1
|
Mills S, Trego AC, Prevedello M, De Vrieze J, O’Flaherty V, Lens PN, Collins G. Unifying concepts in methanogenic, aerobic, and anammox sludge granulation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100310. [PMID: 37705860 PMCID: PMC10495608 DOI: 10.1016/j.ese.2023.100310] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/17/2023] [Accepted: 08/05/2023] [Indexed: 09/15/2023]
Abstract
The retention of dense and well-functioning microbial biomass is crucial for effective pollutant removal in several biological wastewater treatment technologies. High solids retention is often achieved through aggregation of microbial communities into dense, spherical aggregates known as granules, which were initially discovered in the 1980s. These granules have since been widely applied in upflow anaerobic digesters for waste-to-energy conversions. Furthermore, granular biomass has been applied in aerobic wastewater treatment and anaerobic ammonium oxidation (anammox) technologies. The mechanisms underpinning the formation of methanogenic, aerobic, and anammox granules are the subject of ongoing research. Although each granule type has been extensively studied in isolation, there has been a lack of comparative studies among these granulation processes. It is likely that there are some unifying concepts that are shared by all three sludge types. Identifying these unifying concepts could allow a unified theory of granulation to be formed. Here, we review the granulation mechanisms of methanogenic, aerobic, and anammox granular sludge, highlighting several common concepts, such as the role of extracellular polymeric substances, cations, and operational parameters like upflow velocity and shear force. We have then identified some unique features of each granule type, such as different internal structures, microbial compositions, and quorum sensing systems. Finally, we propose that future research should prioritize aspects of microbial ecology, such as community assembly or interspecies interactions in individual granules during their formation and growth.
Collapse
Affiliation(s)
- Simon Mills
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Anna Christine Trego
- Microbial Ecology Laboratory School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Marco Prevedello
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Vincent O’Flaherty
- Microbial Ecology Laboratory School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Piet N.L. Lens
- University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Gavin Collins
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
2
|
Penagos DG, Victoria JR, Manrique MV. Formulation of a protocol to evaluate the aerobic granulation potential (AGP) of an inoculum. MethodsX 2022; 9:101710. [PMID: 35601957 PMCID: PMC9120046 DOI: 10.1016/j.mex.2022.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
This paper proposes and develops a protocol for measuring the aerobic granulation potential of sludge, aiming to provide an affordable and simple alternative that can facilitate the development of aerobic granulation technology. In this sense, the protocol comprises a set of parameters and considerations that interact to create a controlled environment and stimulate cell population clustering. All of this is done in the context of procedural simplicity, low cost, and the speed at which results are obtained. The protocol is essentially a three-stage method: preparation of the substrate, adaptation of the inoculum, and implementation of the protocol. Simple parameters were measured to evaluate the granulation process: SVI, settling velocity, and morphological parameters. The protocol was validated according to optimal ranges and criteria previously established in the literature. For this purpose, an activated sludge inoculum from a domestic wastewater treatment plant was submitted to the protocol, obtaining an optimal response of the biomass (SVI5 =13.90 mL g-1, settling velocity= 25,79 m h-1, Diameter > 0.2 mm) in a relatively short time (7 d). The results show that this protocol can constitute a tool for evaluation and decision-making using traditional laboratory equipment and is applicable at different scales.
