1
|
Punriboon N, Sawaengkaew J, Mahakhan P. Outdoor biohydrogen production by thermotolerant Rhodopseudomonas pentothenatexigens KKU-SN1/1 in a cluster of ten bioreactors system. Bioprocess Biosyst Eng 2024; 47:583-596. [PMID: 38491193 DOI: 10.1007/s00449-024-02996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
In tropical regions, the viability of outdoor photo-fermentative biohydrogen production faces challenges arising from elevated temperatures and varying light intensity. This research aimed to explore how high temperatures and outdoor environments impact both biohydrogen production and the growth of purple non-sulfur bacteria. Our findings revealed the potential of Rhodopseudomonas spp. as a robust outdoor hydrogen-producing bacteria, demonstrating its capacity to thrive and generate biohydrogen even at 40 °C and under fluctuating outdoor conditions. Rhodopseudomonas harwoodiae NM3/1-2 produced the highest cumulative biohydrogen of 223 mL/L under anaerobic light conditions at 40 °C, while Rhodopseudomonas harwoodiae 2M had the highest dry cell weight of 2.93 g/L. However, R. harwoodiae NM3/1-2 demonstrated the highest dry cell weight of 3.99 g/L and Rhodopseudomonas pentothenatexigens KKU-SN1/1 exhibited the highest cumulative biohydrogen production of 400 mL/L when grown outdoors. In addition, the outdoor enhancement of biohydrogen production was achieved through the utilization of a cluster of ten bioreactors system. The outcomes demonstrated a notable improvement in biohydrogen production efficiency, marked by the highest daily biohydrogen production of 493 mL/L d by R. pentothenatexigens KKU-SN1/1. Significantly, the highest biohydrogen production rate was noted to be 17 times greater than that observed in conventional batch production methods. This study is the first to utilize R. pentothenatexigens and R. harwoodiae for sustained biohydrogen production at high temperatures and in outdoor conditions over an extended operational period. The successful utilization of a clustered system of ten bioreactors demonstrates potential to scale-up for industrial biohydrogen production.
Collapse
Affiliation(s)
- Netchanok Punriboon
- Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jutaporn Sawaengkaew
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Polson Mahakhan
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
Sun Q, Zhao C, Qiu Q, Guo S, Zhang Y, Mu H. Oyster shell waste as potential co-substrate for enhancing methanogenesis of starch wastewater at low inoculation ratio. BIORESOURCE TECHNOLOGY 2022; 361:127689. [PMID: 35901863 DOI: 10.1016/j.biortech.2022.127689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the effect of oyster shells on the methanogenesis of starch wastewater subjected to over-acidification (pH < 4.5) at low inoculum/substrate ratios, and revealed that oyster shells could be used as co-substrates for methane production. The methane yield was improved by approximate 86-folds with optimal dose when compared with that in control. Oyster shells conditioning synchronously improved the acidogenesis and hydrogenotrophic methanogenesis steps, resulting in high methane production. These improvements were attributed to the fact that the oyster shells served as the neutralizing reagent and buffered the sharp pH drop. Carbon dioxide was also released during this process, which was subsequently converted into methane and contributed 17% of the total methane yield. Furthermore, some spheroid and rod microcolonies were observed on the surfaces of the oyster shells. Along with the remarkable enrichment of acetotrophic and methylotrophic methanogens, these microbes benefitted the successful methanogenesis of starch wastewater.
