1
|
Tian K, Zhang J, Zhou C, Liu H, Pei Y, Zhang X, Yan X. Revealing the roles of carbonized humic acid in biohydrogen production. BIORESOURCE TECHNOLOGY 2023; 386:129506. [PMID: 37468005 DOI: 10.1016/j.biortech.2023.129506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/08/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
For low yield in dark fermentation (DF), in this study, the carbonized humic acid (CHA) was produced and added to DF for enhancing biohydrogen (bioH2) yield at mesophilic condition. The highest bioH2 yield was 151.08 mL/g glucose with the addition of CHA at 80 mg/L, which was 35.27% and 16.53% higher than those of 0 mg/L CHA and 80 mg/L mineral humic acid (MHA) groups, respectively. Electrons preferentially conducted via the butyrate pathway due to CHA amendments, which corresponded to the prediction of relevant functional genes. Furthermore, CHA possessed distinctive advantages over MHA, which acted as an electron shuttle to facilitate electron transfer, released metal ions as an essential signal mediator and favored the reduction of ferredoxin, obtaining more H2. The use of CHA in the field of H2-DF depicted the high-value utilization and industrial chain extension of MHA.
Collapse
Affiliation(s)
- Kexin Tian
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chen Zhou
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hui Liu
- Shandong Institute of Geophysical & Geochemical Exploration, Jinan 250013, China
| | - Yong Pei
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoying Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiao Yan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
2
|
Zhang J, Zhang H, Zhang J, Zhou C, Pei Y, Zang L. Improved biohydrogen evolution through calcium ferrite nanoparticles assisted dark fermentation. BIORESOURCE TECHNOLOGY 2022; 361:127676. [PMID: 35872267 DOI: 10.1016/j.biortech.2022.127676] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Dark fermentation (DF) is a green hydrogen (H2) production process, but it is far below the theoretical H2 yield. In this study, calcium ferrite nanoparticles (CaFe2O4 NPs) were produced to augment H2 yield via DF. The highest H2 yield of 250.1 ± 6.5 mL/g glucose was achieved at 100 mg/L CaFe2O4 NPs. Furtherincreasein CaFe2O4 NPs above 100 mg/L, such as 600 mg/L, would slightly lower H2 yield to 208.6 ± 2.6 mL/g glucose. The CaFe2O4 NPs in DF system released calcium and iron ions, promoting granular sludge formation andDF microbial activity. Soluble metabolites revealed that butyric acid was raised by CaFe2O4 NPs, which indicated the improved metabolic pathway for more H2. Microbial structure composition further illustrated that CaFe2O4 NPs could increase the abundance of dominant microbial populations, with the supremacy of Firmicutes up to 71.22 % in the bioH2 evolution group augmented with 100 mg/L CaFe2O4 NPs.
Collapse
Affiliation(s)
- Junchu Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Huiwen Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chen Zhou
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yong Pei
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Lihua Zang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
3
|
Li X, Sui K, Zhang J, Liu X, Xu Q, Wang D, Yang Q. Revealing the mechanisms of rhamnolipid enhanced hydrogen production from dark fermentation of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150347. [PMID: 34563898 DOI: 10.1016/j.scitotenv.2021.150347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Rhamnolipid (RL), as an environmentally compatible biosurfactant, has been used to enhance waste activated sludge (WAS) fermentation. However, the effect of RL on hydrogen accumulation in anaerobic fermentation remains unclear. Therefore, this work targets to investigate the mechanism of RL-based dark fermentation system on hydrogen production of WAS. It was found that the maximum yield of hydrogen increased from 1.76 ± 0.26 to 11.01 ± 0.30 mL/g VSS (volatile suspended solids), when RL concentration increased from 0 to 0.10 g/g TSS (total suspended solids). Further enhancement of RL level to 0.12 g/g TSS slightly reduced the production to 10.80 ± 0.28 mL/g VSS. Experimental findings revealed that although RL could be degraded to generate hydrogen, it did not play a major role in enhancing hydrogen accumulation. Mechanism analysis suggested that RL decreased the surface tension between sludge liquid and hydrophobic compounds, thus accelerating the solubilization of WAS, improving the proportion of biodegradable substances which could be used for subsequent hydrogen production. Regardless of the fact that adding RL suppressed all the fermentation processes, the inhibition effect of processes associated with hydrogen consumption was much severer than that of hydrogen production. Further investigations of microbial community revealed that RL enriched the relative abundance of hydrogen producers e.g., Romboutsia but reduced that of hydrogen consumers like Desulfobulbus and Caldisericum.