Collapse
Key Words
- AGP, Aerobic Granulation Potential
- Aerobic granules
- COD, Chemical Oxygen Demand
- DO, Dissolved Oxygen
- EPS, Extracellular Polymeric Substance
- F/M, Food Microorganism Relationship
- H/D, Height Diameter Ratio
- HRT, Hydraulic retention time
- Inoculum
- OLR, organic loading rate
- PVC, Polyvinyl Chloride
- Protocol
- SBR, Sequential Batch Reactor
- SVI, Sludge Volumetric Index
- VER, Volumetric exchange ratio
Collapse
|
3
|
Cui F, Kim M, Lee W, Park C, Kim M. Pseudo-analytical solutions for multi-species biofilm model of aerobic granular sludge. ENVIRONMENTAL TECHNOLOGY 2021; 42:3421-3431. [PMID: 32085686 DOI: 10.1080/09593330.2020.1733673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
This paper demonstrates modelling of the aerobic granular sludge (AGS) process with the pseudo-analytical solutions (PAS) of a biofilm model. A MATLAB programmed graphical user interface platform was developed to facilitate the model calculation and access. Model calibration and validation were carried out through using experimental data collected from a granular sludge sequencing batch reactor operation. The experimental and modelling results identified the distribution of heterotrophs and nitrifiers on the AGS and its contribution to the performance of wastewater treatment. The model could describe multi-species biofilms according to the distinguishing features among the three levels of PAS models. The models demonstrated increasing degrees of interaction (no interaction, competition for nitrogen and layering and protection) between heterotrophs and nitrifiers. Modelling the AGS process using PAS increases the accessibility of the simulation of multiple species in both biofilm and suspended biomass.
Collapse
Affiliation(s)
- Fenghao Cui
- Department of Civil & Environmental Engineering, Hanyang University, Ansan City, Republic of Korea
| | - Minkyung Kim
- Department of Civil & Environmental Engineering, Hanyang University, Ansan City, Republic of Korea
| | - Wonbae Lee
- Department of Civil & Environmental Engineering, Hanyang University, Ansan City, Republic of Korea
| | - Chul Park
- Department of Civil & Environmental Engineering, Hanyang University, Ansan City, Republic of Korea
| | - Moonil Kim
- Department of Civil & Environmental Engineering, Hanyang University, Ansan City, Republic of Korea
| |
Collapse
|
4
|
Fan Y, Chen X, Yao Z, Li H, Wang D, Tian M, Xu Z, Wan J. A novel inhibition mechanism of aniline on nitrification: Aniline degradation competes dissolved oxygen with nitrification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145205. [PMID: 33515876 DOI: 10.1016/j.scitotenv.2021.145205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Aniline is a toxic aromatic amine and an inhibitor of nitrification. This study explored the inhibition effect and underlying mechanism. After sludge acclimation, 540 mg/L aniline was removed in 24 h and almost all ammonia released from aniline was oxidized to nitrate. However, nitrification never started until no aniline left. The cellular adenosine triphosphate (cATP) concentration of acclimated sludge reduced only by 2% after aniline exposure. Neither transmembrane transport of ammonia nor ammonia monooxygenase (AMO) activity was affected by aniline. Growing initial aniline concentration did not deteriorate the specific nitrification rate (NR). These all revealed that the toxicity of aniline only play a minor role in inhibition. Competition for dissolved oxygen (DO) was proposed to be another possible inhibition mechanism. The oxygen affinity constant (Ks) of aniline degraders and ammonia-oxidizing bacteria (AOB) was calculated to be 0.894 mg/L and 1.274 mg/L respectively, suggesting the former possessed much stronger oxygen affinity (P < 0.01). With aniline and ammonium as initial substrates, increasing aeration intensity advanced nitrification and increased the NR. Max NR of 0.63 mgN/(gMLSS·h) was achieved at the highest aeration intensity of 1000 mL/min. This study brings one step closer to better removal of aniline and derived nitrogen pollutants.
Collapse
Affiliation(s)
- Yanyan Fan
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Xiaolei Chen
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Zhangyi Yao
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Haisong Li
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Dandan Wang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Minhui Tian
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Zicong Xu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Junfeng Wan
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Tomar SK, Chakraborty S. Impact of high phenol loading on aerobic granules from two different kinds of industrial sludge along with thiocyanate and ammonium. BIORESOURCE TECHNOLOGY 2020; 315:123824. [PMID: 32688255 DOI: 10.1016/j.biortech.2020.123824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Two sequencing batch reactors inoculated with two different kinds of industrial sludge; refinery sludge (R1) and brewery sludge (R2), were operated to observe the impact of high phenol loading (5.71 kg COD m-3 day-1) along with 100 mg L-1 of ammonia-nitrogen and thiocyanate on the granular stability and performance. R2 granules were stable and degraded all the pollutants up to an organic loading of 5.71 kg COD m-3 day-1 with the large size and high extracellular polymeric substances of 2769.94 ± 62.26 µm and 114.83 ± 1.33 mg gVSS-1, respectively, whereas R1 granules disintegrated at an organic loading of more than 3.32 kg COD m-3 day-1. At higher phenol loading, granular biomass activity was 3.43 and 16.35 mg COD removed mgVSS-1 day-1 in R1 and R2, respectively, from the initial sludge activities of 8.01 (refinery sludge) and 6.56 (brewery sludge) mg COD removed mgVSS-1 day-1.