Collapse
Affiliation(s)
- Qingyu Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Chunhui Zhao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Qi Qiu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Shouxing Guo
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yongfang Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Hui Mu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
3
|
Zhang Q, Zhu S, Zhang Z, Zhang H, Xia C. Enhancement strategies for photo-fermentative biohydrogen production: A review. BIORESOURCE TECHNOLOGY 2021; 340:125601. [PMID: 34330005 DOI: 10.1016/j.biortech.2021.125601] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Biohydrogen production by photo fermentation is an attractive clean energy production approach with less environmental pollution and higher substrate conversion. In recent years, various measures have been used to improve biohydrogen production performance, but there is a lack of systematic and comprehensive summary and analysis. Hence, the recent literatures on enhancing biohydrogen production by photo fermentation were summarized, and the functional mechanisms of enhancement strategies were explained. In this work, these measures were divided into four categories according to their roles in photo fermentation, including substrate pretreatment, bacterial modification and immobilization, additive addition, reactor design optimization. It can be concluded that the optimal enhancement conditions of each strategy were affected by substrate type, strain and process parameters. According to the results of this work, it was expected to give readers a clear understanding and provide a scientific reference of the research of photosynthetic biohydrogen production.
Collapse
Affiliation(s)
- Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S&T University, Zhengzhou 450006, China
| | - Shengnan Zhu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China.
| | - Chenxi Xia
- Institute of Agricultural Engineering, Huanghe S&T University, Zhengzhou 450006, China
| |
Collapse
|
4
|
Zhu S, Yang X, Zhang Z, Zhang H, Li Y, Zhang Y, Zhang Q. Tolerance of photo-fermentative biohydrogen production system amended with biochar and nanoscale zero-valent iron to acidic environment. BIORESOURCE TECHNOLOGY 2021; 338:125512. [PMID: 34260966 DOI: 10.1016/j.biortech.2021.125512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic fermentation system is easy to become acidic due to the generation of small molecular acids, which will affect the metabolism of bacteria. Therefore, it is necessary to improve the acid resistance of system. In this work, the tolerance of photo-fermentative biohydrogen production system amended with biochar, nanoscale zero-valent iron (nZVI) and biochar + nZVI to acidic environment was studied. Results showed that additives improved the stability and performance of the photo fermentation. The best increment of biohydrogen from 0 to 286.83 ± 2.77 mL was obtained by adding biochar and nZVI together at the original pH of 4.5. The additive reduced the oxidation-reduction potential and promoted the consumption of acetate and butyrate. At initial pH of 5, 6 and 7, the highest biohydrogen yield of 361.02 ± 10.11, 419.36 ± 10.70 and 382.67 ± 25.08 mL was obtained by adding nZVI, respectively, representing 42%-44.45% increase compared with the control group under the same conditions.
Collapse
Affiliation(s)
- Shengnan Zhu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S&T University, Zhengzhou 450006, China
| | - Xuemei Yang
- Institute of Agricultural Engineering, Huanghe S&T University, Zhengzhou 450006, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S&T University, Zhengzhou 450006, China
| | - Yang Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S&T University, Zhengzhou 450006, China.
| |
Collapse
|
5
|
Wei X, Feng J, Cao W, Li Q, Guo L. Photo-biological hydrogen production by a temperature-tolerant mutant of Rhodobacter capsulatus isolated by transposon mutagenesis. BIORESOURCE TECHNOLOGY 2021; 320:124286. [PMID: 33120063 DOI: 10.1016/j.biortech.2020.124286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Screening of high temperature tolerant strains is important for photo-fermentative hydrogen production in natural conditions which exhibit wide temperature variations. Hence, a temperature-tolerant strain of Rhodobacter capsulatus was isolated by transposon mutagenesis. The mutant strain Rhodobacter capsulatus MX01 could convert cornstalk hydrolysate into hydrogen successfully, and exhibited better hydrogen production performance at higher culture temperature (33 °C and 37 °C) and light intensity (5000 lx and 7000 lx) than the wild type strain. At 33 °C and 5000 lx, the total hydrogen production yield and rate of MX01 from cornstalk hydrolysate were 3.64 ± 0.18 mol-H2/g-cornstalk and 40.07 ± 1.70 mmol-H2/(h·g-cornstalk), respectively. The energy conversion efficiency of cornstalk hydrolysate to hydrogen for the mutant strain MX01 was 10.6%. This higher temperature- and light intensity-tolerant mutant MX01 could carry out photo-fermentation at outdoor settings, which is important for eco-friendly, low-cost and energy-saving practical application of bio-hydrogen production.
