation with glucose as the sole carbon source. The screening process for this strain was performed under aerobic conditions rather than anaerobic environment. Thus, it is a robust stain capable of oxygen-tolerant BI fermentation. Furthermore, C. beijerinckii XH 0906 fermented xylose and glucose simultaneously to produce BI. A mutant strain obtained by ultraviolet (UV) mutagenesis, C. beijerinckii XH 29, had improved BI production capacity and could produce 17.0 g/L BI and 18.4 g/L BI using glucose or corn stover hydrolysate, respectively as the carbon source. Interestingly, C. beijerinckii XH 29 also produced up to 19.3 g/L isopropanol through fermentation of a glucose–acetone mix. These results indicate that C. beijerinckii XH 29 is an excellent BI producer with great potential for industrial applications. A newly isolated strain produces butanol and isopropanol (BI) rather than acetone butanol and ethanol (ABE). The strain is oxygen-tolerant and robust in the fermentation. A mutant obtained by ultraviolet mutagenesis produces higher levels of BI than the wild type strain using corn stover as a carbon source.
Collapse
|
7
|
Kongjan P, Tohlang N, Khaonuan S, Cheirsilp B, Jariyaboon R. Characterization of the integrated gas stripping-condensation process for organic solvent removal from model acetone-butanol-ethanol aqueous solution. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Ferreira Dos Santos Vieira C, Duzi Sia A, Maugeri Filho F, Maciel Filho R, Pinto Mariano A. Isopropanol-butanol-ethanol production by cell-immobilized vacuum fermentation. BIORESOURCE TECHNOLOGY 2022; 344:126313. [PMID: 34798259 DOI: 10.1016/j.biortech.2021.126313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The Isopropanol-Butanol-Ethanol productivity by solventogenic clostridia can increase when cells are immobilized on low-cost, renewable fibrous materials; however, butanol inhibition imposes the need for dilute sugar solutions (less than40 g/L). To alleviate this problem, the in-situ vacuum product recovery technique was applied to recover IBE in repeated-batch cultivation of Clostridium beijerinckii DSM 6423 immobilized on sugarcane bagasse. Five repeated batch cycles were conducted in a 7-L bioreactor containing P2 medium (∼60 g/L glucose) and bagasse packed in 3D-printed concentric annular baskets. In three cycles, glucose was consumed by 86% on average, the IBE productivity was 0.35 g/L∙h or 30% and 17% higher relative to free- and immobilized (without vacuum)-cell cultures. Notably, the product stream contained 45 g/L IBE. However, the fermentation was unsatisfactory in two cycles. Finally, by inserting a fibrous bed with hollow annuli in a vacuum fermentation, this work introduces the concept of an internal-loop boiling-driven fibrous-bed bioreactor.
Collapse
Affiliation(s)
- Carla Ferreira Dos Santos Vieira
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Augusto Duzi Sia
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Francisco Maugeri Filho
- Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rubens Maciel Filho
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Adriano Pinto Mariano
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
9
|
Teke GM, Tai SL, Pott RWM. Extractive Fermentation Processes: Modes of Operation and Application. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- George M. Teke
- University of Stellenbosch Department of Process Engineering Stellenbosch South Africa
| | - Siew L. Tai
- University of Cape Town Department of Chemical Engineering Cape Town South Africa
| | - Robert W. M. Pott
- University of Stellenbosch Department of Process Engineering Stellenbosch South Africa
| |
Collapse
|
10
|
Lee JY, Zhan JY, Ang MBMY, Yeh SC, Tsai HA, Jeng RJ. Improved performance of nanocomposite polyimide membranes for pervaporation fabricated by embedding spirobisindane structure-functionalized graphene oxide. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Diallo M, Kengen SWM, López-Contreras AM. Sporulation in solventogenic and acetogenic clostridia. Appl Microbiol Biotechnol 2021; 105:3533-3557. [PMID: 33900426 PMCID: PMC8102284 DOI: 10.1007/s00253-021-11289-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.
Collapse
Affiliation(s)
- Mamou Diallo
- Wageningen Food and Biobased Research, Wageningen, The Netherlands.