Collapse
Affiliation(s)
- Sachin Kumar Tomar
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Saswati Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
6
|
Cai Y, Zaidi AA, Shi Y, Zhang K, Li X, Xiao S, Lin A. Influence of salinity on the biological treatment of domestic ship sewage using an air-lift multilevel circulation membrane reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:37026-37036. [PMID: 31745775 DOI: 10.1007/s11356-019-06813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Recently, strict standards for ship domestic sewage discharge have been implemented by the International Maritime Organization (IMO). The high salinity of ship sewage was considered a key factor influencing the removal efficiency of ship sewage treatment systems. In the present study, the salinity effect on the removal of chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) from ship domestic sewage was investigated by using a novel air-lift multilevel circulation membrane reactor (AMCMBR). Enzyme activity analysis and wavelet neural network (WNN) models were built to determine the mechanisms of the process. The experimental results indicate that high salinity levels (> 21 g/L) had a negative impact on COD and NH4+-N removal efficiencies, and low saline concentrations (≤ 21 g/L) caused a negligible effect. The COD and NH4-N removal efficiencies were 84% and 97%, respectively, at a salinity of 21 g/L, which were higher than those at low salinities (i.e., 7 g/L and 14 g/L). Invertase and nitrate reductase had a close relationship with removal performance, and they can be considered important indicators reflecting the operation effort under saline environments. With high predictive accuracies, the constructed WNN models simulated the complex COD and NH4+-N removal processes well under different saline concentrations, ensuring the long-term stable operation of the AMCMBR under different salinities.
Collapse
Affiliation(s)
- Yuhang Cai
- College of Power and Energy Engineering, Harbin Engineering University, Harbin, 150001, PR China
| | - Asad A Zaidi
- Department of Engineering Sciences, PN Engineering College, National University of Sciences and Technology, Karachi, 75350, Pakistan
| | - Yue Shi
- College of Power and Energy Engineering, Harbin Engineering University, Harbin, 150001, PR China.
| | - Kun Zhang
- College of Power and Energy Engineering, Harbin Engineering University, Harbin, 150001, PR China
| | - Xin Li
- China Aviation Development Institute, No. 1 Wanlian Road, Shenyang City, Shenhe District, China
| | - Shihao Xiao
- College of Power and Energy Engineering, Harbin Engineering University, Harbin, 150001, PR China
| | - Aqiang Lin
- College of Power and Energy Engineering, Harbin Engineering University, Harbin, 150001, PR China
| |
Collapse
|
7
|
Zhang X, Zhao B, Meng J, Zhou A, Yue X, Niu Y, Cui Y. Efficiency, granulation, and bacterial populations related to pollutant removal in an upflow microaerobic sludge reactor treating wastewater with low COD/TN ratio. BIORESOURCE TECHNOLOGY 2018; 270:147-155. [PMID: 30216924 DOI: 10.1016/j.biortech.2018.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
In this study, a novel upflow microaerobic sludge reactor (UMSR) was constructed to conduct anaerobic digestion of municipal wastewater with low carbon and nitrogen ratio (C/N). Oxygen in the UMSR was supplied by falling water and external recirculation. Excellent nitrogen removal performance was obtained in the UMSR for treating wastewater with low C/N ratio at a temperature of 25 °C and a hydraulic retention time of 24 h. Ammonium and total nitrogen removal efficiencies averaged 92.35% and 90.41%, respectively, and sludge granulation occurred during acclimation. The inferred metabolism of nitrogen removal and ecological positions of functional microbe were integrated into a granule model by scanning electron microscopy. Additionally, the analysis of microbial community indicated that aerobic nitrifying bacteria and heterotrophic bacteria survived on the surface of sludge floc and granules while the anaerobic autotrophic, heterotrophic denitrifying, and anaerobic ammonia oxidation bacteria were present in the inner layer.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Bowei Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Yukun Niu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Ying Cui
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
8
|
Tao J, Qin L, Liu X, Li B, Chen J, You J, Shen Y, Chen X. Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism. BIORESOURCE TECHNOLOGY 2017; 236:60-67. [PMID: 28390278 DOI: 10.1016/j.biortech.2017.03.106] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/12/2017] [Accepted: 03/17/2017] [Indexed: 06/07/2023]