Collapse
Affiliation(s)
- Xuan Wei
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jiali Feng
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, Shandong, China
| | - Wen Cao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Qing Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Liejin Guo
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
6
|
Prachanurak P, Chiemchaisri C, Chiemchaisri W, Yamamoto K. Modelling of biofilm growth for photosynthetic biomass production in a pipe-overflow recirculation bioreactor. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Reungsang A, Zhong N, Yang Y, Sittijunda S, Xia A, Liao Q. Hydrogen from Photo Fermentation. GREEN ENERGY AND TECHNOLOGY 2018. [DOI: 10.1007/978-981-10-7677-0_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
8
|
Xie GJ, Liu BF, Ding J, Wang Q, Ma C, Zhou X, Ren NQ. Effect of carbon sources on the aggregation of photo fermentative bacteria induced by L-cysteine for enhancing hydrogen production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25312-25322. [PMID: 27696162 DOI: 10.1007/s11356-016-7756-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
Poor flocculation of photo fermentative bacteria resulting in continuous biomass washout from photobioreactor is a critical challenge to achieve rapid and stable hydrogen production. In this work, the aggregation of Rhodopseudomonas faecalis RLD-53 was successfully developed in a photobioreactor and the effects of different carbon sources on hydrogen production and aggregation ability were investigated. Extracellular polymeric substances (EPS) production by R. faecalis RLD-53 cultivated using different carbon sources were stimulated by addition of L-cysteine. The absolute ζ potentials of R. faecalis RLD-53 were considerably decreased with addition of L-cysteine, and aggregation barriers based on DLVO dropped to 15-43 % of that in control groups. Thus, R. faecalis RLD-53 flocculated effectively, and aggregation abilities of strain RLD-53 cultivated with acetate, propionate, lactate and malate reached 29.35, 32.34, 26.07 and 24.86 %, respectively. In the continuous test, hydrogen-producing activity was also promoted and reached 2.45 mol H2/mol lactate, 3.87 mol H2/mol propionate and 5.10 mol H2/mol malate, respectively. Therefore, the aggregation of R. faecalis RLD-53 induced by L-cysteine is independent on the substrate types, which ensures the wide application of this technology to enhance hydrogen recovery from wastewater dominated by different organic substrates.
Collapse
Affiliation(s)
- Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qilin Wang
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Chao Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xu Zhou
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
9
|
Adessi A, Concato M, Sanchini A, Rossi F, De Philippis R. Hydrogen production under salt stress conditions by a freshwater Rhodopseudomonas palustris strain. Appl Microbiol Biotechnol 2016; 100:2917-26. [DOI: 10.1007/s00253-016-7291-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/21/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
|
10
|
Ren HY, Liu BF, Kong F, Zhao L, Ren N. Hydrogen and lipid production from starch wastewater by co-culture of anaerobic sludge and oleaginous microalgae with simultaneous COD, nitrogen and phosphorus removal. WATER RESEARCH 2015; 85:404-12. [PMID: 26364224 DOI: 10.1016/j.watres.2015.08.057] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/12/2015] [Accepted: 08/30/2015] [Indexed: 05/07/2023]
Abstract
Anaerobic sludge (AS) and microalgae were co-cultured to enhance the energy conversion and nutrients removal from starch wastewater. Mixed ratio, starch concentration and initial pH played critical roles on the hydrogen and lipid production of the co-culture system. The maximum hydrogen production of 1508.3 mL L(-1) and total lipid concentration of 0.36 g L(-1) were obtained under the optimized mixed ratio (algae:AS) of 30:1, starch concentration of 6 g L(-1) and initial pH of 8. The main soluble metabolites in dark fermentation were acetate and butyrate, most of which can be consumed in co-cultivation. When sweet potato starch wastewater was used as the substrate, the highest COD, TN and TP removal and energy conversion efficiencies reached 80.5%, 88.7%, 80.1% and 34.2%, which were 176%, 178%, 200% and 119% higher than that of the control group (dark fermentation), respectively. This research provided a novel approach and achieved efficient simultaneous energy recovery and nutrients removal from starch wastewater by the co-culture system.