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
12
|
Kodolikar Kulkarni SP, Bhatkhande DS. Prediction of effectiveness of solvent using distribution coefficient calculation in solvent extraction with the help of Hansen solubility parameters. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2020.1755691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Zentou H, Abidin ZZ, Yunus R, Biak DRA, Issa MA. Optimization and modeling of the performance of polydimethylsiloxane for pervaporation of ethanol−water mixture. J Appl Polym Sci 2020. [DOI: 10.1002/app.50408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hamid Zentou
- Department of Chemical and Environmental Engineering Universiti Putra Malaysia Serdang Malaysia
| | - Zurina Zainal Abidin
- Department of Chemical and Environmental Engineering Universiti Putra Malaysia Serdang Malaysia
| | - Robiah Yunus
- Department of Chemical and Environmental Engineering Universiti Putra Malaysia Serdang Malaysia
| | | | - Mohammed Abdullah Issa
- Department of Chemical and Environmental Engineering Universiti Putra Malaysia Serdang Malaysia
| |
Collapse
|
14
|
Cooper SP, Mulvihill CR, Mathieu O, Petersen EL. Isopropanol dehydration reaction rate kinetics measurement using H
2
O time histories. INT J CHEM KINET 2020. [DOI: 10.1002/kin.21463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sean P. Cooper
- J. Mike Walker ‘66 Department of Mechanical Engineering Texas A&M University College Station TX 77843 USA
| | - Clayton R. Mulvihill
- J. Mike Walker ‘66 Department of Mechanical Engineering Texas A&M University College Station TX 77843 USA
| | - Olivier Mathieu
- J. Mike Walker ‘66 Department of Mechanical Engineering Texas A&M University College Station TX 77843 USA
| | - Eric L. Petersen
- J. Mike Walker ‘66 Department of Mechanical Engineering Texas A&M University College Station TX 77843 USA
| |
Collapse
|
15
|
Santos AG, de Albuquerque TL, Ribeiro BD, Coelho MAZ. In situ product recovery techniques aiming to obtain biotechnological products: A glance to current knowledge. Biotechnol Appl Biochem 2020; 68:1044-1057. [PMID: 32931049 DOI: 10.1002/bab.2024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/07/2020] [Indexed: 11/07/2022]
Abstract
Biotechnology and bioengineering techniques have been widely used in the production of biofuels, chemicals, pharmaceuticals, and food additives, being considered a "green" form of production because they use renewable and nonpolluting energy sources. On the other hand, in the traditional processes of production, the target product obtained by biotechnological routes must undergo several stages of purification, which makes these processes more expensive. In the past few years, some works have focused on processes that integrate fermentation to the recovery and purification steps necessary to obtain the final product required. This type of process is called in situ product recovery or extractive fermentation. However, there are some differences in the concepts of the techniques used in these bioprocesses. In this way, this review sought to compile relevant content on considerations and procedures that are being used in this field, such as evaporation, liquid-liquid extraction, permeation, and adsorption techniques. Also, the objective of this review was to approach the different configurations in the recent literature of the processes employed and the main bioproducts obtained, which can be used in the food, pharmaceutical, chemical, and/or fuel additives industry. We intended to elucidate concepts of these techniques, considered very recent, but which emerge as a promising alternative for the integration of bioprocesses.
Collapse
Affiliation(s)
- Ariane G Santos
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tiago L de Albuquerque
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bernardo D Ribeiro
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Alice Z Coelho
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Tang MJ, Liu ML, Wang DA, Shao DD, Wang HJ, Cui Z, Cao XL, Sun SP. Precisely Patterned Nanostrand Surface of Cucurbituril[ n]-Based Nanofiltration Membranes for Effective Alcohol-Water Condensation. NANO LETTERS 2020; 20:2717-2723. [PMID: 32207960 DOI: 10.1021/acs.nanolett.0c00344] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Low concentration alcohols produced by state-of-the-art biological fermentation restrict subsequent purification processes for chemical, pharmaceutical, biofuel, and other applications. Herein, a rarely reported cucurbituril[n] (n = 6, 8) is employed to pattern the thin-film composite membranes with controllable and quantifiable nanostrand structures through a host-guest strategy. The resulting nanofiltration membrane with such morphology is the first report that exhibits excellent separation performance for isopropyl alcohol (IPA) and water, condensing the initial 0.5 wt % IPA aqueous solution to 9.0 wt %. This not only provides a novel strategy for patterning nanostructural morphology but also makes nanofiltration membranes promising for alcohol condensation in the biological fermentation industry that may reduce energy consumption and postprocessing costs.
Collapse
Affiliation(s)
- Ming-Jian Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Mei-Ling Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Da-An Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Dan-Dan Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Hua-Jiang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Zhaoliang Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Xue-Li Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
17
|
Techno-Economic Analysis (TEA) of Different Pretreatment and Product Separation Technologies for Cellulosic Butanol Production from Oil Palm Frond. ENERGIES 2020. [DOI: 10.3390/en13010181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Among the driving factors for the high production cost of cellulosic butanol lies the pretreatment and product separation sections, which often demand high amounts of energy, chemicals, and water. In this study, techno-economic analysis of several pretreatments and product separation technologies were conducted and compared. Among the pretreatment technologies evaluated, low-moisture anhydrous ammonia (LMAA) pretreatment has shown notable potential with a pretreatment cost of $0.16/L butanol. Other pretreatment technologies evaluated were autohydrolysis, soaking in aqueous ammonia (SAA), and soaking in sodium hydroxide solution (NaOH) with pretreatment costs of $1.98/L, $3.77/L, and $0.61/L, respectively. Evaluation of different product separation technologies for acetone-butanol-ethanol (ABE) fermentation process have shown that in situ stripping has the lowest separation cost, which was $0.21/L. Other product separation technologies tested were dual extraction, adsorption, and membrane pervaporation, with the separation costs of $0.38/L, $2.25/L, and $0.45/L, respectively. The evaluations have shown that production of cellulosic butanol using combined LMAA pretreatment and in situ stripping or with dual extraction recorded among the lowest butanol production cost. However, dual extraction model has a total solvent productivity of approximately 6% higher than those of in situ stripping model.
Collapse
|
18
|
Dos Santos Vieira CF, Maugeri Filho F, Maciel Filho R, Pinto Mariano A. Acetone-free biobutanol production: Past and recent advances in the Isopropanol-Butanol-Ethanol (IBE) fermentation. BIORESOURCE TECHNOLOGY 2019; 287:121425. [PMID: 31085056 DOI: 10.1016/j.biortech.2019.121425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Production of butanol for fuel via the conventional Acetone-Butanol-Ethanol fermentation has been considered economically risky because of a potential oversupply of acetone. Alternatively, acetone is converted into isopropanol by specific solventogenic Clostridium species in the Isopropanol-Butanol-Ethanol (IBE) fermentation. This route, although less efficient, has been gaining attention because IBE mixtures are a potential fuel. The present work is dedicated to reviewing past and recent advances in microorganisms, feedstock, and fermentation equipment for IBE production. In our analysis we demonstrate the importance of novel engineered IBE-producing Clostridium strains and cell retention systems to decrease the staggering number of fermentation tanks required by IBE plants equipped with conventional technology. We also summarize the recent progress on recovery techniques integrated with fermentation, especially gas stripping. In addition, we assessed ongoing pilot-plant efforts that have been enabling IBE production from woody feedstock.