Abstract
The granulation of activated sludge and effect of granular activated carbon (GAC) was investigated under the alternative anaerobic and aerobic conditions. The results showed that GAC accelerated the granulation, but had no obvious effect on the bacterial community structure of granules. The whole granulation process could be categorized into three phases, i.e. lag, granulation and granule maturation phase. During lag period GAC provided nuclei for sludge to attach, and thus enhanced the morphological regularization of sludge. During granulation period the granule size increased significantly due to the growth of bacteria in granules. GAC reduced the compression caused by the inter-particle collisions and thus accelerate the granulation. GAC has no negative effect on the performance of SBR, and thus efficient simultaneous removal of COD, nitrogen and phosphorus were obtained during most of the operating time.
Collapse
Affiliation(s)
- Jia Tao
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lian Qin
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoying Liu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Bolin Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Junnan Chen
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Juan You
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yitian Shen
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoguo Chen
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan 430070, China.
| |
Collapse
|
9
|
Zhang Q, Hu J, Lee DJ. Aerobic granular processes: Current research trends. BIORESOURCE TECHNOLOGY 2016; 210:74-80. [PMID: 26873285 DOI: 10.1016/j.biortech.2016.01.098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Aerobic granules are large biological aggregates with compact interiors that can be used in efficient wastewater treatment. This mini-review presents new researches on the development of aerobic granular processes, extended treatments for complicated pollutants, granulation mechanisms and enhancements of granule stability in long-term operation or storage, and the reuse of waste biomass as renewable resources. A discussion on the challenges of, and prospects for, the commercialization of aerobic granular process is provided.
Collapse
Affiliation(s)
- Quanguo Zhang
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Henan Province, Zhengzhou, China
| | - Jianjun Hu
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Henan Province, Zhengzhou, China
| | - Duu-Jong Lee
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Henan Province, Zhengzhou, China; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
10
|
Advanced phosphorus recovery using a novel SBR system with granular sludge in simultaneous nitrification, denitrification and phosphorus removal process. Appl Microbiol Biotechnol 2016; 100:4367-74. [PMID: 26728017 DOI: 10.1007/s00253-015-7249-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/30/2015] [Accepted: 12/12/2015] [Indexed: 10/22/2022]
Abstract
In this study, a novel process for phosphorus (P) recovery without excess sludge production from granular sludge in simultaneous nitrification-denitrification and P removal (SNDPR) system is presented. Aerobic microbial granules were successfully cultivated in an alternating aerobic-anaerobic sequencing batch reactor (SBR) for removing P and nitrogen (N). Dense and stable granular sludge was created, and the SBR system showed good performance in terms of P and N removal. The removal efficiency was approximately 65.22 % for N, and P was completely removed under stable operating conditions. Afterward, new operating conditions were applied in order to enhance P recovering without excess sludge production. The initial SBR system was equipped with a batch reactor and a non-woven cloth filter, and 1.37 g of CH3COONa·3H2O was added to the batch reactor after mixing it with 1 L of sludge derived from the SBR reactor to enhance P release in the liquid fraction, this comprises the new system configuration. Under the new operating conditions, 93.19 % of the P contained in wastewater was released in the liquid fraction as concentrated orthophosphate from part of granular sludge. This amount of P could be efficiently recovered in the form of struvite. Meanwhile, a deterioration of the denitrification efficiency was observed and the granules were disintegrated into smaller particles. The biomass concentration in the system increased firstly and then maintained at 4.0 ± 0.15 gVSS/L afterward. These results indicate that this P recovery operating (PRO) mode is a promising method to recover P in a SNDPR system with granular sludge. In addition, new insights into the granule transformation when confronted with high chemical oxygen demand (COD) load were provided.
