1
|
Wang C, Wei Z, Yan Z, Wang C, Xu S, Bai L, Jiang H, Yuan N. The feasibility of recycling drinking water treatment residue as suspended substrate for the removal of excess P and N from natural water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111640. [PMID: 33187785 DOI: 10.1016/j.jenvman.2020.111640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/20/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Eutrophication of natural water commonly involves the pollution of both P and N. Here, we developed a new application of drinking water treatment residuals (DWTRs) for suspensions that permits the simultaneous removal of excess P and N from natural water and demonstrates that DWTRs recycling can provide a means for eutrophication control. Based on 364-day continuous flow tests, the suspension application of DWTRs effectively adsorbed P from overlying water under various conditions, decreasing total P concentrations from 0.0739 ± 0.0462 to 0.0111 ± 0.0079-0.0149 ± 0.0106 mg L-1, which achieved a class Ⅱ level of the China surface water quality standards during the tests. The total N concentrations were also reduced from 1.46 ± 0.63-1.52 ± 0.63 to 0.435 ± 0.185-0.495 ± 0.198 mg L-1, which achieved a class Ⅲ level during the stable stage of the tests. N removal was closely related to doses of DWTRs and aeration intensities. Effective N removal was mediated by the enriched microbial communities in the suspended DWTRs with simple, stable, and resilient networks, including many taxa associated with the N cycle (e.g., Rhodoplanes, Brevibacillus, and Pseudomonas). Further analysis indicated that both effective P adsorption and functional microbial community construction were closely related to Fe and Al in DWTRs. Suspension application prevented the burial effect of solids sinking from overlying water, which aided the ability of DWTRs to control pollution, and is potentially applicable to other materials for natural water remediation.
Collapse
Affiliation(s)
- Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
| | - Zhao Wei
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; Graduate University of Chinese Academy of Sciences, China
| | - Zaisheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Chunliu Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; Graduate University of Chinese Academy of Sciences, China
| | - Shengqi Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Nannan Yuan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; Electronic Information Technology School, Nanjing Vocational College of Information Technology, Nanjing, China.
| |
Collapse
|
2
|
Wang C, Wei Z, Liu R, Bai L, Jiang H, Yuan N. The sequential dewatering and drying treatment enhanced the potential favorable effect of microbial communities in drinking water treatment residue for environmental recycling. CHEMOSPHERE 2021; 262:127930. [PMID: 33182151 DOI: 10.1016/j.chemosphere.2020.127930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
The beneficial recycling of drinking water treatment residue (DWTR) for environmental remediation has received increasingly interests; whereas, the reported potential effect of microbial communities in different DWTR was ambiguous, which was unfavorable for the beneficial recycling. This study hypothesized that the varied treatment to DWTR in different waterworks induced the ambiguous effect; accordingly, responses of microbial communities in DWTR to the sequential dewatering and drying treatment were determined based on samples from three waterworks, in combination with 180-d incubation tests. The results showed that the microbial communities varied remarkably in different DWTR before being dewatered (DWTS). However, after dewatering, the increased microbial diversities were observed, and the microbial communities exhibited higher similarities among the dewatered DWTR from different waterworks; furthermore, the dewatered DWTR with subsequent drying treatment enriched more bacteria genus with potential environmental functions after incubation tests. The variations of microbial communities were closely related to DWTR properties, such as pH, organic matter, metals, P, and water extractable nutrients. Further analysis indicated that with maintaining high adsorption capability of DWTR, the dewatering treatment tended to retain specific microbial communities that may be induced by the applied similar techniques in different waterworks; the accumulated nutriments due to drying treatment and the stable DWTR pH enhanced the potential functional bacteria enrichment. Overall, the dewatering and drying treatment led to microbial communities with generality in different DWTR and increased the potential favorable microbial effect, promoting DWTR recycling in environmental remediation.
Collapse
Affiliation(s)
- Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
| | - Zhao Wei
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; Graduate University of Chinese Academy of Sciences, China
| | - Rui Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Nannan Yuan
- CQC New Energy Technology School, Nanjing Vocational College of Information Technology, Nanjing, China.
| |
Collapse
|
3
|
Wang C, Wu Y, Bai L, Zhao Y, Yan Z, Jiang H, Liu X. Recycling of drinking water treatment residue as an additional medium in columns for effective P removal from eutrophic surface water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:363-372. [PMID: 29625405 DOI: 10.1016/j.jenvman.2018.03.128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
This study assesses the feasibility of recycling drinking water treatment residue (DWTR) to treat eutrophic surface water in a one-year continuous flow column test. Heat-treated DWTR was used as an additional medium (2%-4%) in columns in case excessive organic matter and N were released from the DWTR to surface water. The results indicated that with minimal undesirable effects on other water properties, DWTR addition substantially enhanced P removal, rendering P concentrations in treated water oligotrophic and treated water unsuitable for Microcystis aeruginosa breeding. Long-term stable P removal by DWTR-column treatment was mainly attributed to the relatively low P levels in raw water (<0.108 mg L-1) and high P adsorption capability of DWTR, as confirmed by increases in amorphous Al/Fe in DWTR after the tests and low adsorption of P in the mobile forms. The major components of DWTR showed minimal changes, and potential metal pollution from DWTR was not a factor to consider during recycling. DWTR also enriched functional bacterial genera that benefitted biogeochemical cycles and multiple pollution control (e.g., Dechloromonas, Geobacter, Leucobacter, Nitrospira, Rhodoplanes, and Sulfuritalea); an apparent decrease in Mycobacterium with potential pathogenicity was observed in DWTR-columns. Regardless, limited denitrification of DWTR-columns was observed as a result of low bioavailability of C in surface water. This finding indicates that DWTR can be used with other methods to ensure denitrification for enhanced treatment effects. Overall, the use of DWTR as an additional medium in column systems can potentially treat eutrophic surface water.