Collapse
Affiliation(s)
- Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Kexin Sui
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiamin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
4
|
Zhou M, Li C, Zhao L, Ning J, Pan X, Cai G, Zhu G. Synergetic effect of nano zero-valent iron and activated carbon on high-level ciprofloxacin removal in hydrolysis-acidogenesis of anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142261. [PMID: 33207529 DOI: 10.1016/j.scitotenv.2020.142261] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Ciprofloxacin is the most commonly prescribed antibiotic, and its widespread use poses threat to environmental safety. The removal of ciprofloxacin from contaminated water has remained a major challenge. The present study investigated adding nanoscale zero-valent iron (NZVI) and activated carbon (AC) on high-level ciprofloxacin removal in hydrolysis-acidogenesis stage of anaerobic digestion. The results showed that the degradation rate of ciprofloxacin increased from 22.61% (Blank group) to 72.41% after adding NZVI/AC with concentration of ciprofloxacin in effluent decreasing from 8.25 mg L-1 to 3.48 mg L-1. The volatile fatty acids (VFAs) yield increased by 173.7% compared with the Blank group. In addition, the NZVI/AC group achieved the highest chemical oxygen demand (COD) removal rate and acidogenesis rate. The microbial community analysis presented that hydrolytic and acidogenic bacteria and microorganisms related to degrading ciprofloxacin were obviously improved in the NZVI/AC group. Moreover, eleven transformation products and the main degradation pathways were proposed based on mass spectrometry information. In summary, the NZVI/AC addition supplied promising approach for ciprofloxacin wastewater treatment.
Collapse
Affiliation(s)
- Mingdian Zhou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100084, China
| | - Jing Ning
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gefu Zhu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
5
|
Li Z, Gu J, Ding J, Ren N, Xing D. Molecular mechanism of ethanol-H 2 co-production fermentation in anaerobic acidogenesis: Challenges and perspectives. Biotechnol Adv 2020; 46:107679. [PMID: 33316366 DOI: 10.1016/j.biotechadv.2020.107679] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022]
Abstract
Ethanol-type fermentation (ETF) is one of three fermentation types during the acidogenesis of the anaerobic biological treatment. Ethanoligenens, a representative genus of ETF, displays acidophilic, autoaggregative, and ethanol-H2 co-producing characteristics and facilitates subsequent methanogenesis. Here, the latest advances in the molecular mechanisms of the metabolic regulation of ethanol-H2 co-producing bacteria based on multi-omics studies were comprehensively reviewed. Comparative genomics demonstrated a low genetic similarity between Ethanoligenens and other hydrogen-producing genera. FeFe‑hydrogenases (FeFe-H2ases) and pyruvate ferredoxin oxidoreductase (PFOR) played critical roles in the ethanol-H2 co-metabolic pathway of Ethanoligenens. Global transcriptome analysis revealed that highly expressed [FeFe]-H2ases and ferredoxins drove hydrogen production by Ethanoligenens at low pH conditions (4.0-4.5). Quantitative proteomic analysis also proved that this genus resists acetic acid-induced intracellular acidification through the up-regulated expression of pyrimidine metabolism related proteins. The autoaggregation of Ethanoligenen facilitated its granulation with acetate-oxidizing bacteria in co-culture systems and mitigated a fast pH drop, providing a new approach for solving a pH imbalance and improving hydrogen production. In-depth studies of the regulatory mechanism underlying ethanol-H2 co-production metabolism and the syntrophic interactions of ethanol-H2 co-producing Ethanoligenens with other microorganisms will provide insights into the improvement of bioenergy recovery in anaerobic biotechnology. The coupling of ETF with other biotechnologies, which based on the regulation of electron flow direction, syntrophic interaction, and metabolic flux, can be potential strategies to enhance the cascade recovery of energy and resources.