Collapse
Affiliation(s)
- Carla Ferreira Dos Santos Vieira
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Francisco Maugeri Filho
- Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rubens Maciel Filho
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Adriano Pinto Mariano
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
19
|
Kihara T, Noguchi T, Tashiro Y, Sakai K, Sonomoto K. Highly efficient continuous acetone–butanol–ethanol production from mixed sugars without carbon catabolite repression. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Overview of Alternative Ethanol Removal Techniques for Enhancing Bioethanol Recovery from Fermentation Broth. Processes (Basel) 2019. [DOI: 10.3390/pr7070458] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study aims at reviewing the alternative techniques for bioethanol recovery, highlighting its advantages and disadvantages, and to investigate the technical challenges facing these alternatives to be widely used. The findings showed that the integration of these techniques with the fermentation process did not meet a large acceptance in the industrial sector. The majority of conducted studies were mainly focusing on ethanol recovery from aqueous standard solution rather than the investigation of these techniques performance in fermentation-separation coupled system. In this context, pervaporation has received more attention as a promising alternative to distillation. However, some challenges are facing the integration of these techniques in the industrial scale as the fouling problem in pervaporation, the toxicity of solvent in liquid extraction, energy consumption in vacuum fermentation. It was also found that there is a lack of the technical economic analysis for these techniques which may limit the spread of its application in the large scale. Currently, hybrid systems integrating distillation with other alternative techniques are considered as an innovative solution to reduce the high cost of the distillation process and the low separation efficiency of the alternatives techniques.
Collapse
|
21
|
Abo BO, Gao M, Wang Y, Wu C, Wang Q, Ma H. Production of butanol from biomass: recent advances and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20164-20182. [PMID: 31115808 DOI: 10.1007/s11356-019-05437-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/09/2019] [Indexed: 05/24/2023]
Abstract
At present, diminishing oil resources and increasing environmental concerns have led to a shift toward the production of alternative biofuels. In the last few decades, butanol, as liquid biofuel, has received considerable research attention due to its advantages over ethanol. Several studies have focused on the production of butanol through the fermentation from raw renewable biomass, such as lignocellulosic materials. However, the low concentration and productivity of butanol production and the price of raw materials are limitations for butanol fermentation. Moreover, these limitations are the main causes of industrial decline in butanol production. This study reviews butanol fermentation, including the metabolism and characteristics of acetone-butanol-ethanol (ABE) producing clostridia. Furthermore, types of butanol production from biomass feedstock are detailed in this study. Specifically, this study introduces the recent progress on the efficient butanol production of "designed" and modified biomass. Additionally, the recent advances in the butanol fermentation process, such as multistage continuous fermentation, metabolic flow change of the electron carrier supplement, continuous fermentation with immobilization and recycling of cell, and the recent technical separation of the products from the fermentation broth, are described in this study.
Collapse
Affiliation(s)
- Bodjui Olivier Abo
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Ming Gao
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yonglin Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chuanfu Wu
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongzhi Ma
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
22
|
Benali M, Ajao O, El Mehdi N, Restrepo AM, Fradj N, Boumghar Y. Acetone–Butanol–Ethanol Production from Eastern Canadian Yellow Birch and Screening of Isopropanol–Butanol–Ethanol-Producing Strains. Ind Biotechnol (New Rochelle N Y) 2019. [DOI: 10.1089/ind.2019.0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marzouk Benali
- Natural Resources Canada, CanmetENERGY, Varennes, Canada
| | - Olumoye Ajao
- Natural Resources Canada, CanmetENERGY, Varennes, Canada
| | - Naima El Mehdi
- Natural Resources Canada, CanmetENERGY, Varennes, Canada
| | | | - Narimene Fradj
- Université du Québec à Trois-Rivières, Department of Chemistry, Biochemistry and Physics, Trois-Rivières, Canada
| | - Yacine Boumghar
- Centre d'études des procédés chimiques du Québec, Montréal, Canada
| |
Collapse
|
23
|
Pereira JPC, Overbeek W, Gudiño-Reyes N, Andrés-García E, Kapteijn F, van der Wielen LAM, Straathof AJJ. Integrated Vacuum Stripping and Adsorption for the Efficient Recovery of (Biobased) 2-Butanol. Ind Eng Chem Res 2019; 58:296-305. [PMID: 30774191 PMCID: PMC6369677 DOI: 10.1021/acs.iecr.8b03043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/29/2018] [Accepted: 12/12/2018] [Indexed: 11/29/2022]
Abstract
![]()
Biobased
2-butanol offers high potential as biofuel, but its toxicity
toward microbial hosts calls for efficient techniques to alleviate
product inhibition in fermentation processes. Aiming at the selective
recovery of 2-butanol, the feasibility of a process combining in situ vacuum stripping followed by vapor adsorption has
been assessed using mimicked fermentation media. The experimental
vacuum stripping of model solutions and corn stover hydrolysate closely
aligned with mass transfer model predictions. However, the presence
of lignocellulosic impurities affected 2-butanol recovery yields resulting
from vapor condensation, which decreased from 96 wt % in model solutions
to 40 wt % using hydrolysate. For the selective recovery of 2-butanol
from a vapor mixture enriched in water and carbon dioxide, silicalite
materials were the most efficient, particularly at low alcohol partial
pressures. Integrating in situ vacuum stripping with
vapor adsorption using HiSiv3000 proved useful to effectively concentrate
2-butanol above its azeotropic composition (>68 wt %), facilitating
further product purification.