Collapse
|
11
|
Park S, Cui F, Mo K, Kim M. Mathematical models and bacterial communities for ammonia toxicity in mesophilic anaerobes not acclimated to high concentrations of ammonia. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:935-942. [PMID: 27533868 DOI: 10.2166/wst.2016.274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, we evaluated ammonia toxicity in mesophilic anaerobic digestion at various pH values and total ammonia nitrogen (TAN) concentrations. We performed anaerobic toxicity assays (ATAs) to evaluate the toxicity effects of TAN and pH on mesophilic anaerobic digestion. Modeling based on the results of the ATAs indicated that the specific methanogenic activity (SMA) decreased by 30% at a TAN concentration higher than 3.0 g/L compared to a TAN concentration of 0 g/L. In addition, the highest SMA for a given TAN level (0.5-10.0 g/L) was observed at a pH of around 7.6. The results of bacterial community analyses showed that the diversity and richness of microorganisms with increasing TAN concentration were decreased. Chloroflexi and Synergistetes were the dominant phyla at TAN concentrations less than 3.0 g/L, and Firmicutes was the dominant phylum at TAN concentrations higher than 3.0 g/L, implying that the ammonia toxicity concentration may influence the kind of dominant species. In conclusion, to start a stable mesophilic anaerobic digestion concerning ammonia toxicity, a TAN concentration less than 3.0 g/L is preferable.
Collapse
Affiliation(s)
- Seyong Park
- Plant Engineering Center, Institute for Advanced Engineering, 51 Goan-ro, Yongin City, Kyeonggido 175-28, Republic of Korea; Department of Civil & Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan City, Kyeonggido 155-88, Republic of Korea E-mail:
| | - Fenghao Cui
- Department of Civil & Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan City, Kyeonggido 155-88, Republic of Korea E-mail:
| | - Kyung Mo
- Department of Civil & Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan City, Kyeonggido 155-88, Republic of Korea E-mail:
| | - Moonil Kim
- Department of Civil & Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan City, Kyeonggido 155-88, Republic of Korea E-mail:
| |
Collapse
|
12
|
Pronk M, Abbas B, Kleerebezem R, van Loosdrecht MCM. Effect of sludge age on methanogenic and glycogen accumulating organisms in an aerobic granular sludge process fed with methanol and acetate. Microb Biotechnol 2015; 8:853-64. [PMID: 26059251 PMCID: PMC4554473 DOI: 10.1111/1751-7915.12292] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/05/2015] [Accepted: 04/12/2015] [Indexed: 11/30/2022] Open
Abstract
The influence of sludge age on granular sludge formation and microbial population dynamics in a methanol- and acetate-fed aerobic granular sludge system operated at 35°C was investigated. During anaerobic feeding of the reactor, methanol was initially converted to methane by methylotrophic methanogens. These methanogens were able to withstand the relatively long aeration periods. Lowering the anaerobic solid retention time (SRT) from 17 to 8 days enabled selective removal of the methanogens and prevented unwanted methane formation. In absence of methanogens, methanol was converted aerobically, while granule formation remained stable. At high SRT values (51 days), γ-Proteobacteria were responsible for acetate removal through anaerobic uptake and subsequent aerobic growth on storage polymers formed [so called metabolism of glycogen-accumulating organisms (GAO)]. When lowering the SRT (24 days), Defluviicoccus-related organisms (cluster II) belonging to the α-Proteobacteria outcompeted acetate consuming γ-Proteobacteria at 35°C. DNA from the Defluviicoccus-related organisms in cluster II was not extracted by the standard DNA extraction method but with liquid nitrogen, which showed to be more effective. Remarkably, the two GAO types of organisms grew separately in two clearly different types of granules. This work further highlights the potential of aerobic granular sludge systems to effectively influence the microbial communities through sludge age control in order to optimize the wastewater treatment processes.