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiayu Gu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Li Z, Wang J, Feng K, Li Y, Ding J, Liu B, Ren N, Xing D. Rapid recruitment of hydrogen-producing biofilms for hydrogen production in a moving bed biofilm reactor by a sequential immobilization and deoxygenization approach. BIORESOURCE TECHNOLOGY 2020; 317:123979. [PMID: 32799080 DOI: 10.1016/j.biortech.2020.123979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
To reduce start-up time and enhance hydrogen production efficiency, a sequential immobilization and deoxygenization (SIDO) strategy for hydrogen production was investigated in continuous-flow moving bed biofilm reactors (MBBRs). The pre-immobilization process accelerated the initial enrichment of hydrogen-producing bacteria (HPB) and promoted the biofilm formation, which contribute to higher hydrogen production efficiency in SIDO-MBBRs compared to a non-immobilized reactor. A similar deoxygenization effect was achieved by inoculation with Pseudomonas aeruginosa compared with N2 sparging, and the P. aeruginosa pre-immobilized MBBR (Pse-MBBR) showed a higher H2 yield in the initial stage of operation. Microbial community analysis found a higher abundance of putative HPB in the range of 82.82-96.56%, with the predominant populations in the SIDO-MBBR assigned to genera Clostridium and Enterobacter. The results suggest that the SIDO-MBBR is an effective approach for rapid recruitment of HPB and start-up of fermentative hydrogen production.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yitian Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
7
|
Zhang D, Shen J, Shi H, Su G, Jiang X, Li J, Liu X, Mu Y, Wang L. Substantially enhanced anaerobic reduction of nitrobenzene by biochar stabilized sulfide-modified nanoscale zero-valent iron: Process and mechanisms. ENVIRONMENT INTERNATIONAL 2019; 131:105020. [PMID: 31325713 DOI: 10.1016/j.envint.2019.105020] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/14/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Nanoscale zero-valent iron (nZVI), although being increasingly used in anaerobic systems for strengthening the removal of various refractory pollutants, is limited by various inherent drawbacks, such as easy precipitation, passivation, poor mass and electron transfer. To address the above issues, biochar stabilized sulfide-modified nZVI (S-nZVI@BC) was added into an up-flow anaerobic sludge blanket (UASB) to investigate the enhancement of anaerobic biodegradation of nitrobenzene (NB) and its impacts on microbial community structure. The results demonstrated that both NB reduction and aniline formation could be substantially facilitated in S-nZVI@BC coupled system compared to other anaerobic ones coupled with nZVI or S-nZVI. The dosage of S-nZVI@BC resulted in the formation of densely packed aggregates, evidently increased the extracellular polymeric substances content, promoted the volatile fatty acids transformation and stimulated the methane yield. Furthermore, species related to fermentation (Bacteroides and Longilinea), methanogenesis (Methanosarcina and Methanomethylovorans), electroactivity (Pelobacter, Thiobacillus and Phaselicystis) as well as reduction (Desulfovibrio) were considerably enriched in S-nZVI@BC coupled system. The activities of electron transport, total adenosine triphosphate, nitroreductase and NAD(P)H, which were closely related to microbial activity and NB transformation, were increased noticeably in S-nZVI@BC coupled anaerobic system. This study demonstrated the promising potential for long-term operation and full-scale application of S-nZVI@BC coupled system for the treatment of NB containing wastewater.