Collapse
|
24
|
In-Situ Vacuum Assisted Gas Stripping Recovery System for Ethanol Removal from a Column Bioreactor. FIBERS 2018. [DOI: 10.3390/fib6040088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A three-step process consisting of biomass hydrolysis, fermentation and in-situ gas stripping by a vacuum assisted recovery system, was optimized to increase the ethanol production from sugar beet pulp. The process combines the advantages of stripping and vacuum separation and enhances the fermentation productivity through in-situ ethanol removal. Using the design of experiment and response surface methodology, the effect of major factors in the process, such as pressure, recycling ratio and solids concentration, was tested to efficiently remove ethanol after the combined hydrolysis and fermentation step. Statistical analysis indicates that a decreased pressure rate and an increased liquid phase recycling ratio enhance the productivity and the yield of the strip-vacuum fermentation process. The results also highlight further possibilities of this process to improve integrated bioethanol production processes. According to the statistical analysis, ethanol production is strongly influenced by recycling ratio and vacuum ratio. Mathematical models that were established for description of investigated processes can be used for the optimization of the ethanol production.
Collapse
|
25
|
|
26
|
Bušić A, Marđetko N, Kundas S, Morzak G, Belskaya H, Ivančić Šantek M, Komes D, Novak S, Šantek B. Bioethanol Production from Renewable Raw Materials and Its Separation and Purification: A Review. Food Technol Biotechnol 2018; 56:289-311. [PMID: 30510474 PMCID: PMC6233010 DOI: 10.17113/ftb.56.03.18.5546] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Production of biofuels from renewable feedstocks has captured considerable scientific attention since they could be used to supply energy and alternative fuels. Bioethanol is one of the most interesting biofuels due to its positive impact on the environment. Currently, it is mostly produced from sugar- and starch-containing raw materials. However, various available types of lignocellulosic biomass such as agricultural and forestry residues, and herbaceous energy crops could serve as feedstocks for the production of bioethanol, energy, heat and value-added chemicals. Lignocellulose is a complex mixture of carbohydrates that needs an efficient pretreatment to make accessible pathways to enzymes for the production of fermentable sugars, which after hydrolysis are fermented into ethanol. Despite technical and economic difficulties, renewable lignocellulosic raw materials represent low-cost feedstocks that do not compete with the food and feed chain, thereby stimulating the sustainability. Different bioprocess operational modes were developed for bioethanol production from renewable raw materials. Furthermore, alternative bioethanol separation and purification processes have also been intensively developed. This paper deals with recent trends in the bioethanol production as a fuel from different renewable raw materials as well as with its separation and purification processes.
Collapse
Affiliation(s)
- Arijana Bušić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Nenad Marđetko
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Semjon Kundas
- Belarussian National Technical University, Power Plant Construction and Engineering Services Faculty, Nezavisimosti Ave. 150, BY-220013 Minsk, Belarus
| | - Galina Morzak
- Belarussian National Technical University, Mining Engineering and Engineering Ecology Faculty, Nezavisimosti Ave. 65, BY-220013 Minsk, Belarus
| | - Halina Belskaya
- Belarussian National Technical University, Mining Engineering and Engineering Ecology Faculty, Nezavisimosti Ave. 65, BY-220013 Minsk, Belarus
| | - Mirela Ivančić Šantek
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Draženka Komes
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Srđan Novak
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Božidar Šantek
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| |
Collapse
|
27
|
Pereira JPC, van der Wielen LAM, Straathof AJJ. Perspectives for the microbial production of methyl propionate integrated with product recovery. BIORESOURCE TECHNOLOGY 2018; 256:187-194. [PMID: 29438919 DOI: 10.1016/j.biortech.2018.01.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 05/12/2023]
Abstract
A new approach was studied for bio-based production of methyl propionate, a precursor of methyl methacrylate. Recombinant E. coli cells were used to perform a cascade reaction in which 2-butanol is reduced to butanone using alcohol dehydrogenase, and butanone is oxidized to methyl propionate and ethyl acetate using a Baeyer-Villiger monooxygenase (BVMO). Product was removed by in situ stripping. The conversion was in line with a model comprising product formation and stripping kinetics. The maximum conversion rates were 1.14 g-butanone/(L h), 0.11 g-ethyl acetate/(L h), and 0.09 g-methyl propionate/(L h). The enzyme regioselectivity towards methyl propionate was 43% of total ester. Starting from biomass-based production of 2-butanol, full-scale ester production with conventional product purification was calculated to be competitive with petrochemical production if the monooxygenase activity and regioselectivity are enhanced, and the costs of bio-based 2-butanol are minimized.
Collapse
Affiliation(s)
- Joana P C Pereira
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Luuk A M van der Wielen
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Adrie J J Straathof
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands.
