1
|
Jung JH, Sim YB, Baik JH, Park JH, Kim SH. High-rate mesophilic hydrogen production from food waste using hybrid immobilized microbiome. BIORESOURCE TECHNOLOGY 2021; 320:124279. [PMID: 33152682 DOI: 10.1016/j.biortech.2020.124279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
This study examined the feasibility of dark fermentative biohydrogen production from food waste using hybrid immobilization in mesophilic condition. Among four different organic loading rates (OLRs), the highest average hydrogen production rate (HPR) of 9.82 ± 0.30 L/L-d was found at an OLR of 74.7 g hexose/L-d, which was higher than reported values from particulate feedstock in mesophilic condition. The average hydrogen yield (HY) at the condition was 1.25 ± 0.04 mol H2/mol hexoseconsumed. Whereas the average HPR and HY at an OLR 80 g hexose/L-d were 5.82 ± 0.12 L/L-d and 0.64 ± 0.02 mol H2/mol hexoseconsumed, respectively. Metabolic flux analysis showed the low HY was concurrent with the highest propionic acid and homoacetogenis. Bacterial population was shift from Clostridium sp. to non-hydrogen producers including Bifidobacterium, Bacteriodes, Olsenella, Dysgonomonas, and Dialister sp.
Collapse
Affiliation(s)
- Ju-Hyeong Jung
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Bo Sim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Baik
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hun Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
2
|
Santiago SG, Trably E, Latrille E, Buitrón G, Moreno-Andrade I. The hydraulic retention time influences the abundance of Enterobacter, Clostridium and Lactobacillus during the hydrogen production from food waste. Lett Appl Microbiol 2019; 69:138-147. [PMID: 31219171 DOI: 10.1111/lam.13191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 11/26/2022]
Abstract
The influence of hydraulic retention time (HRT) on the microbial communities was evaluated in an anaerobic sequencing batch reactor (AnSBR) using organic waste from a restaurant as the substrate. The relationship among Lactobacillus, Clostridium and Bacillus as key micro-organisms on hydrogen production from organic solid waste was studied. The effect of the HRT (8-48 h) on the hydrogen production and the microbial community was evaluated. Quantitative PCR was applied to determine the abundance of bacteria (in particular, Enterobacter, Clostridium and Lactobacillus genera). An AnSBR fermentative reactor was operated for 111 cycles, with carbohydrate and organic matter removal efficiencies of 80 ± 15·42% and 22·1 ± 4·49% respectively. The highest percentage of hydrogen in the biogas (23·2 ± 11·1 %), and the specific production rate (0·42 ± 0·16 mmol H2 gVSadded -1 d-1 ) were obtained at an HRT of 48 h. The decrease in the HRT generated an increase in the hydrogen production rate but decreasing the content of the hydrogen in the gas. HRT significantly influence the abundance of Enterobacter, Clostridium and Lactobacillus during the hydrogen production from food waste leading the hydrogen production as well as the metabolic pathways. The microbial analysis revealed a direct relationship between the HRT and the presence of fermentative bacteria (Enterobacter, Clostridium and Lactobacillus genera). Clostridium sp. predominated at an HRT of 48 h, while Enterobacter and Lactobacillus predominated at HRTs between 8 and 24 h. SIGNIFICANCE AND IMPACT OF THE STUDY: Significance and Impact of the Study: It was demonstrated that hydrogen production using food waste was influenced by the hydraulic retention time (HRT), and closely related to changes in microbial communities together with differences in metabolic patterns (e.g. volatile fatty acids, lactate, etc.). The decrease in the HRT led to the dominance of lactic acid bacteria within the microbial community whereas the increase in HRT favoured the emergence of Clostridium bacteria and the increase in acetic and butyric acids. Statistical data analysis revealed a direct relationship existing between the HRT and the microbial community composition in fermentative bacteria. This study provides new insight into the relationship between the bioprocess operation and the microbial community to understand better and control the biohydrogen production.
