1
|
Jha S, Mishra BK. An overview of deploying different treatment processes with membrane bioreactor for enhanced treatment of wastewaters: synergistic performances and reduced fouling of membrane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63603-63634. [PMID: 39538077 DOI: 10.1007/s11356-024-35459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
The membrane bioreactor (MBR) process synergistically combines biological treatment with membrane filtration, offering a compact design and enhanced operational flexibility. However, membrane fouling remains a critical bottleneck, limiting its widespread application, particularly in treating high-strength wastewater. Recent advances have demonstrated that integrating MBR systems with auxiliary processes such as adsorption, electrochemical treatments, algal-assisted systems, and others can significantly mitigate fouling and enhance treatment efficacy. This paper critically reviews various MBR hybrid configurations, examining their mechanisms, advantages, and limitations in terms of treatment performance and fouling control, while highlighting their potential to extend conventional MBR's applicability to challenging wastewaters and addressing operational challenges like economic viability and sustainability. Elaborated tables incorporating a wide variety of research studies within the realm of synchronization have been meticulously compiled to generate a comprehensive literature review.
Collapse
Affiliation(s)
- Shikha Jha
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Brijesh Kumar Mishra
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| |
Collapse
|
2
|
Ayub HMU, Nizami M, Qyyum MA, Iqbal N, Al-Muhtaseb AH, Hasan M. Sustainable hydrogen production via microalgae: Technological advancements, economic indicators, environmental aspects, challenges, and policy implications. ENVIRONMENTAL RESEARCH 2024; 244:117815. [PMID: 38048865 DOI: 10.1016/j.envres.2023.117815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Hydrogen has emerged as an alternative energy source to meet the increasing global energy demand, depleting fossil fuels and environmental issues resulting from fossil fuel consumption. Microalgae-based biomass is gaining attention as a potential source of hydrogen production due to its green energy carrier properties, high energy content, and carbon-free combustion. This review examines the hydrogen production process from microalgae, including the microalgae cultivation technological process for biomass production, and the three main routes of biomass-to-hydrogen production: thermochemical conversion, photo biological conversion, and electrochemical conversion. The current progress of technological options in the three main routes is presented, with the various strains of microalgae and operating conditions of the processes. Furthermore, the economic and environmental perspectives of biomass-to-hydrogen from microalgae are evaluated, and critical operational parameters are used to assess the feasibility of scaling up biohydrogen production for commercial industrial-scale applications. The key finding is the thermochemical conversion process is the most feasible process for biohydrogen production, compared to the pyrolysis process. In the photobiological and electrochemical process, pure hydrogen can be achieved, but further process development is required to enhance the production yield. In addition, the high production cost is the main challenge in biohydrogen production. The cost of biohydrogen production for direct bio photolysis it cost around $7.24 kg-1; for indirect bio photolysis it costs around $7.54 kg-1 and for fermentation, it costs around $7.61 kg-1. Therefore, comprehensive studies and efforts are required to make biohydrogen production from microalgae applications more economical in the future.
Collapse
Affiliation(s)
| | - Muhammad Nizami
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, 16424, Indonesia
| | - Muhammad Abdul Qyyum
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Noman Iqbal
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Ala'a H Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Mudassir Hasan
- Department of Chemical Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Mehrnia MR, Nasiri F, Pourasgharian Roudsari F, Bahrami F. Hybrid powdered activated carbon-activated sludge biofilm formation to mitigate biofouling in dynamic membrane bioreactor for wastewater treatment. BIOFOULING 2022; 38:415-426. [PMID: 35686374 DOI: 10.1080/08927014.2022.2081805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Membrane costs and biofouling limit applications of membrane bioreactors (MBRs) for wastewater treatment. Here, powdered activated carbon (PAC) utilization in the formation and performance of a self-forming dynamic membrane consisting of activated sludge and PAC during hybrid wastewater treatment process was studied. Short-term agitation helped (non)biological particles to quickly uniformly settle on mesh filter, forming more uniform PAC-containing dynamic membranes (PAC-DMs). PAC adsorbed adhesive materials, resulting in an increase in average floc size and DM permeability while decreasing biofouling. The most efficient PAC concentration was 4 g L-1 considering techno-economics, i.e. the highest effluent quality (turbidity of 19.89 NTU) and the lowest biofouling (transmembrane pressure rise of 2.89 mbar). Short-term performance of hybrid PAC-DM bioreactor (PAC-DMBR) showed stability in effluent quality improvement including 92%, 95%, 83%, 84% and 98% reductions in turbidity, chemical oxygen demand, total dissolved solids, total nitrogen, and total phosphorous, respectively. Accordingly, adopting hybrid PAC-DMBR has potential to alleviate biofouling and capital cost.
