1
|
Pabbathi NPP, Velidandi A, Tavarna T, Gupta S, Raj RS, Gandam PK, Baadhe RR. Role of metagenomics in prospecting novel endoglucanases, accentuating functional metagenomics approach in second-generation biofuel production: a review. BIOMASS CONVERSION AND BIOREFINERY 2021; 13:1371-1398. [PMID: 33437563 PMCID: PMC7790359 DOI: 10.1007/s13399-020-01186-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/30/2020] [Accepted: 12/01/2020] [Indexed: 05/02/2023]
Abstract
As the fossil fuel reserves are depleting rapidly, there is a need for alternate fuels to meet the day to day mounting energy demands. As fossil fuel started depleting, a quest for alternate forms of fuel was initiated and biofuel is one of its promising outcomes. First-generation biofuels are made from edible sources like vegetable oils, starch, and sugars. Second-generation biofuels (SGB) are derived from lignocellulosic crops and the third-generation involves algae for biofuel production. Technical challenges in the production of SGB are hampering its commercialization. Advanced molecular technologies like metagenomics can help in the discovery of novel lignocellulosic biomass-degrading enzymes for commercialization and industrial production of SGB. This review discusses the metagenomic outcomes to enlighten the importance of unexplored habitats for novel cellulolytic gene mining. It also emphasizes the potential of different metagenomic approaches to explore the uncultivable cellulose-degrading microbiome as well as cellulolytic enzymes associated with them. This review also includes effective pre-treatment technology and consolidated bioprocessing for efficient biofuel production.
Collapse
Affiliation(s)
- Ninian Prem Prashanth Pabbathi
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Aditya Velidandi
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Tanvi Tavarna
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Shreyash Gupta
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Ram Sarvesh Raj
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Pradeep Kumar Gandam
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Rama Raju Baadhe
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| |
Collapse
|
2
|
Saccharification Yield through Enzymatic Hydrolysis of the Steam-Exploded Pinewood. ENERGIES 2020. [DOI: 10.3390/en13174552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pressure, temperature, and retention time are the most studied parameters in steam explosion pretreatment. However, this work aimed to fix these parameters and to evaluate the influences of several less investigated steam explosion parameters on the saccharification yield in hydrolysis. In this study, firstly, pinewood samples smaller than 200 µm were treated with steam explosion at 190 °C for 10 min. The variable parameters were biomass loading, N2 pressure, and release time. Steam-exploded samples were hydrolyzed with the Trichoderma reesei enzyme for saccharification for 72 h. The sugar content of the resultant products was analyzed to estimate the yield of sugars (such as glucose, xylose, galactose, mannose, and arabinose). The best glucose yield in the pulp was achieved with 4 g of sample, N2 pressure of 0.44 MPa, and short release time (22 s). These conditions gave a glucose yield of 97.72% in the pulp, and the xylose, mannose, galactose, and arabinose yields in the liquid fraction were found to be 85.59%, 87.76%, 86.43%, and 90.3%, respectively.
Collapse
|
3
|
Wu J, Dong L, Liu B, Xing D, Zhou C, Wang Q, Wu X, Feng L, Cao G. A novel integrated process to convert cellulose and hemicellulose in rice straw to biobutanol. ENVIRONMENTAL RESEARCH 2020; 186:109580. [PMID: 32668543 DOI: 10.1016/j.envres.2020.109580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/24/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
A novel integrated process was established in this study to produce butanol from rice straw. In the first pretreatment, an alternative NaOH/Urea preatment operated at -12 oC efficiently removed 10.9 g lignin and preserved 91.54% cellulose and hemicellulose in 100 g rice straw. Subsequently, crude cellulase produced from Trichoderma viride was used to convert pretreated rice straw to mono-sugars for fermentation. The yields of glucose, xylose and arabiose obtained from 100 g rice straw were 31 g, 13.4 g and 0.48 g, respectively, resulting in a 69.45% saccharification efficiency of crude enzyme. Finally, to alleviate the carbon catabolite repression (CCR) and enhance butanol production, the coculture system of Clostridium beijerinckii and Saccharomyces cerevisiae was applied. Compared to monoculture of C. beijerinckii F-6, more sugars were consumed, especially the reduction rate of xylose reached to 81.87%, 32.99% higher than that in monoculture system. With more substrate facilitied into metabolism, the butanol concentration reached to 10.62 g/L corresponding to 0.28 g/g substrate, 115.38% higher than that in monoculture system. Overall, this integrated process was a low-energy consumption and efficient method for butanol production from rice straw.