| |
Collapse
|
28
|
Máté de Gérando H, Wasels F, Bisson A, Clement B, Bidard F, Jourdier E, López-Contreras AM, Lopes Ferreira N. Genome and transcriptome of the natural isopropanol producer Clostridium beijerinckii DSM6423. BMC Genomics 2018; 19:242. [PMID: 29636009 PMCID: PMC5894183 DOI: 10.1186/s12864-018-4636-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/28/2018] [Indexed: 12/23/2022] Open
Abstract
Background There is a worldwide interest for sustainable and environmentally-friendly ways to produce fuels and chemicals from renewable resources. Among them, the production of acetone, butanol and ethanol (ABE) or Isopropanol, Butanol and Ethanol (IBE) by anaerobic fermentation has already a long industrial history. Isopropanol has recently received a specific interest and the best studied natural isopropanol producer is C. beijerinckii DSM 6423 (NRRL B-593). This strain metabolizes sugars into a mix of IBE with only low concentrations of ethanol produced (< 1 g/L). However, despite its relative ancient discovery, few genomic details have been described for this strain. Research efforts including omics and genetic engineering approaches are therefore needed to enable the use of C. beijerinckii as a microbial cell factory for production of isopropanol. Results The complete genome sequence and a first transcriptome analysis of C. beijerinckii DSM 6423 are described in this manuscript. The combination of MiSeq and de novo PacBio sequencing revealed a 6.38 Mbp chromosome containing 6254 genomic objects. Three Mobile Genetic Elements (MGE) were also detected: a linear double stranded DNA bacteriophage (ϕ6423) and two plasmids (pNF1 and pNF2) highlighting the genomic complexity of this strain. A first RNA-seq transcriptomic study was then performed on 3 independent glucose fermentations. Clustering analysis allowed us to detect some key gene clusters involved in the main life cycle steps (acidogenesis, solvantogenesis and sporulation) and differentially regulated among the fermentation. These putative clusters included some putative metabolic operons comparable to those found in other reference strains such as C. beijerinckii NCIMB 8052 or C. acetobutylicum ATCC 824. Interestingly, only one gene was encoding for an alcohol dehydrogenase converting acetone into isopropanol, suggesting a single genomic event occurred on this strain to produce isopropanol. Conclusions We present the full genome sequence of Clostridium beijerinckii DSM 6423, providing a complete genetic background of this strain. This offer a great opportunity for the development of dedicated genetic tools currently lacking for this strain. Moreover, a first RNA-seq analysis allow us to better understand the global metabolism of this natural isopropanol producer, opening the door to future targeted engineering approaches. Electronic supplementary material The online version of this article (10.1186/s12864-018-4636-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hadrien Máté de Gérando
- Wageningen Food and Biobased Research, Bornse Weilanden 9, 6709WG, Wageningen, The Netherlands.,IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - François Wasels
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Angélique Bisson
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Benjamin Clement
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Frédérique Bidard
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Etienne Jourdier
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | | | | |
Collapse
|
29
|
Modeling and simulation of continuous extractive fermentation with CO2 stripping for bioethanol production. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2017.12.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Pérez-Bibbins B, Gonzalez Peñas H, Toth E, Coupard V, Lopes-Ferreira N. Hybrid in situ product recovery technique applied to (A)IBE fermentation. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Zheng H, Gao Y, Dong K, Hu N, Xu D, Hao M, Wu Z. A novel membrane-assisted fermentation coupling with foam separation for improving the titer of polymyxin E. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1405984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Huijie Zheng
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, P.R. China
| | - Yingying Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, P.R. China
| | - Kai Dong
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, P.R. China
| | - Nan Hu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, P.R. China
| | - Dandan Xu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, P.R. China
| | - Mengmeng Hao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, P.R. China
| | - Zhaoliang Wu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, P.R. China
| |
Collapse
|
32
|
Jin M, Sarks C, Bals BD, Posawatz N, Gunawan C, Dale BE, Balan V. Toward high solids loading process for lignocellulosic biofuel production at a low cost. Biotechnol Bioeng 2017; 114:980-989. [PMID: 27888662 DOI: 10.1002/bit.26229] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/23/2016] [Accepted: 11/20/2016] [Indexed: 11/09/2022]
Abstract
High solids loadings (>18 wt%) in enzymatic hydrolysis and fermentation are desired for lignocellulosic biofuel production at a high titer and low cost. However, sugar conversion and ethanol yield decrease with increasing solids loading. The factor(s) limiting sugar conversion at high solids loading is not clearly understood. In the present study, we investigated the effect of solids loading on simultaneous saccharification and co-fermentation (SSCF) of AFEX™ (ammonia fiber expansion) pretreated corn stover for ethanol production using a xylose fermenting strain Saccharomyces cerevisiae 424A(LNH-ST). Decreased sugar conversion and ethanol yield with increasing solids loading were also observed. End-product (ethanol) was proven to be the major cause of this issue and increased degradation products with increasing solids loading was also a cause. For the first time, we show that with in situ removal of end-product by performing SSCF aerobically, sugar conversion stopped decreasing with increasing solids loading and monomeric sugar conversion reached as high as 93% at a high solids loading of 24.9 wt%. Techno-economic analysis was employed to explore the economic possibilities of cellulosic ethanol production at high solids loadings. The results suggest that low-cost in situ removal of ethanol during SSCF would significantly improve the economics of high solids loading processes. Biotechnol. Bioeng. 2017;114: 980-989. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.,Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, Lansing, Michigan
| | - Cory Sarks
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, Lansing, Michigan
| | - Bryan D Bals
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, Lansing, Michigan
| | - Nick Posawatz