Collapse
Affiliation(s)
- Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yu Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Graduate University of Chinese Academy of Sciences, China
| | - Yaqian Zhao
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland; State Key Laboratory of Eco-Hydraulic Engineering in Arid Area, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Zaisheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xin Liu
- College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Yuan N, Wang C, Pei Y, Jiang H. Applicability of drinking water treatment residue for lake restoration in relation to metal/metalloid risk assessment. Sci Rep 2016; 6:38638. [PMID: 27929083 PMCID: PMC5144140 DOI: 10.1038/srep38638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/11/2016] [Indexed: 11/09/2022] Open
Abstract
Drinking water treatment residue (DWTR), a byproduct generated during potable water production, exhibits a high potential for recycling to control eutrophication. However, this beneficial recycling is hampered by unclear metal/metalloid pollution risks related to DWTR. In this study, the pollution risks of Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, and Zn due to DWTR application were first evaluated for lake water based on human health risk assessment models and comparison of regulatory standards. The risks of DWTR were also evaluated for sediments on the basis of toxicity characteristics leaching procedure and fractionation in relation to risk assessment code. Variations in the biological behaviors of metal/metalloid in sediments caused by DWTR were assessed using Chironomus plumosus larvae and Hydrilla verticillata. Kinetic luminescent bacteria test (using Aliivibrio fischeri) was conducted to analyze the possibility of acute and chronic detrimental effects of sediment with DWTR application. According to the obtained results, we identify a potential undesirable effect of DWTR related to Fe and Mn (typically under anaerobic conditions); roughly present a dosage threshold calculation model; and recommend a procedure for DWTR prescreening to ensure safe application. Overall, managed DWTR application is necessary for successful eutrophication control.
Collapse
Affiliation(s)
- Nannan Yuan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.,The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P. R. China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.,The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P. R. China
| | - Yuansheng Pei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P. R. China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
5
|
Yuan N, Wang C, Pei Y. Bacterial toxicity assessment of drinking water treatment residue (DWTR) and lake sediment amended with DWTR. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 182:21-28. [PMID: 27454093 DOI: 10.1016/j.jenvman.2016.07.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Drinking water treatment residue (DWTR) seems to be very promising for controlling lake sediment pollution. Logically, acquisition of the potential toxicity of DWTR will be beneficial for its applications. In this study, the toxicity of DWTR and sediments amended with DWTR to Aliivibrio fischeri was evaluated based on the Microtox(®) solid and leachate phase assays, in combination with flow cytometry analyses and the kinetic luminescent bacteria test. The results showed that both solid particles and aqueous/organic extracts of DWTR exhibited no toxicity to the bacterial luminescence and growth. The solid particles of DWTR even promoted bacterial luminescence, possibly because DWTR particles could act as a microbial carrier and provide nutrients for bacteria growth. Bacterial toxicity (either luminescence or growth) was observed from the solid phase and aqueous/organic extracts of sediments with or without DWTR addition. Further analysis showed that the solid phase toxicity was determined to be related mainly to the fixation of bacteria to fine particles and/or organic matter, and all of the observed inhibition resulting from aqueous/organic extracts was identified as non-significant. Moreover, DWTR addition not only had no adverse effect on the aqueous/organic extract toxicity of the sediment but also reduced the solid phase toxicity of the sediment. Overall, in practical application, the solid particles, the water-soluble substances transferred to surface water or the organic substances in DWTR had no toxicity or any delayed effect on bacteria in lakes, and DWTR can therefore be considered as a non-hazardous material.