Collapse
Affiliation(s)
- Mohammad Reza Mehrnia
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Nasiri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Fatemeh Bahrami
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Wang K, Zhou Z, Yu S, Qiang J, Yuan Y, Qin Y, Xiao K, Zhao X, Wu Z. Compact wastewater treatment process based on abiotic nitrogen management achieved high-rate and facile pollutants removal. BIORESOURCE TECHNOLOGY 2021; 330:124991. [PMID: 33743281 DOI: 10.1016/j.biortech.2021.124991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Chemically enhanced primary treatment (CEPT), ammonium ion exchange and regeneration (AIR) and membrane bioreactor (MBR) were coupled as CAIRM to treat domestic wastewater compactly and efficiently. CAIRM achieved efficient removal of chemical oxygen demand, ammonia nitrogen, total nitrogen (TN) and total phosphorus with total hydraulic retention time of 4.6 h, and obtained 2.3 ± 0.9 mg/L TN in the effluent. CEPT removed phosphate and impurities and prevented AIR from pollution. AIR maintained excellent nitrogen removal with a slight decrease in the exchange capacity of ion exchangers. MBR polished the effluent from AIR, and the larger particle size and better dewaterability of sludge mitigated the membrane fouling. Many heterotrophic genera, such as Rhodobacter and Defluviimonas, were enriched in the oligotrophic MBR. This study demonstrates the viability and stability of CAIRM in efficient wastewater treatment, which will address critical challenges in insufficient nitrogen removal and high land occupancy of current processes.
Collapse
Affiliation(s)
- Kaichong Wang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Siqi Yu
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jiaxin Qiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yao Yuan
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yangjie Qin
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Kaiqi Xiao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaodan Zhao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhichao Wu
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Song HL, Lu YX, Yang XL, Xu H, Singh RP, Du KX, Yang YL. Degradation of sulfamethoxazole in low-C/N ratio wastewater by a novel membrane bioelectrochemical reactor. BIORESOURCE TECHNOLOGY 2020; 305:123029. [PMID: 32109730 DOI: 10.1016/j.biortech.2020.123029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Sulfamethoxazole (SMX) pollution in wastewater threatens public health. A novel membrane bioelectrochemical reactor (MBER) with loop operation was developed for SMX degradation in low-C/N ratio wastewater. A gas-permeable silicone membrane module was used to precisely control the dissolved oxygen in the catholyte and save energy. Compared with a traditional membrane bioreactor (i.e., open-circuit reactor), the removal of SMX was increased from 49.91% to 71.10% in the proposed MBER (i.e., closed-circuit reactor). Sequencing analyses revealed that SMX was removed via cometabolism with NH4+-N and COD removal in both the anode and cathode chambers. Six intermediates were detected as degradation products in the cathodic effluent; these intermediates pose a similar potential threat to the environment as SMX. Two possible degradation pathways, deduced from the sequencing analyses and degradation products, were proposed. These results provide a new technology for improving SMX removal through the integration/coupling of bioelectrochemical technology into a membrane bioreactor.
Collapse
Affiliation(s)
- Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Yu-Xiang Lu
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Han Xu
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | | | - Kai-Xing Du
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China.
| |
Collapse
|
6
|
Abstract
This study examines the effect of bentonite and zeolite concentration (0.25–5 g/L) on the membrane fouling of a fully automated, pilot-scale membrane bioreactor (MBR) treating high-strength synthetic municipal wastewater. Reversible fouling was estimated by sludge filterability measurements and irreversible fouling was estimated by the reduction of the carbohydrate fraction of soluble microbial products (SMPc), which are considered to be significant MBR foulants. Both minerals were added to biomass samples (during batch-mode experiments) which were obtained from the system’s aeration tank. Results showed that the optimal bentonite and zeolite concentrations were 3.5–4 g/L and 2.5–3.5 g/L, respectively. Interestingly, above these values, the addition of both minerals increased the examined fouling indices, i.e., the measured filterability times and the SMPc concentration, implying that they might act as foulants at high concentrations. Optical microscopy images of the biomass samples showed that the addition of minerals at the optimal concentrations did not affect significantly filamentous microorganisms, since filament index (FI) was practically unaffected (~2). Finally, regarding the system’s treating performance, it was found that the pilot-scale MBR can operate successfully with high-strength synthetic municipal wastewater, since remarkable behaviour was exhibited in terms of organics (BOD5, COD) and ammonium (NH4+-N) removal (>98%).