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, Lansing, Michigan
| | - Christa Gunawan
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, Lansing, Michigan
| | - Bruce E Dale
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, Lansing, Michigan
| | - Venkatesh Balan
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, Lansing, Michigan
| |
Collapse
|
33
|
Pereira JPC, Lopez-Gomez G, Reyes NG, van der Wielen LAM, Straathof AJJ. Prospects and challenges for the recovery of 2-butanol produced by vacuum fermentation - a techno-economic analysis. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/26/2017] [Accepted: 03/02/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Joana P. C. Pereira
- Department of Biotechnology; Delft University of Technology; Delft The Netherlands
| | - Gustavo Lopez-Gomez
- Department of Biotechnology; Delft University of Technology; Delft The Netherlands
| | - Noelia G. Reyes
- Department of Biotechnology; Delft University of Technology; Delft The Netherlands
| | | | | |
Collapse
|
34
|
Outram V, Lalander CA, Lee JGM, Davies ET, Harvey AP. Applied in situ product recovery in ABE fermentation. Biotechnol Prog 2017; 33:563-579. [PMID: 28188696 PMCID: PMC5485034 DOI: 10.1002/btpr.2446] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/31/2017] [Indexed: 12/12/2022]
Abstract
The production of biobutanol is hindered by the product's toxicity to the bacteria, which limits the productivity of the process. In situ product recovery of butanol can improve the productivity by removing the source of inhibition. This paper reviews in situ product recovery techniques applied to the acetone butanol ethanol fermentation in a stirred tank reactor. Methods of in situ recovery include gas stripping, vacuum fermentation, pervaporation, liquid–liquid extraction, perstraction, and adsorption, all of which have been investigated for the acetone, butanol, and ethanol fermentation. All techniques have shown an improvement in substrate utilization, yield, productivity or both. Different fermentation modes favored different techniques. For batch processing gas stripping and pervaporation were most favorable, but in fed‐batch fermentations gas stripping and adsorption were most promising. During continuous processing perstraction appeared to offer the best improvement. The use of hybrid techniques can increase the final product concentration beyond that of single‐stage techniques. Therefore, the selection of an in situ product recovery technique would require comparable information on the energy demand and economics of the process. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:563–579, 2017
Collapse
Affiliation(s)
- Victoria Outram
- School of Chemical Engineering and Advanced Material, Newcastle University, Newcastle-upon-Tyne, U.K.,Green Biologics Ltd, 45A Western Avenue, Milton Park, Abingdon, Oxfordshire, U.K
| | - Carl-Axel Lalander
- Green Biologics Ltd, 45A Western Avenue, Milton Park, Abingdon, Oxfordshire, U.K
| | - Jonathan G M Lee
- School of Chemical Engineering and Advanced Material, Newcastle University, Newcastle-upon-Tyne, U.K
| | - E Timothy Davies
- Green Biologics Ltd, 45A Western Avenue, Milton Park, Abingdon, Oxfordshire, U.K
| | - Adam P Harvey
- School of Chemical Engineering and Advanced Material, Newcastle University, Newcastle-upon-Tyne, U.K
| |
Collapse
|
35
|
Pyrgakis KA, de Vrije T, Budde MA, Kyriakou K, López-Contreras AM, Kokossis AC. A process integration approach for the production of biological iso-propanol, butanol and ethanol using gas stripping and adsorption as recovery methods. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Groeger C, Sabra W, Zeng AP. Simultaneous production of 1,3-propanediol andn-butanol byClostridium pasteurianum: In situ gas stripping and cellular metabolism. Eng Life Sci 2016. [DOI: 10.1002/elsc.201600058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Christin Groeger
- Institute of Bioprocess and Biosystems Engineering; Hamburg University of Technology; Hamburg Germany
| | - Wael Sabra
- Institute of Bioprocess and Biosystems Engineering; Hamburg University of Technology; Hamburg Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering; Hamburg University of Technology; Hamburg Germany
| |
Collapse
|
37
|
Gérando HMD, Fayolle-Guichard F, Rudant L, Millah SK, Monot F, Lopes Ferreira N, López-Contreras AM. Improving isopropanol tolerance and production of Clostridium beijerinckii DSM 6423 by random mutagenesis and genome shuffling. Appl Microbiol Biotechnol 2016; 100:5427-36. [PMID: 26852409 PMCID: PMC4875934 DOI: 10.1007/s00253-016-7302-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 12/26/2022]
Abstract
Random mutagenesis and genome shuffling was applied to improve solvent tolerance and isopropanol/butanol/ethanol (IBE) production in the strictly anaerobic bacteria Clostridium beijerinckii DSM 6423. Following chemical mutagenesis with N-methyl-N-nitro-N-nitrosoguanidine (NTG), screening of putatively improved strains was done by submitting the mutants to toxic levels of inhibitory chemicals or by screening for their tolerance to isopropanol (>35 g/L). Suicide substrates, such as ethyl or methyl bromobutyrate or alcohol dehydrogenase inhibitors like allyl alcohol, were tested and, finally, 36 mutants were isolated. The fermentation profiles of these NTG mutant strains were characterized, and the best performing mutants were used for consecutive rounds of genome shuffling. Screening of strains with further enhancement in isopropanol tolerance at each recursive shuffling step was then used to spot additionally improved strains. Three highly tolerant strains were finally isolated and able to withstand up to 50 g/L isopropanol on plates. Even if increased tolerance to the desired end product was not always accompanied by higher production capabilities, some shuffled strains showed increased solvent titers compared to the parental strains and the original C. beijerinckii DSM 6423. This study confirms the efficiency of genome shuffling to generate improved strains toward a desired phenotype such as alcohol tolerance. This tool also offers the possibility of obtaining improved strains of Clostridium species for which targeted genetic engineering approaches have not been described yet.
Collapse
Affiliation(s)
- H Máté de Gérando
- Food and Biobased Research Wageningen UR, Wageningen, the Netherlands
- Biotechnology Department, IFP Energies nouvelles, Rueil-Malmaison, France
| | - F Fayolle-Guichard
- Biotechnology Department, IFP Energies nouvelles, Rueil-Malmaison, France
| | - L Rudant
- Biotechnology Department, IFP Energies nouvelles, Rueil-Malmaison, France
| | - S K Millah
- Food and Biobased Research Wageningen UR, Wageningen, the Netherlands
| | - F Monot
- Biotechnology Department, IFP Energies nouvelles, Rueil-Malmaison, France
| | - N Lopes Ferreira
- Biotechnology Department, IFP Energies nouvelles, Rueil-Malmaison, France.