Collapse
Affiliation(s)
- Nannan Yuan
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Yuansheng Pei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, China.
| |
Collapse
|
6
|
Meng L, Chan Y, Wang H, Dai Y, Wang X, Zou J. Recycling of iron and silicon from drinking water treatment sludge for synthesis of magnetic iron oxide@SiO₂ composites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5122-5133. [PMID: 26552790 DOI: 10.1007/s11356-015-5742-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
More attention has been paid to the deterioration of water bodies polluted by drinking water treatment sludge (DWTS) in recent years. It is important to develop methods to effectively treat DWTS by avoiding secondary pollution. We report herein a novel investigation for recovery of Si and Fe from DWTS, which are used for the synthesis of two iron oxide@SiO2 composites for adsorption of reactive red X-3B (RRX-3B) and NaNO2. The results show that Fe(3+) (acid-leaching) and Si(4+) (basic-leaching) can be successfully recovered from roasted DWTS. Whether to dissolve Fe(OH)3 precipitation is the key point for obtaining Fe3O4 or γ-Fe2O3 particles using the solvothermal method. The magnetic characteristics of Fe3O4@SiO2 (390.0 m(2) g(-1)) or Fe2O3@SiO2 (220.9 m(2) g(-1)) are slightly influenced by the coated porous SiO2 layer. Peaks of Fe-O stretching vibration (580 cm(-1)) and asymmetric Si-O-Si stretching vibrations (1080 cm(-1)) of Fe3O4@SiO2 indicate the successful coating of a thin silica layer (20-150 nm). The adsorption capacity of RRX-3B and NaNO2 by Fe3O4@SiO2 is better than that of Fe2O3@SiO2, and both composites can be recycled through an external magnetic field. This method is an efficient and environmentally friendly method for recycling DWTS.
Collapse
Affiliation(s)
- Lingyou Meng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
- Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, College of Heilongjiang Province, Heilongjiang University, Harbin, 150080, China
| | - Yingzi Chan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Han Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Ying Dai
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China.
- School of Civil Engineering, Heilongjiang Institute of Technology, Harbin, 150050, China.
| | - Xue Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China.
- Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, College of Heilongjiang Province, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
7
|
Wang C, Yuan N, Pei Y, Jiang HL. Aging of aluminum/iron-based drinking water treatment residuals in lake water and their association with phosphorus immobilization capability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 159:178-185. [PMID: 26071931 DOI: 10.1016/j.jenvman.2015.04.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Aluminum and Fe-based drinking water treatment residuals (DWTRs) have shown a high potential for use by geoengineers in internal P loading control in lakes. In this study, aging of Al/Fe-based DWTRs in lake water under different pH and redox conditions associated with their P immobilization capability was investigated based on a 180-day incubation test. The results showed that the DWTRs before and after incubation under different conditions have similar structures, but their specific surface area and pore volume, especially mesopores with radius at 2.1-5.0 nm drastically decreased. The oxalate extractable Al contents changed little although a small amount of Al transformed from oxidizable to residual forms. The oxalate extractable Fe contents also decreased by a small amount, but the transformation from oxidizable to residual forms were remarkable, approximately by 14.6%. However, the DWTRs before and after incubation had similar P immobilization capabilities in solutions and lake sediments. Even the maximum P adsorption capacity estimated by the Langmuir model increased after incubation. Therefore, it was not necessary to give special attention to the impact of Al and Fe aging on the effectiveness of DWTRs for geoengineering in lakes.
Collapse
Affiliation(s)
- Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Nannan Yuan
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yuansheng Pei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
| | - He-Long Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
8
|
Wang C, Liu J, Wang Z, Pei Y. Nitrification in lake sediment with addition of drinking water treatment residuals. WATER RESEARCH 2014; 56:234-245. [PMID: 24681379 DOI: 10.1016/j.watres.2014.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/04/2014] [Accepted: 03/07/2014] [Indexed: 06/03/2023]
Abstract
Drinking water treatment residuals (WTRs), non-hazardous by-products generated during potable water production, can effectively reduce the lake internal phosphorus (P) loading and improve water quality in lakes. It stands to reason that special attention regarding the beneficial reuse of WTRs should be given not only to the effectiveness of P pollution control, but also to the effects on the migration and transformation of other nutrients (e.g., nitrogen (N)). In this work, based on laboratory enrichment tests, the effects of WTRs addition on nitrification in lake sediment were investigated using batch tests, fluorescence in situ hybridization, quantitative polymerase chain reaction and phylogenetic analysis techniques. The results indicated that WTRs addition had minor effects on the morphologies of AOB and NOB; however, the addition slightly enhanced the sediment nitrification potential from 12.8 to 13.2 μg-N g(-1)-dry sample h(-1) and also increased the ammonia oxidation bacteria (AOB) and nitrite oxidizing bacteria (NOB) abundances, particularly the AOB abundances (P < 0.05), which increased from 1.11 × 10(8) to 1.31 × 10(8) copies g(-1)-dry sample. Moreover, WTRs addition was beneficial to the enrichment of Nitrosomonas and Nitrosospira multiformis and promoted the emergence of a new Nitrospira cluster, causing the increase in AOB and NOB diversities. Further analysis showed that the variations of nitrification in lake sediment after WTRs addition were primarily due to the decrease of bioavailable P, the introduction of new nitrifiers and the increase of favorable carriers for microorganism attachment in sediments. Overall, these results suggested that WTRs reuse for the control of lake internal P loading would also lead to conditions that are beneficial to nitrification.
Collapse
Affiliation(s)
- Changhui Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Juanfeng Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Zhixin Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yuansheng Pei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|