Collapse
|
7
|
Montalvo S, Huiliñir C, Borja R, Sánchez E, Herrmann C. Application of zeolites for biological treatment processes of solid wastes and wastewaters - A review. BIORESOURCE TECHNOLOGY 2020; 301:122808. [PMID: 31987490 DOI: 10.1016/j.biortech.2020.122808] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
This review reports the use of zeolites in biological processes such as anaerobic digestion, nitrification, denitrification and composting, review that has not been proposed yet. It was found that aerobic processes (activated sludge, nitrification, Anammox) use zeolites as ion-exchanger and biomass carriers in order to improve the seattlebility, the biomass growth on zeolite surface and the phosphorous removal. In the case of anaerobic digestion and composting, zeolites are mainly used with the aim of retaining inhibitors such as ammonia and heavy metals through ion-exchange. The inclusion of zeolite effect on mathematical models applied in biological processes is still an area that should be improved, including also the life cycle analysis of the processes that include zeolites. At the same time, the application of zeolites at industrial or full-scale is still very scarce in anaerobic digestion, being more common in nitrogen removal processes.
Collapse
Affiliation(s)
- S Montalvo
- Universidad de Santiago de Chile, Ave. Lib. Bdo ÓHiggins 3363, Santiago de Chile, Chile
| | - C Huiliñir
- Universidad de Santiago de Chile, Ave. Lib. Bdo ÓHiggins 3363, Santiago de Chile, Chile.
| | - R Borja
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide - Edificio 46, Ctra. de Utrera, km. 1, 41013 Sevilla, Spain
| | - E Sánchez
- Ministerio de Ciencia y Tecnología, Calle 2 No 124 e/ 1ra y 3ra Miramar, La Habana, Cuba
| | - C Herrmann
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Max-Eyth-Alle 100, 14469 Potsdam, Germany
| |
Collapse
|
8
|
Xu B, Albert Ng TC, Huang S, Shi X, Ng HY. Feasibility of isolated novel facultative quorum quenching consortiums for fouling control in an AnMBR. WATER RESEARCH 2020; 114:151-180. [PMID: 31706123 DOI: 10.1016/j.watres.2017.02.006] [Citation(s) in RCA: 511] [Impact Index Per Article: 102.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/10/2017] [Accepted: 02/02/2017] [Indexed: 05/06/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) technology is being recognized as an appealing strategy for wastewater treatment, however, severity of membrane fouling inhibits its widespread implementations. This study engineered novel facultative quorum quenching consortiums (FQQs) coping with membrane fouling in AnMBRs with preliminary analysis for their quorum quenching (QQ) performances. Herein, Acyl-homoserine lactones (AHLs)-based quorum sensing (QS) in a lab-scale AnMBR initially revealed that N-Hexanoyl-dl-homoserine lactone (C6-HSL), N-Octanoyl-dl-homoserine lactone (C8-HSL) and N-Decanoyl-dl-homoserine lactone (C10-HSL) were the dominant AHLs in AnMBRs in this study. Three FQQs, namely, FQQ-C6, FQQ-C8 and FQQ-C10, were harvested after anaerobic screening of aerobic QQ consortiums (AeQQs) which were isolated by enrichment culture, aiming to degrade C6-HSL, C8-HSL and C10-HSL, respectively. Growth of FQQ-C6 and FQQ-C10 using AHLs as carbon source under anaerobic condition was significantly faster than those using acetate, congruously suggesting that their QQ performance will not be compromised in AnMBRs. All FQQs degraded a wide range of AHLs pinpointing their extensive QQ ability. FQQ-C6, FQQ-C8 and FQQ-C10 remarkably alleviated extracellular polymeric substances (EPS) production in a lab-scale AnMBR by 72.46%, 35.89% and 65.88%, respectively, and FQQ-C6 retarded membrane fouling of the AnMBR by 2 times. Bioinformatics analysis indicated that there was a major shift in dominant species from AeQQs to FQQs where Comamonas sp., Klebsiella sp., Stenotrophomonas sp. and Ochrobactrum sp. survived after anaerobic screening and were the majority in FQQs. High growth rate utilizing AHLs under anaerobic condition and enormous EPS retardation efficiency in FQQ-C6 and FQQ-C10 could be attributed to Comamonas sp.. These findings demonstrated that FQQs could be leveraged for QQ under anaerobic systems. We believe that this was the first work proposing a bacterial pool of facultative QQ candidates holding biotechnological promises for membrane fouling control in AnMBRs.