Collapse
Affiliation(s)
- Dejin Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Hefei Shi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaodong Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
8
|
Study of microbial dynamics during optimization of hydrogen production from food waste by using LCFA-rich agent. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Yang G, Wang J. Improving mechanisms of biohydrogen production from grass using zero-valent iron nanoparticles. BIORESOURCE TECHNOLOGY 2018; 266:413-420. [PMID: 29982065 DOI: 10.1016/j.biortech.2018.07.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 05/09/2023]
Abstract
This paper investigated the improving mechanisms and microbial community dynamics of using zero-valent iron nanoparticles (Fe0 NPs) in hydrogen fermentation of grass. Results showed that Fe0 NPs supplement improved microbial activity and changed dominant microbial communities from Enterobacter sp. to Clostridium sp., which induced a more efficient metabolic pathway towards higher hydrogen production. Meanwhile, it is also proposed that Fe0 NPs could accelerate electron transfer between ferredoxin and hydrogenase, and promote the activity of key enzymes by the released Fe2+. The maximal hydrogen yield and hydrogen production rate were 64.7 mL/g-dry grass and 12.1 mL/h, respectively at Fe0 NPs dosage of 400 mg/L, which were 73.1% and 128.3% higher compared with the control group. Fe0 NPs also shorten the lag time and facilitated the hydrolysis and utilization of grass. This study demonstrated that Fe0 NPs could effectively improve hydrogen production and accelerate the fermentation process of grass.
Collapse
Affiliation(s)
- Guang Yang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
10
|
Yang G, Wang J. Pretreatment of grass waste using combined ionizing radiation-acid treatment for enhancing fermentative hydrogen production. BIORESOURCE TECHNOLOGY 2018; 255:7-15. [PMID: 29414175 DOI: 10.1016/j.biortech.2018.01.105] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 05/15/2023]
Abstract
In this study, the combined ionizing radiation-acid pretreatment process was firstly applied to enhance hydrogen fermentation of grass waste. Results showed that the combined pretreatment synergistically enhanced hydrogen fermentation of grass waste. The SCOD and soluble polysaccharide contents of grass waste increased by 1.6 and 2.91 times after the combined pretreatment, respectively. SEM observation and crystallinity test showed the combined pretreatment effectively disrupted the grass structure. Owing to the more favorable substrate conditions, the hydrogen yield achieved 68 mL/g-dry grassadded after the combined pretreatment, which was 161.5%, 112.5% and 28.3% higher than those from raw, ionizing radiation pretreated and acid pretreated grass waste, respectively. The VS removal also increased from 13.9% to 25.6% by the combined pretreatment. Microbial community analysis showed that the abundance of dominant hydrogen producing genus Clostridium sensu stricto 1 increased from 37.9% to 69.4% after the combined pretreatment, which contributed to more efficient hydrogen fermentation.
Collapse
Affiliation(s)
- Guang Yang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
11
|
Yang G, Wang J. Kinetics and microbial community analysis for hydrogen production using raw grass inoculated with different pretreated mixed culture. BIORESOURCE TECHNOLOGY 2018; 247:954-962. [PMID: 30060435 DOI: 10.1016/j.biortech.2017.09.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 06/08/2023]
Abstract
In this study, five pretreatment methods (heat shock, acid, base, aeration and gamma radiation) were applied for enriching hydrogen producers from anaerobically digested sludge, aiming to compare their hydrogen fermentation performance using raw ryegrass as substrate. Results showed that various pretreatment methods caused great variations on grass hydrogen fermentation performance. Acid pretreatment was most efficient compared with other tested pretreatment methods, with relevant hydrogen yield of 64.4mL/g dry grass and organics removal of 31.4%. Kinetics results showed that the first-order kinetic model fitted hydrogen evolution better than the modified Gompertz model. Microbiological analysis showed that various pretreatment methods caused great variations on microbial activity and microbial community composition. Clostridium and Enterococcus were two dominant genera, while relative abundances of these two genera varied greatly for different pretreated samples. Difference in microbial activity and microbial community distribution induced by the pretreatment methods might directly cause different ryegrass fermentation performance.