| | | |
Collapse
|
38
|
Microbubble Distillation for Ethanol-Water Separation. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2016. [DOI: 10.1155/2016/5210865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the current study, a novel approach for separating ethanol-water mixture by microbubble distillation technology was investigated. Traditional distillation processes require large amounts of energy to raise the liquid to its boiling point to effect removal of volatile components. The concept of microbubble distillation by comparison is to heat the gas phase rather than the liquid phase to achieve separation. The removal of ethanol from the thermally sensitive fermentation broths was taken as a case of study. Consequently the results were then compared with those which could be obtained under equilibrium conditions expected in an “ideal” distillation unit. Microbubble distillation has achieved vapour compositions higher than that which could be obtained under traditional equilibrium conditions. The separation was achieved at liquid temperature significantly less than the boiling point of the mixture. In addition, it was observed that the separation efficiency of the microbubble distillation could be increased by raising the injected air temperature, while the temperature of the liquid mixture increased only moderately. The separation efficiency of microbubble distillation was compared with that of pervaporation for the recovery of bioethanol from the thermally sensitive fermentation broths. The technology could be controlled to give high separation and energy efficiency. This could contribute to improving commercial viability of biofuel production and other coproducts of biorefinery processing.
Collapse
|
39
|
Youn SH, Lee KM, Kim KY, Lee SM, Woo HM, Um Y. Effective isopropanol-butanol (IB) fermentation with high butanol content using a newly isolated Clostridium sp. A1424. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:230. [PMID: 27800016 PMCID: PMC5080687 DOI: 10.1186/s13068-016-0650-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/18/2016] [Indexed: 05/17/2023]
Abstract
BACKGROUND Acetone-butanol-ethanol fermentation has been studied for butanol production. Alternatively, to achieve acetone-free butanol production, use of clostridium strains producing butanol and 1,3-propanediol (1,3-PDO) from glycerol, natural and engineered isopropanol-butanol-ethanol (IBE) producers has been attempted; however, residual 1,3-PDO and acetone, low IBE production by natural IBE producers, and complicated gene modification are limitations. RESULTS Here, we report an effective isopropanol and butanol (IB) fermentation using a newly isolated Clostridium sp. A1424 capable of producing IB from various substrates with a small residual acetone. Notably, this strain also utilized glycerol and produced butanol and 1,3-PDO. After 46.35 g/L of glucose consumption at pH 5.5-controlled batch fermentation, Clostridium sp. A1424 produced 9.43 g/L of butanol and 13.92 g/L of IB at the productivity of 0.29 and 0.44 g/L/h, respectively, which are the highest values in glucose-based batch fermentations using natural IB producers. More interestingly, using glucose-glycerol mixtures at ratios ranging from 20:2 to 14:8 led to not only acetone-free and 1,3-PDO-free IB fermentation but also enhanced IB production along with a much higher butanol content (butanol/isopropanol ratio of 1.81 with glucose vs. 2.07-6.14 with glucose-glycerol mixture). Furthermore, when the mixture of glucose and crude glycerol at the ratio of 14:8 (total concentration of 35.68 g/L) was used, high butanol/isopropanol ratio (3.44) and butanol titer (9.86 g/L) were achieved with 1.4-fold enhanced butanol yield (0.28 g/g) and productivity (0.41 g/L/h) compared to those with glucose only at pH 5.5. CONCLUSIONS A newly isolated Clostridium sp. A1424 was able to produce butanol and isopropanol from various carbon sources. The productivity and titer of butanol and total alcohol obtained in this study were higher than the previously reported results obtained using other natural IB producers. Use of the mixture of glucose and glycerol was successful to achieve acetone-free, 1,3-PDO-free, and enhanced IB production with higher yield, productivity, and selectivity of butanol compared to those with glucose only, providing great advantages from the perspective of carbon recovery to alcohols. This notable result could be accomplished by isolating an effective IB producer Clostridium sp. A1424 as well as by utilizing glucose-glycerol mixtures.
Collapse
Affiliation(s)
- Sung Hun Youn
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14‑gil 5, Seongbuk‑gu, Seoul, 02792 South Korea
| | - Kyung Min Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14‑gil 5, Seongbuk‑gu, Seoul, 02792 South Korea
| | - Ki-Yeon Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14‑gil 5, Seongbuk‑gu, Seoul, 02792 South Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14‑gil 5, Seongbuk‑gu, Seoul, 02792 South Korea
- Clean Energy and Chemical Engineering, Korea University of Science and Technology, 217 Gajeong‑ro, Yuseong‑gu, Daejeon, 34113 South Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419 South Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14‑gil 5, Seongbuk‑gu, Seoul, 02792 South Korea
- Clean Energy and Chemical Engineering, Korea University of Science and Technology, 217 Gajeong‑ro, Yuseong‑gu, Daejeon, 34113 South Korea
| |
Collapse
|
40
|
Van Hecke W, Vandezande P, Dubreuil M, Uyttebroek M, Beckers H, De Wever H. Biobutanol production from C5/C6 carbohydrates integrated with pervaporation: experimental results and conceptual plant design. ACTA ACUST UNITED AC 2016; 43:25-36. [DOI: 10.1007/s10295-015-1717-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/29/2015] [Indexed: 01/06/2023]
Abstract
Abstract
In this study, a simulated lignocellulosic hydrolyzate was used in a continuous two-stage fermentor setup for production of acetone, butanol and ethanol. An organophilic pervaporation unit was coupled to the second fermentor. The dilution rate in the first fermentor was kept constant at 0.109 h−1, while the dilution rate in the second fermentor was gradually decreased from 0.056 to 0.020 h−1. Glucose was completely consumed, while 61 % of the xylose was consumed at the lowest dilution rate, leading to an overall solvent productivity of 0.65 g L−1 h−1 and a high concentration of 185 g kg−1 solvents in the permeate in the last fermentation zone during 192 h. Based on the experimental results, a process integrated with organophilic pervaporation was conceptually designed and compared with a base-case. Chemcad simulations indicate an energy reduction of ~50 % when organophilic pervaporation is used. This study also demonstrates significant reductions in process flows and energy consumption by the use of organophilic pervaporation as in situ product recovery technology.