Collapse
Affiliation(s)
- Boyan Xu
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576
| | - Tze Chiang Albert Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576
| | - Shujuan Huang
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - How Yong Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576; National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
9
|
Jabbari B, Jalilnejad E, Ghasemzadeh K, Iulianelli A. Recent Progresses in Application of Membrane Bioreactors in Production of Biohydrogen. MEMBRANES 2019; 9:membranes9080100. [PMID: 31405178 PMCID: PMC6723787 DOI: 10.3390/membranes9080100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
Abstract
Biohydrogen is a clean and viable energy carrier generated through various green and renewable energy sources such as biomass. This review focused on the application of membrane bioreactors (MBRs), emphasizing the combination of these devices with biological processes, for bio-derived hydrogen production. Direct biophotolysis, indirect biophotolysis, photo-fermentation, dark fermentation, and conventional techniques are discussed as the common methods of biohydrogen production. The anaerobic process membrane bioreactors (AnMBRs) technology is presented and discussed as a preferable choice for producing biohydrogen due to its low cost and the ability of overcoming problems posed by carbon emissions. General features of AnMBRs and operational parameters are comprehensively overviewed. Although MBRs are being used as a well-established and mature technology with many full-scale plants around the world, membrane fouling still remains a serious obstacle and a future challenge. Therefore, this review highlights the main benefits and drawbacks of MBRs application, also discussing the comparison between organic and inorganic membranes utilization to determine which may constitute the best solution for providing pure hydrogen. Nevertheless, research is still needed to overcome remaining barriers to practical applications such as low yields and production rates, and to identify biohydrogen as one of the most appealing renewable energies in the future.
Collapse
Affiliation(s)
- Bahman Jabbari
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia 57166-17165, Iran
| | - Elham Jalilnejad
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia 57166-17165, Iran.
| | - Kamran Ghasemzadeh
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia 57166-17165, Iran
| | - Adolfo Iulianelli
- Institute on Membrane Technology of the Italian National Research Council (CNR-ITM), via P. Bucci Cubo 17/C, 87036 Rende (CS), Italy.
| |
Collapse
|
10
|
Hamedi H, Ehteshami M, Mirbagheri SA, Rasouli SA, Zendehboudi S. Current Status and Future Prospects of Membrane Bioreactors (MBRs) and Fouling Phenomena: A Systematic Review. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23345] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hamideh Hamedi
- Department of Civil EngineeringK. N. Toosi University of TechnologyTehranIran
- Faculty of Engineering and Applied ScienceMemorial UniversitySt. John'sNLCanada
| | - Majid Ehteshami
- Department of Civil EngineeringK. N. Toosi University of TechnologyTehranIran
| | | | - Seyed Abbas Rasouli
- Faculty of Engineering and Applied ScienceMemorial UniversitySt. John'sNLCanada
| | - Sohrab Zendehboudi
- Faculty of Engineering and Applied ScienceMemorial UniversitySt. John'sNLCanada
| |
Collapse
|
11
|
Iorhemen OT, Hamza RA, Tay JH. Membrane fouling control in membrane bioreactors (MBRs) using granular materials. BIORESOURCE TECHNOLOGY 2017; 240:9-24. [PMID: 28314664 DOI: 10.1016/j.biortech.2017.03.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/25/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
Membrane fouling is considered the major limitation of membrane bioreactors (MBRs). This paper provides an overview on fouling mitigation in MBRs using granular materials. Adsorbents addition extends filtration period, improves critical flux as well as sludge properties (increased flocs size, reduced soluble EPS, improved dewaterability). However, determination of optimal dosages of adsorbents is needed to balance cost savings from fouling mitigation versus cost of adsorbents and sludge handling. The abrasion from granular media reduces cake layer formation, extends membrane filtration period, increases flux (∼20-30%), and reduces aeration intensity by 50%. Finding appropriate aeration intensity and optimum dose for different media is critical for full-scale application. Granular sludge substantially reduces fouling in MBRs; but, optimal operational conditions for long-term granule stability are required. Quorum quenching (QQ) mitigates biofouling (energy savings ∼27-40%). Cost savings from QQ need assessment against the production and application of QQ approaches.