Collapse
Affiliation(s)
- Guang Yang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
12
|
Rafieenia R, Lavagnolo MC, Pivato A. Pre-treatment technologies for dark fermentative hydrogen production: Current advances and future directions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 71:734-748. [PMID: 28529040 DOI: 10.1016/j.wasman.2017.05.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
Hydrogen is regarded as a clean and non-carbon fuel and it has a higher energy content compared to carbon fuels. Dark fermentative hydrogen production from organic wastes is the most promising technology for commercialization among chemical and biological methods. Using mixed microflora is favored in terms of easier process control and substrate conversion efficiencies instead of pure cultures. However, mixed cultures should be first pre-treated in order to select sporulating hydrogen producing bacteria and suppress non-spore forming hydrogen consumers. Various inoculum pre-treatments have been used to enhance hydrogen production by dark fermentation including heat shock, acid or alkaline treatment, chemical inhibition, aeration, irradiation and inhibition by long chain fatty acids. Regarding substrate pre-treatment, that is performed with the aim of enhanced substrate biodegradability, thermal pre-treatment, pH adjustment using acid or base, microwave irradiation, sonication and biological treatment are the most commonly studied technologies. This article reviews the most investigated pre-treatment technologies applied for either inoculum or substrate prior to dark fermentation, the long-term effects of varying pre-treatment methods and the subsequently feasibility of each method for commercialization.
Collapse
Affiliation(s)
- Razieh Rafieenia
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy.
| | | | - Alberto Pivato
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| |
Collapse
|
13
|
Yin Y, Wang J. Changes in microbial community during biohydrogen production using gamma irradiated sludge as inoculum. BIORESOURCE TECHNOLOGY 2016; 200:217-22. [PMID: 26492174 DOI: 10.1016/j.biortech.2015.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/07/2015] [Accepted: 10/11/2015] [Indexed: 05/25/2023]
Abstract
The changes in microbial community structures during fermentative hydrogen production process were investigated by analyzing 16S rDNA gene sequences using gamma irradiated sludge as inoculum. The experimental results showed that the microbial community structure of untreated sludge was very rich in diversity. After gamma irradiation, lots of species were inhibited, and species with high survival rates under radiation conditions became dominant. After fermentation, Clostridium butyrium and a sequence closely related to Clostridium perfringens ATCC 13124(T) (CP000246) became predominant, which were all common hydrogen producers. Microbial distribution analysis indicated that gamma irradiation was a good pretreatment method for enriching hydrogen-producing strains from digested sludge.
Collapse
Affiliation(s)
- Yanan Yin
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
14
|
Bundhoo MAZ, Mohee R, Hassan MA. Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 157:20-48. [PMID: 25881150 DOI: 10.1016/j.jenvman.2015.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/05/2015] [Accepted: 04/07/2015] [Indexed: 05/24/2023]
Abstract
Biohydrogen production from dark fermentation of lignocellulosic materials represents a huge potential in terms of renewable energy exploitation. However, the low hydrogen yield is currently hindering its development on industrial scale. This study reviewed various technologies that have been investigated for enhancing dark fermentative biohydrogen production. The pre-treatment technologies can be classified based on their applications as inoculum or substrates pre-treatment or they can be categorised into physical, chemical, physicochemical and biological based on the techniques used. From the different technologies reviewed, heat and acid pre-treatments are the most commonly studied technologies for both substrates and inoculum pre-treatment. Nevertheless, these two technologies need not necessarily be the most suitable since across different studies, a wide array of other emerging techniques as well as combined technologies have yielded positive findings. To date, there exists no perfect technology for either inoculum or substrate pre-treatment. Although the aim of inoculum pre-treatment is to suppress H2-consumers and enrich H2-producers, many sporulating H2-consumers survive the pre-treatment while some non-spore H2-producers are inhibited. Besides, several inoculum pre-treatment techniques are not effective in the long run and repeated pre-treatment may be required for continuous suppression of H2-consumers and sustained biohydrogen production. Furthermore, many technologies employed for substrates pre-treatment may yield inhibitory compounds that can eventually decrease biohydrogen production. Consequently, much research needs to be done to find out the best technology for both substrates and inoculum pre-treatment while also taking into consideration the energetic, economic and technical feasibility of implementing such a process on an industrial scale.
Collapse
Affiliation(s)
- M A Zumar Bundhoo
- Department of Chemical & Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, Mauritius.
| | | | - M Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|