Collapse
Affiliation(s)
- Jiwen Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lili Dong
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chunshuang Zhou
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qi Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiukun Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liping Feng
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guangli Cao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
4
|
Identification and Biochemical Characterization of Major β-Mannanase in Talaromyces cellulolyticus Mannanolytic System. Appl Biochem Biotechnol 2020; 192:616-631. [DOI: 10.1007/s12010-020-03350-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/22/2020] [Indexed: 01/06/2023]
|
5
|
Toor M, Kumar SS, Malyan SK, Bishnoi NR, Mathimani T, Rajendran K, Pugazhendhi A. An overview on bioethanol production from lignocellulosic feedstocks. CHEMOSPHERE 2020; 242:125080. [PMID: 31675581 DOI: 10.1016/j.chemosphere.2019.125080] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/25/2019] [Accepted: 10/05/2019] [Indexed: 05/22/2023]
Abstract
Lignocellulosic ethanol has been proposed as a green alternative to fossil fuels for many decades. However, commercialization of lignocellulosic ethanol faces major hurdles including pretreatment, efficient sugar release and fermentation. Several processes were developed to overcome these challenges e.g. simultaneous saccharification and fermentation (SSF). This review highlights the various ethanol production processes with their advantages and shortcomings. Recent technologies such as singlepot biorefineries, combined bioprocessing, and bioenergy systems with carbon capture are promising. However, these technologies have a lower technology readiness level (TRL), implying that additional efforts are necessary before being evaluated for commercial availability. Solving energy needs is not only a technological solution and interlinkage of various factors needs to be assessed beyond technology development.
Collapse
Affiliation(s)
- Manju Toor
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125 001, Haryana, India
| | - Smita S Kumar
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125 001, Haryana, India
| | - Sandeep K Malyan
- Institute for Soil, Water, and Environmental Sciences, The Volcani Center, Agricultural Research Organization (ARO), Rishon LeZion - 7505101, Israel
| | - Narsi R Bishnoi
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125 001, Haryana, India
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli - 620 015, Tamil Nadu, India
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Amaravati, Andhra Pradesh - 522502, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
6
|
In-Situ Vacuum Assisted Gas Stripping Recovery System for Ethanol Removal from a Column Bioreactor. FIBERS 2018. [DOI: 10.3390/fib6040088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A three-step process consisting of biomass hydrolysis, fermentation and in-situ gas stripping by a vacuum assisted recovery system, was optimized to increase the ethanol production from sugar beet pulp. The process combines the advantages of stripping and vacuum separation and enhances the fermentation productivity through in-situ ethanol removal. Using the design of experiment and response surface methodology, the effect of major factors in the process, such as pressure, recycling ratio and solids concentration, was tested to efficiently remove ethanol after the combined hydrolysis and fermentation step. Statistical analysis indicates that a decreased pressure rate and an increased liquid phase recycling ratio enhance the productivity and the yield of the strip-vacuum fermentation process. The results also highlight further possibilities of this process to improve integrated bioethanol production processes. According to the statistical analysis, ethanol production is strongly influenced by recycling ratio and vacuum ratio. Mathematical models that were established for description of investigated processes can be used for the optimization of the ethanol production.
Collapse
|
7
|
Pandey RK, Chand K, Tewari L. Solid state fermentation and crude cellulase based bioconversion of potential bamboo biomass to reducing sugar for bioenergy production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4411-4419. [PMID: 29435990 DOI: 10.1002/jsfa.8963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/04/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Lignocellulosic biomass from bamboo is an attractive feedstock for the bioethanol industry owing to its high cellulosic content and fast growth rate. In this study, powdery biomass was first enzymatically delignified and then saccharified using crude enzymes. RESULTS The biological pretreatment decreased the lignin content of the biomass from an initial value of 295 to 137.7 g kg-1 , with a simultaneous increase in exposed cellulose content from 379.3 to 615.9 g kg-1 . For optimization of the saccharification, response surface methodology was adopted using a three-factor/three-level Box-Behnken design with crude fungal cellulase loading (FPU g-1 substrate), substrate concentration (% w/v) and saccharification temperature (°C) as the main process parameters. A maximum saccharification yield of 47.19% was achieved under the optimized conditions (cellulase enzyme 18.4 FPU g-1 substrate, substrate concentration 1.0% w/v, temperature 39.49 °C). Biological delignification and saccharification of the biomass were further confirmed through scanning electron microscopy analysis. CONCLUSION It is evident from the study that bamboo, as a renewable energy bioresource, can be hydrolysed to reducing sugars by using crude laccase/cellulase enzymes of fungal origin with good saccharification yield. Thus crude enzyme preparations could be utilized efficiently for eco-friendly and cost-effective bioethanol production. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Raj Kumar Pandey
- Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Khan Chand
- Department of Post Harvest Process and Food Engineering, College of Technology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Lakshmi Tewari
- Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
8
|
Kim SM, Dien BS, Singh V. Promise of combined hydrothermal/chemical and mechanical refining for pretreatment of woody and herbaceous biomass. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:97. [PMID: 27141232 PMCID: PMC4852465 DOI: 10.1186/s13068-016-0505-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/12/2016] [Indexed: 05/07/2023]
Abstract
Production of advanced biofuels from woody and herbaceous feedstocks is moving into commercialization. Biomass needs to be pretreated to overcome the physicochemical properties of biomass that hinder enzyme accessibility, impeding the conversion of the plant cell walls to fermentable sugars. Pretreatment also remains one of the most costly unit operations in the process and among the most critical because it is the source of chemicals that inhibit enzymes and microorganisms and largely determines enzyme loading and sugar yields. Pretreatments are categorized into hydrothermal (aqueous)/chemical, physical, and biological pretreatments, and the mechanistic details of which are briefly outlined in this review. To leverage the synergistic effects of different pretreatment methods, conducting two or more pretreatments consecutively has gained attention. Especially, combining hydrothermal/chemical pretreatment and mechanical refining, a type of physical pretreatment, has the potential to be applied to an industrial plant. Here, the effects of the combined pretreatment (combined hydrothermal/chemical pretreatment and mechanical refining) on energy consumption, physical structure, sugar yields, and enzyme dosage are summarized.
Collapse
Affiliation(s)
- Sun Min Kim
- />Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Bruce S. Dien
- />Bioenergy Research Unit, Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, Peoria, IL 61604 USA
| | - Vijay Singh
- />Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
9
|
Zakaria MR, Hirata S, Fujimoto S, Hassan MA. Combined pretreatment with hot compressed water and wet disk milling opened up oil palm biomass structure resulting in enhanced enzymatic digestibility. BIORESOURCE TECHNOLOGY 2015; 193:128-134. [PMID: 26125612 DOI: 10.1016/j.biortech.2015.06.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
Combined pretreatment with hot compressed water and wet disk milling was performed with the aim to reduce the natural recalcitrance of oil palm biomass by opening its structure and provide maximal access to cellulase attack. Oil palm empty fruit bunch and oil palm frond fiber were first hydrothermally pretreated at 150-190° C and 10-240 min. Further treatment with wet disk milling resulted in nanofibrillation of fiber which caused the loosening of the tight biomass structure, thus increasing the subsequent enzymatic conversion of cellulose to glucose. The effectiveness of the combined pretreatments was evaluated by chemical composition changes, power consumption, morphological alterations by SEM and the enzymatic digestibility of treated samples. At optimal pretreatment process, approximately 88.5% and 100.0% of total sugar yields were obtained from oil palm empty fruit bunch and oil palm frond fiber samples, which only consumed about 15.1 and 23.5 MJ/kg of biomass, respectively.
Collapse
Affiliation(s)
- Mohd Rafein Zakaria
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Satoshi Hirata
- Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Shinji Fujimoto
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
Jung HS, Park KM, Kang DH, Kwak MK, Lim S, Chang PS, Kim K. Gas-sensing array application for on-line monitoring in a heat-responsive bioprocess of Streptomyces griseus HUT 6037. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0113-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
Wang YZ, Liao Q, Lv FL, Zhu X, Ran Y, Hou CJ. Solid simultaneous saccharification and fermentation of rice straw for bioethanol production using nitrogen gas stripping. RSC Adv 2015. [DOI: 10.1039/c5ra07899g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SSSF for ethanol production using N2 strippingwas mainly conducted by the synergy of hydrolytic enzymes and yeast cells.
Collapse
Affiliation(s)
- Yong-Zhong Wang
- Key Laboratory of Biorheological Science and Technology
- Chongqing University
- Ministry of Education
- Bioengineering College
- Chongqing University
| | - Qiang Liao
- Institute of Thermophysics Engineering
- Chongqing University
- Chongqing 400030
- China
| | - Feng-Lin Lv
- Key Laboratory of Biorheological Science and Technology
- Chongqing University
- Ministry of Education
- Bioengineering College
- Chongqing University
| | - Xun Zhu
- Institute of Thermophysics Engineering
- Chongqing University
- Chongqing 400030
- China
| | - Yao Ran
- Institute of Thermophysics Engineering
- Chongqing University
- Chongqing 400030
- China
| | - Chang-Jun Hou
- Key Laboratory of Biorheological Science and Technology
- Chongqing University
- Ministry of Education
- Bioengineering College
- Chongqing University
| |
Collapse
|