Collapse
Affiliation(s)
- Oliver Terna Iorhemen
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | - Rania Ahmed Hamza
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Joo Hwa Tay
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
12
|
Membrane bioreactors – A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.010] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Chen W, Luo J, Cao R, Li Y, Liu J. Effect of macroporous adsorption resin-membrane bioreactor hybrid system against fouling for municipal wastewater treatment. BIORESOURCE TECHNOLOGY 2017; 224:112-117. [PMID: 27914785 DOI: 10.1016/j.biortech.2016.11.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
Membrane bioreactor (MBR) displays significant advantages in effluent quality, sludge production, footprint, and operation. However, membrane fouling limits the application of MBR. This study investigated membrane fouling in a macroporous adsorption resin-membrane bioreactor hybrid system established by adding macroporous adsorption resin (MAR) into MBR. MAR addition increased the critical flux by 27.97%, indicating that membrane fouling was successfully mitigated. Consequently, comparative experiments were designed to analyze the pathway. MAR addition mitigated external fouling development and improved mixed liquor characteristics, thereby mitigating gel layer formation and sludge floc deposition on the membrane surface. MAR effectively reduced the supernatant viscosity and dissolved COD by adsorbing soluble microbial products. Sludge production decreased because the sludge activity in MAR-MBR was inhibited. The fouled MAR could be regenerated effectively by deionized water and chemical cleaning. This work demonstrated the feasibility of using MAR-MBR to mitigate fouling in municipal wastewater treatment.
Collapse
Affiliation(s)
- Weiwei Chen
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Jing Luo
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Ruyi Cao
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Yuting Li
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Jinrong Liu
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.
| |
Collapse
|
14
|
Deng L, Guo W, Ngo HH, Zhang H, Wang J, Li J, Xia S, Wu Y. Biofouling and control approaches in membrane bioreactors. BIORESOURCE TECHNOLOGY 2016; 221:656-665. [PMID: 27717560 DOI: 10.1016/j.biortech.2016.09.105] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Membrane fouling (especially biofouling) as a critical issue during membrane reactor (MBR) operation has attracted much attention in recent years. Although previous review papers have presented different aspects of MBR's fouling when treating various wastewaters, the information related to biofouling in MBRs has only simply or partially reviewed. This work attempts to give a more comprehensive and elaborate explanation of biofilm formation, biofouling factors and control approaches by addressing current achievements. This also suggests to a better way in controlling biofouling by developing new integrated MBR systems, novel flocculants and biomass carriers.
Collapse
Affiliation(s)
- Lijuan Deng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China; School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia; Membrane Bioreactor Centre, College of Environmental Science and Engineering, Tongji University, State Key Lab. of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia; Membrane Bioreactor Centre, College of Environmental Science and Engineering, Tongji University, State Key Lab. of Pollution Control and Resource Reuse, Shanghai 200092, China.
| | - Hongwei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jie Wang
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China; Membrane Bioreactor Centre, College of Environmental Science and Engineering, Tongji University, State Key Lab. of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Siqing Xia
- Membrane Bioreactor Centre, College of Environmental Science and Engineering, Tongji University, State Key Lab. of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Yun Wu
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
15
|
Iorhemen OT, Hamza RA, Tay JH. Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling. MEMBRANES 2016; 6:E33. [PMID: 27314394 PMCID: PMC4931528 DOI: 10.3390/membranes6020033] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/08/2016] [Accepted: 06/12/2016] [Indexed: 11/16/2022]
Abstract
The membrane bioreactor (MBR) has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application.
Collapse
Affiliation(s)
- Oliver Terna Iorhemen
- Department of Civil Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Rania Ahmed Hamza
- Department of Civil Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Joo Hwa Tay
- Department of Civil Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|