Collapse
Affiliation(s)
- Wouter Van Hecke
- grid.6717.7 0000000120341548 Flemish Institute for Technological Research (VITO) Business Unit Separation and Conversion Technology Boeretang 200 2400 Mol Belgium
| | - Pieter Vandezande
- grid.6717.7 0000000120341548 Flemish Institute for Technological Research (VITO) Business Unit Separation and Conversion Technology Boeretang 200 2400 Mol Belgium
| | - Marjorie Dubreuil
- grid.6717.7 0000000120341548 Flemish Institute for Technological Research (VITO) Business Unit Separation and Conversion Technology Boeretang 200 2400 Mol Belgium
| | - Maarten Uyttebroek
- grid.6717.7 0000000120341548 Flemish Institute for Technological Research (VITO) Business Unit Separation and Conversion Technology Boeretang 200 2400 Mol Belgium
| | - Herman Beckers
- grid.6717.7 0000000120341548 Flemish Institute for Technological Research (VITO) Business Unit Separation and Conversion Technology Boeretang 200 2400 Mol Belgium
| | - Heleen De Wever
- grid.6717.7 0000000120341548 Flemish Institute for Technological Research (VITO) Business Unit Separation and Conversion Technology Boeretang 200 2400 Mol Belgium
| |
Collapse
|
41
|
Cao Y, Wang K, Wang X, Gu Z, Gibbons W, Vu H. Adsorption of butanol vapor on active carbons with nitric acid hydrothermal modification. BIORESOURCE TECHNOLOGY 2015; 196:525-532. [PMID: 26291412 DOI: 10.1016/j.biortech.2015.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
Butanol can be produced from biomass via fermentation and used in vehicles. Unfortunately, butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Butanol can be efficiently removed from fermentation broth by gas stripping, thereby preventing its inhibitory effects. Original active carbon (AC) and AC samples modified by nitric acid hydrothermal modification were assessed for their ability to adsorb butanol vapor. The specific surface area and oxygen-containing functional groups of AC were tested before and after modification. The adsorption capacity of unmodified AC samples was the highest. Hydrothermal oxidation of AC with HNO3 increased the surface oxygen content, Brunauer-Emmett-Teller (BET) surface area, micropore, mesopore and total pore volume of AC. Although the pore structure and specific surface area were greatly improved after hydrothermal oxidization with 4M HNO3, the increased oxygen on the surface of AC decreased the dynamic adsorption capacity.
Collapse
Affiliation(s)
- Yuhe Cao
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD, USA
| | - Keliang Wang
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD, USA
| | - Xiaomin Wang
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD, USA
| | - Zhengrong Gu
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD, USA.
| | - William Gibbons
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Han Vu
- Department of Chemistry, Amherst College, Amherst, MA, USA
| |
Collapse
|
42
|
Yasin M, Jeong Y, Park S, Jeong J, Lee EY, Lovitt RW, Kim BH, Lee J, Chang IS. Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. BIORESOURCE TECHNOLOGY 2015; 177:361-374. [PMID: 25443672 DOI: 10.1016/j.biortech.2014.11.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/06/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Microbial conversion of syngas to energy-dense biofuels and valuable chemicals is a potential technology for the efficient utilization of fossils (e.g., coal) and renewable resources (e.g., lignocellulosic biomass) in an environmentally friendly manner. However, gas-liquid mass transfer and kinetic limitations are still major constraints that limit the widespread adoption and successful commercialization of the technology. This review paper provides rationales for syngas bioconversion and summarizes the reaction limited conditions along with the possible strategies to overcome these challenges. Mass transfer and economic performances of various reactor configurations are compared, and an ideal case for optimum bioreactor operation is presented. Overall, the challenges with the bioprocessing steps are highlighted, and potential solutions are suggested. Future research directions are provided and a conceptual design for a membrane-based syngas biorefinery is proposed.
Collapse
Affiliation(s)
- Muhammad Yasin
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Republic of Korea
| | - Yeseul Jeong
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Republic of Korea
| | - Shinyoung Park
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Republic of Korea
| | - Jiyeong Jeong
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do 446-701, Republic of Korea
| | - Robert W Lovitt
- College of Engineering, Swansea University, Swansea SA2 8PP, United Kingdom
| | - Byung Hong Kim
- Fuel Cell Institute, National University of Malaysia, 43600 UKM, Bangi, Malaysia
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Republic of Korea
| | - In Seop Chang
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Republic of Korea.
| |
Collapse
|
43
|
Van Hecke W, Kaur G, De Wever H. Advances in in-situ product recovery (ISPR) in whole cell biotechnology during the last decade. Biotechnol Adv 2014; 32:1245-1255. [DOI: 10.1016/j.biotechadv.2014.07.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/07/2014] [Accepted: 07/18/2014] [Indexed: 12/27/2022]
|
44
|
Pervaporative concentration of biobutanol from ABE fermentation broths by Clostridium saccharoperbutylacetonicum using silicone rubber-coated silicalite-1 membranes. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
|
46
|
Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN BIOTECHNOLOGY 2014; 2014:463074. [PMID: 25937989 PMCID: PMC4393053 DOI: 10.1155/2014/463074] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/19/2014] [Indexed: 11/17/2022]
Abstract
Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be produced in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected.
Collapse
|
47
|
Löser C, Urit T, Bley T. Perspectives for the biotechnological production of ethyl acetate by yeasts. Appl Microbiol Biotechnol 2014; 98:5397-415. [DOI: 10.1007/s00253-014-5765-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 12/18/2022]
|