Collapse
Affiliation(s)
- M Pronk
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
| | - B Abbas
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
| | - R Kleerebezem
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
| | - M C M van Loosdrecht
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
| |
Collapse
|
13
|
Chai LY, Ali M, Min XB, Song YX, Tang CJ, Wang HY, Yu C, Yang ZH. Partial nitrification in an air-lift reactor with long-term feeding of increasing ammonium concentrations. BIORESOURCE TECHNOLOGY 2015; 185:134-142. [PMID: 25768415 DOI: 10.1016/j.biortech.2015.02.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/11/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
The partial nitrification (PN) performance under high ammonium concentrations was evaluated in an airlift reactor (ALR). The ALR was operated for 253days with stepwise elevation of ammonium concentration to 1400mg/L corresponding nitrogen loading rate of 2.1kg/m(3)/d. The ammonium removal rate was finally developed to 2.0kg/m(3)/d with average removal efficiency above 91% and nitrite accumulation percentage of 80%. Results showed that the combined effect of limited DO, high bicarbonate, pH and free ammonia (FA) contributed to the stable nitrite accumulation substantially. The biomass in the ALR was improved with the inception of granulation. Precipitates on biomass surface was unexpectedly experienced which might improve the settleability of PN biomass. Organic functional groups attached to the PN biomass suggested the possible absorbability to different types of pollutant. The results provided important evidence for the possibility of applying an ALR to treat high strength ammonium wastewater.
Collapse
Affiliation(s)
- Li-Yuan Chai
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Mohammad Ali
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Xiao-Bo Min
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Yu-Xia Song
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Chong-Jian Tang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China.
| | - Hai-Ying Wang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Cheng Yu
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Zhi-Hui Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
14
|
Chen ZB, He ZW, Tang CC, Hu DX, Cui YB, Wang AJ, Zhang Y, Yan LL, Ren NQ. Performance and model of a novel multi-sparger multi-stage airlift loop membrane bioreactor to treat high-strength 7-ACA pharmaceutical wastewater: effect of hydraulic retention time, temperature and pH. BIORESOURCE TECHNOLOGY 2014; 167:241-50. [PMID: 24994681 DOI: 10.1016/j.biortech.2014.05.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 05/05/2023]
Abstract
In this study, three novel multi-sparger multi-stage airlift loop membrane bioreactors (Ms(2)ALMBRs) were set up in parallel for treating synthetic high-strength 7-ACA pharmaceutical wastewater under different HRTs, temperatures and pHs, respectively. During the 200-day operating time, average COD removal efficiencies were 94.96%, 96.05% and 93.9%. While average 7-ACA removal efficiencies were 66.44%, 59.04% and 59.60%, respectively. The optimal conditions were 10h, 15-35°C and 7-9 for HRT, temperature and pH, respectively. Moreover, the sludge characteristics and microorganism drug-resistances were explored. Results showed that different temperatures and pHs influenced contaminant removals by affecting MLSS concentration and β-lactamase activity significantly. In addition, mathematical statistical models, built on the polynomial and linear regression techniques, were developed for exploring the inner relationships between HRT, temperature and pH changes and MLSS concentrations, β-lactamase activities and contaminant removals of the Ms(2)ALMBR system.
Collapse
Affiliation(s)
- Zhao-bo Chen
- College of Environment and Resources, Dalian Nationalities University, 18 Liaohe West Road, Dalian 116600, China.
| | - Zhang-wei He
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Cong-cong Tang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Dong-xue Hu
- College of Environment and Resources, Dalian Nationalities University, 18 Liaohe West Road, Dalian 116600, China
| | - Yu-bo Cui
- College of Environment and Resources, Dalian Nationalities University, 18 Liaohe West Road, Dalian 116600, China
| | - Ai-jie Wang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Ying Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Li-long Yan
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Nan-qi Ren
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|