Collapse
Affiliation(s)
- S G Santiago
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, México
| | - E Trably
- LBE, Univ Montpellier, INRA, Narbonne, France
| | - E Latrille
- LBE, Univ Montpellier, INRA, Narbonne, France
| | - G Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, México
| | - I Moreno-Andrade
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
3
|
Judith Martínez E, Blanco D, Gómez X. Two-Stage Process to Enhance Bio-hydrogen Production. BIOFUEL AND BIOREFINERY TECHNOLOGIES 2019. [DOI: 10.1007/978-3-030-10516-7_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Zahedi S. Energy efficiency: Importance of indigenous microorganisms contained in the municipal solid wastes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 78:763-769. [PMID: 32559968 DOI: 10.1016/j.wasman.2018.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/06/2018] [Accepted: 06/17/2018] [Indexed: 06/11/2023]
Abstract
2016 was an extraordinary year for renewable energy, as it had the largest global capacity additions seen to date. However, challenges remain, particularly beyond the power sector. Overcoming these challenges means pursuing goals on development and optimization of strategies focused in causing an increase in bioenergy usage. Considering the seriousness of the challenge this paper has been developed. In the present study, indigenous microorganisms gathered from municipal solid waste will be analysed at to find out the role such organisms have on an anaerobic digester and its performance, with the aim of producing biogas in order for it to be used as electricity or treated to produce high quality fuel. The presence of such anaerobic microbiota can help avoid the two most tragic situations of an anaerobic digestion plant: overloading and washing out. The information of the present paper would have to be considered in future researchers about pre-treatments because most novelty studies are focused on hard pre-treatment to destroy microorganisms in the substrate (to increase the biogas production). In the present paper, it is underlined that the destruction of the microbiota in the substrate could produce adverse effects in the performance in the reactor.
Collapse
Affiliation(s)
- S Zahedi
- Department of Environmental Technologies, University of Cadiz, Faculty of Marine and Environmental Sciences (CASEM) Pol, Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
5
|
Li R, Duan N, Zhang Y, Liu Z, Li B, Zhang D, Lu H, Dong T. Co-digestion of chicken manure and microalgae Chlorella 1067 grown in the recycled digestate: Nutrients reuse and biogas enhancement. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 70:247-254. [PMID: 28939246 DOI: 10.1016/j.wasman.2017.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/07/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
The present investigation targeted on a sustainable co-digestion system: microalgae Chlorella 1067 (Ch. 1067) was cultivated in chicken manure (CM) based digestate and then algae biomass was used as co-substrate for anaerobic digestion with CM. About 91% of the total nitrogen and 86% of the soluble organics in the digestate were recycled after the microalgae cultivation. The methane potential of co-digestion was evaluated by varying CM to Ch. 1067 ratios (0:10, 2:8, 4:6, 6:4, 8:2, 10:0 based on the volatile solids (VS)). All the co-digestion trials showed higher methane production than the calculated values, indicating synergy between the two substrates. Modified Gompertz model showed that co-digestion had more effective methane production rate and shorter lag phase. Co-digestion (8:2) achieved the highest methane production of 238.71mL⋅(g VS)-1 and the most significant synergistic effect. The co-digestion (e.g. 8:2) presented higher and balanced content of dominant acidogenic bacteria (Firmicutes, Bacteroidetes, Proteobacterias and Spirochaetae). In addition, the archaea community Methanosaeta presented higher content than Methanosarcina, which accounted for the higher methane production. These findings indicated that the system could provide a practicable strategy for effectively recycling digestate and enhancing biogas production simultaneously.
Collapse
Affiliation(s)
- Ruirui Li
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Na Duan
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| | - Yuanhui Zhang
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Baoming Li
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Dongming Zhang
- Shandong Minhe Biotech Limited Company, Yantai 265600, China
| | - Haifeng Lu
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Taili Dong
- Shandong Minhe Biotech Limited Company, Yantai 265600, China
| |
Collapse
|
6
|
Zahedi S, Rivero M, Solera R, Perez M. Seeking to enhance the bioenergy of municipal sludge: Effect of alkali pre-treatment and soluble organic matter supplementation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 68:398-404. [PMID: 28743579 DOI: 10.1016/j.wasman.2017.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/19/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
The aim of this research is to enhance the mesophilic anaerobic digestion of municipal sludge from Cadiz-San Fernando (Spain) wastewater treatment plant at 20days hydraulic retention time (HRT). Two different strategies were tested to improve the process: co-digestion with the addition of soluble organic matter (1% v/v); and alkali sludge pre-treatment (NaOH) prior to co-digestion with glycerine (1% v/v). Methane production (MP) was substantially enhanced (from 0.36±0.09 L CH4 l/d to 0.85±0.16 L CH4 l/d), as was specific methane production (SMP) (from 0.20±0.05 L CH4/g VS to 0.49±0.09 L CH4/g VS) when glycerine was added. The addition of glycerine does not seem to affect sludge stability, the quality of the effluent in terms of pH and organic matter content, i.e. volatile fatty acids (VFA), soluble organic matter and total volatile solid, or process stability (VFA/Alkalinity ratio<0.4). Alkali pre-treatment prior to co-digestion resulted in a high increase in soluble organic loading rates (more than 20%) and acidification yield (more than 50%). At 20days HRT, however, it led to overload of the system and total destabilization of the mesophilic anaerobic co-digestion of sewage sludge and glycerine.