Collapse
Affiliation(s)
- Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Fanying Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
11
|
Guo CL, Cao HX, Pei HS, Guo FQ, Liu DM. A multiphase mixture model for substrate concentration distribution characteristics and photo-hydrogen production performance of the entrapped-cell photobioreactor. BIORESOURCE TECHNOLOGY 2015; 181:40-46. [PMID: 25625465 DOI: 10.1016/j.biortech.2015.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/03/2015] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
A multiphase mixture model was developed for revealing the interaction mechanism between biochemical reactions and transfer processes in the entrapped-cell photobioreactor packed with gel granules containing Rhodopseudomonas palustris CQK 01. The effects of difference operation parameters, including operation temperature, influent medium pH value and porosity of packed bed, on substrate concentration distribution characteristics and photo-hydrogen production performance were investigated. The results showed that the model predictions were in good agreement with the experimental data reported. Moreover, the operation temperature of 30 °C and the influent medium pH value of 7 were the most suitable conditions for photo-hydrogen production by biodegrading substrate. In addition, the lower porosity of packed bed was beneficial to enhance photo-hydrogen production performance owing to the improvement on the amount of substrate transferred into gel granules caused by the increased specific area for substrate transfer in the elemental volume.
Collapse
Affiliation(s)
- Cheng-Long Guo
- School of Electric Power Engineering, China University of Mining and Technology, Xuzhou 221116, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China.
| | - Hong-Xia Cao
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, China
| | - Hong-Shan Pei
- School of Electric Power Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Fei-Qiang Guo
- School of Electric Power Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Da-Meng Liu
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China; Guizhou Electric Power Test and Research Institute, Guiyang 550002, China
| |
Collapse
|
12
|
Yue H, Zhao C, Li K, Yang S. Absorption spectral change of peripheral-light harvesting complexes 2 induced by magnesium protoporphyrin IX monomethyl ester association. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 137:1153-1157. [PMID: 25305606 DOI: 10.1016/j.saa.2014.08.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/15/2014] [Accepted: 08/31/2014] [Indexed: 06/04/2023]
Abstract
Several spectrally different types of peripheral light harvesting complexes (LH) have been reported in anoxygenic phototrophic bacteria in response to environmental changes. In this study, two spectral forms of LH2 (T-LH2 and U-LH2) were isolated from Rhodobacter azotoformans. The absorption of T-LH2 was extremely similar to the LH2 isolated from Rhodobacter sphaeroides. U-LH2 showed an extra peak at ∼423 nm in the carotenoid region. To explore the spectral origin of this absorption peak, the difference in pigment compositions of two LH2 was analyzed. Spheroidene and bacteriochlorophyll aP were both contained in the two LH2. And magnesium protoporphyrin IX monomethyl ester (MPE) was only contained in U-LH2. It is known that spheroidene and bacteriochlorophyll aP do not produce ∼423 nm absorption peak either in vivo or in vitro. Whether MPE accumulation was mainly responsible for the formation of the ∼423 nm peak? The interactions between MPE and different proteins were further studied. The results showed that the maximum absorption of MPE was red-shifted from ∼415 nm to ∼423 nm when it was mixed with T-LH2 and its apoproteins, nevertheless, the Qy transitions of the bound bacteriochlorophylls in LH2 were almost unaffected, which indicated that the formation of the ∼423 nm peak was related to MPE-LH2 protein interaction. MPE did not bind to sites involved in the spectral tuning of BChls, but the conformation of integral LH2 was affected by MPE association, the alkaline stability of U-LH2 was lower than T-LH2, and the fluorescence intensity at 860 nm was decreased after MPE combination.
Collapse
Affiliation(s)
- Huiying Yue
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, China.
| | - Chungui Zhao
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, China.
| | - Kai Li
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, China.
| | - Suping Yang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
13
|
Tran KT, Maeda T, Sanchez-Torres V, Wood TK. Beneficial knockouts in Escherichia coli for producing hydrogen from glycerol. Appl Microbiol Biotechnol 2015; 99:2573-81. [DOI: 10.1007/s00253-014-6338-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/12/2014] [Accepted: 12/14/2014] [Indexed: 12/28/2022]
|
14
|
Guo CL, Cao HX, Pei HS, Guo FQ, Liu DM. Two-phase mixture model for substrate degradation and photo-hydrogen production in an entrapped-cell photobioreactor under various light intensities. RSC Adv 2015. [DOI: 10.1039/c4ra15988h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Substrate degradation and photo-hydrogen production under various light intensities was predicted using the developed two-phase mixture model.
Collapse
Affiliation(s)
- Cheng-Long Guo
- School of Electric Power Engineering
- China University of Mining and Technology
- Xuzhou 221116
- China
| | - Hong-Xia Cao
- Low Carbon Energy Institute
- China University of Mining and Technology
- Xuzhou 221008
- China
| | - Hong-Shan Pei
- School of Electric Power Engineering
- China University of Mining and Technology
- Xuzhou 221116
- China
| | - Fei-Qiang Guo
- School of Electric Power Engineering
- China University of Mining and Technology
- Xuzhou 221116
- China
| | - Da-Meng Liu
- Guizhou Electric Power Test and Research Institute
- Guiyang 550002
- China
- Institute of Engineering Thermophysics
- Chongqing University
| |
Collapse
|
15
|
Ren HY, Liu BF, Kong F, Zhao L, Ren NQ. Sequential generation of hydrogen and lipids from starch by combination of dark fermentation and microalgal cultivation. RSC Adv 2015. [DOI: 10.1039/c5ra15023j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dark fermentative hydrogen production and microalgal lipid production was successfully combined to enhance the energy conversion from starch with simultaneous treatment of volatile fatty acids in the effluent.
Collapse
Affiliation(s)
- Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Fanying Kong
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| |
Collapse
|
16
|
Ren HY, Liu BF, Kong F, Zhao L, Ren NQ. Improved Nile red staining of Scenedesmus sp. by combining ultrasonic treatment and three-dimensional excitation emission matrix fluorescence spectroscopy. ALGAL RES 2015. [DOI: 10.1016/j.algal.2014.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Zhao C, Yue H, Cheng Q, Chen S, Yang S. What Caused the Formation of the Absorption Maximum at 421 nmin vivoSpectra ofRhodopseudomonas palustris. Photochem Photobiol 2014; 90:1287-92. [DOI: 10.1111/php.12334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/18/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Chungui Zhao
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| | - Huiying Yue
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| | - Qianru Cheng
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| | - Shicheng Chen
- Department of Microbiology and Molecular Genetics; Michigan State University; East Lansing MI
| | - Suping Yang
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| |
Collapse
|
18
|
Li K, Zhao C, Yue H, Yang S. A unique low light adaptation mechanism inRhodobacter azotoformans. J Basic Microbiol 2014; 54:1350-7. [DOI: 10.1002/jobm.201400422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/11/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Kai Li
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| | - Chungui Zhao
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| | - Huiying Yue
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| | - Suping Yang
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| |
Collapse
|
19
|
Koskella B. Research highlights for issue 3. Evol Appl 2014; 7:337-8. [PMID: 24665336 PMCID: PMC3962294 DOI: 10.1111/eva.12153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Britt Koskella
- Research highlights associate editor Evolutionary Applications
| |
Collapse
|