Collapse
Affiliation(s)
- S Zahedi
- Department of Environmental Technologies, University of Cadiz, Faculty of Marine and Environmental Sciences (CASEM), Pol. Río San Pedro s/n, 11510 Puerto Real (Cádiz), Spain.
| | - M Rivero
- Department of Environmental Technologies, University of Cadiz, Faculty of Marine and Environmental Sciences (CASEM), Pol. Río San Pedro s/n, 11510 Puerto Real (Cádiz), Spain.
| | - R Solera
- Department of Environmental Technologies, University of Cadiz, Faculty of Marine and Environmental Sciences (CASEM), Pol. Río San Pedro s/n, 11510 Puerto Real (Cádiz), Spain.
| | - M Perez
- Department of Environmental Technologies, University of Cadiz, Faculty of Marine and Environmental Sciences (CASEM), Pol. Río San Pedro s/n, 11510 Puerto Real (Cádiz), Spain.
| |
Collapse
|
7
|
Zahedi S, Icaran P, Yuan Z, Pijuan M. Assessment of free nitrous acid pre-treatment on a mixture of primary sludge and waste activated sludge: Effect of exposure time and concentration. BIORESOURCE TECHNOLOGY 2016; 216:870-5. [PMID: 27318660 DOI: 10.1016/j.biortech.2016.06.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/10/2016] [Accepted: 06/12/2016] [Indexed: 05/28/2023]
Abstract
Free nitrous acid (FNA) has been shown to enhance the biodegradability of waste activated sludge (WAS) but its effectiveness on the pre-treatment of mixed sludge is not known. This study explores the effectiveness of four different FNA concentrations (0, 2.49, 3.55, 4.62mgN-HNO2/L) and three exposure times (2, 5, 9h) lower than the ones reported in literature (24h) on WAS characteristics and specific methane production (SMP). FNA pre-treatment reduced sludge cell viability below 10% in all cases after an exposure time of 5h, increasing the solubility of the organic matter. The treated mixed sludge was used as substrate for the biochemical methane production tests to assess its SMP. Results showed a significant increase (up to 25%) on SMP when the sludge was pretreated with the lowest FNA concentration (2.49mgN-HNO2/L) during 2 and 5h but did not show any improvement at longer exposure times or higher FNA concentrations.
Collapse
Affiliation(s)
- S Zahedi
- Catalan Institute for Water Research (ICRA), Emili Grahit Street, 101, H(2)O Building, Scientific and Technological Park of the University of Girona, 17003 Girona, Spain
| | - P Icaran
- Department of Innovation and Technology, FCC Aqualia, Balmes Street, 36, 6th Floor, 08007 Barcelona, Spain
| | - Z Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia 4072, Australia
| | - M Pijuan
- Catalan Institute for Water Research (ICRA), Emili Grahit Street, 101, H(2)O Building, Scientific and Technological Park of the University of Girona, 17003 Girona, Spain.
| |
Collapse
|
8
|
Zahedi S, Solera R, Micolucci F, Cavinato C, Bolzonella D. Changes in microbial community during hydrogen and methane production in two-stage thermophilic anaerobic co-digestion process from biowaste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 49:40-46. [PMID: 26810032 DOI: 10.1016/j.wasman.2016.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
In this paper, the microbial community in a two-phase thermophilic anaerobic co-digestion process was investigated for its role in hydrogen and methane production, treating waste activated sludge and treating the organic fraction of municipal solid waste. In the acidogenic phase, in which hydrogen is produced, Clostridium sp. clusters represented 76% of total Firmicutes. When feeding the acidogenic effluent into the methanogenic reactors, these acidic conditions negatively influenced methanogenic microorganisms: Methanosaeta sp., (Methanobacteriales, Methanomicrobiales, Methanococcales) decreased by 75%, 50%, 38% and 52%, respectively. At the same time, methanogenic digestion lowered the numbers of Clostridium sp. clusters due to both pH increasing and substrate reduction, and an increase in both Firmicutes genera (non Clostridium) and methanogenic microorganisms, especially Methanosaeta sp. (208%). This was in accordance with the observed decrease in acetic (98%) and butyric (100%) acid contents. To ensure the activity of the acetate-utilizing methanogens (AUM) and the acetogens, high ratios of H2-utilizing methanogens (HUM)/AUM (3.6) were required.
Collapse
Affiliation(s)
- S Zahedi
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, 17003, Spain; Department of Environmental Technologies, University of Cadiz, Faculty of Marine and Environmental Sciences (CASEM), Pol, Río San Pedro s/n, 11510 Puerto Real (Cádiz), Spain.
| | - R Solera
- Department of Environmental Technologies, University of Cadiz, Faculty of Marine and Environmental Sciences (CASEM), Pol, Río San Pedro s/n, 11510 Puerto Real (Cádiz), Spain
| | - F Micolucci
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - C Cavinato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Calle Larga Santa Marta, 30123 Venice, Italy
| | - D Bolzonella
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|