1
|
Zerva A, Siaperas R, Taxeidis G, Kyriakidi M, Vouyiouka S, Zervakis GI, Topakas E. Investigation of Abortiporus biennis lignocellulolytic toolbox, and the role of laccases in polystyrene degradation. CHEMOSPHERE 2023; 312:137338. [PMID: 36423718 DOI: 10.1016/j.chemosphere.2022.137338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
White-rot basidiomycetes are the only microorganisms able to produce both hydrolytic (cellulases and hemicellulases) and oxidative (ligninolytic) enzymes for degrading all lignocellulose constituents. Their enzymatic machinery makes them ideal for the discovery of novel enzymes with desirable properties. In the present work, Abortiporus biennis, a white-rot fungus, was studied in regard to its lignocellulolytic potential. Secretomics and biochemical analyses were employed to study the strain's enzymatic arsenal, after growth in corn stover cultures and xylose-based defined media. The results revealed the presence of all the necessary enzymatic activities for complete breakdown of biomass, while the prominent role of oxidative enzymes in the lignocellulolytic strategy of the strain became evident. Two novel laccases, AbiLac1 and AbiLac2, were isolated from the culture supernatant with ion-exchange chromatography. Characterization of purified laccases revealed their ability to oxidize a wide variety of phenolic and non-phenolic substrates. AbiLac1 was found to oxidize polystyrene powder, showing high depolymerization potential, based on radical chain scission mechanism as evidenced by molecular weight decrease. The results of the present study demonstrate the biotechnological potential of the unexplored enzymatic machinery of white-rot basidiomycetes, including the design of improved lignocellulolytic cocktails, as well as the degradation and/or valorization of plastic waste materials.
Collapse
Affiliation(s)
- Anastasia Zerva
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens, 15772, Greece
| | - Romanos Siaperas
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens, 15772, Greece
| | - George Taxeidis
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens, 15772, Greece
| | - Maria Kyriakidi
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens, 15772, Greece
| | - Stamatina Vouyiouka
- Laboratory of Polymer Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens, 15772, Greece
| | - Georgios I Zervakis
- Agricultural University of Athens, Laboratory of General and Agricultural Microbiology, Iera Odos 75, 11855, Athens, Greece
| | - Evangelos Topakas
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens, 15772, Greece.
| |
Collapse
|
2
|
Screening of Fusarium moniliforme as Potential Fungus for Integrated Biodelignification and Consolidated Bioprocessing of Napier Grass for Bioethanol Production. Catalysts 2022. [DOI: 10.3390/catal12101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A fungus capable of producing ethanol from various carbon substrates was screened for direct ethanol production from lignocellulose. Fusarium moniliforme BIOTECH 3170 produced ethanol from glucose, xylose, and cellobiose after three days with theoretical yields of 86.4%, 68.6%, and 45.4%, respectively. The coculture of glucose and xylose progressed sequentially at 79.2% of the theoretical yield, with both sugars completely consumed in five days. The solid-state consolidated bioprocessing of cellulose produced 25.2 g/L of ethanol after 20 days. After 28 days of the integrated biodelignification and consolidated bioprocessing of Napier grass at solid-state conditions, up to 10.5 g/L of ethanol was produced, corresponding to an ethanol yield of 0.032 g/g biomass. Given a sufficient carbon source, the screened fungus could produce up to 42.06 g/L ethanol. F. moniliforme BIOTECH 3170 demonstrated the characteristics of a fungus for potential ethanol production from cellulose, mixed sugars, and lignocellulosic materials.
Collapse
|
3
|
Carrillo-Nieves D, Saldarriaga-Hernandez S, Gutiérrez-Soto G, Rostro-Alanis M, Hernández-Luna C, Alvarez AJ, Iqbal HMN, Parra-Saldívar R. Biotransformation of agro-industrial waste to produce lignocellulolytic enzymes and bioethanol with a zero waste. BIOMASS CONVERSION AND BIOREFINERY 2022; 12:253-264. [DOI: 10.1007/s13399-020-00738-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/26/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023]
|
4
|
Galanopoulou AP, Haimala I, Georgiadou DN, Mamma D, Hatzinikolaou DG. Characterization of the Highly Efficient Acid-Stable Xylanase and β-Xylosidase System from the Fungus Byssochlamys spectabilis ATHUM 8891 ( Paecilomyces variotii ATHUM 8891). J Fungi (Basel) 2021; 7:jof7060430. [PMID: 34072339 PMCID: PMC8228849 DOI: 10.3390/jof7060430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/17/2023] Open
Abstract
Two novel xylanolytic enzymes, a xylanase and a β-xylosidase, were simultaneously isolated and characterized from the extracellular medium of Byssochlamys spectabilis ATHUM 8891 (anamorph Paecilomyces variotii ATHUM 8891), grown on Brewer’s Spent Grain as a sole carbon source. They represent the first pair of characterized xylanolytic enzymes of the genus Byssochlamys and the first extensively characterized xylanolytic enzymes of the family Thermoascaceae. In contrast to other xylanolytic enzymes isolated from the same family, both enzymes are characterized by exceptional thermostability and stability at low pH values, in addition to activity optima at temperatures around 65 °C and acidic pH values. Applying nano-LC-ESI-MS/MS analysis of the purified SDS-PAGE bands, we sequenced fragments of both proteins. Based on sequence-comparison methods, both proteins appeared conserved within the genus Byssochlamys. Xylanase was classified within Glycoside Hydrolase family 11 (GH 11), while β-xylosidase in Glycoside Hydrolase family 3 (GH 3). The two enzymes showed a synergistic action against xylan by rapidly transforming almost 40% of birchwood xylan to xylose. The biochemical profile of both enzymes renders them an efficient set of biocatalysts for the hydrolysis of xylan in demanding biorefinery applications.
Collapse
Affiliation(s)
- Anastasia P. Galanopoulou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.G.); (I.H.); (D.N.G.)
| | - Irini Haimala
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.G.); (I.H.); (D.N.G.)
| | - Daphne N. Georgiadou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.G.); (I.H.); (D.N.G.)
| | - Diomi Mamma
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece
- Correspondence: (D.M.); (D.G.H.)
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.G.); (I.H.); (D.N.G.)
- Correspondence: (D.M.); (D.G.H.)
| |
Collapse
|
5
|
Evaluation of Basidiomycetes Wild Strains Grown in Agro-Industrial Residues for Their Anti-Tyrosinase and Antioxidant Potential and for the Production of Biocatalysts. FERMENTATION 2021. [DOI: 10.3390/fermentation7010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
White-rot basidiomycetes are the only microorganisms with the ability to produce both hydrolytic (cellulases and hemicellulases) and oxidative (ligninolytic) enzymes for degrading cellulose/hemicellulose and lignin. In addition, they produce biologically active natural products with important application in cosmetic formulations, either as pure compounds or as standardized extracts. In the present work, three wild strains of Basidiomycetes fungi (Pleurotus citrinopileatus, Abortiporus biennis and Ganoderma resinaceum) from Greek habitats were grown in agro-industrial residues (oil mill wastewater, and corn cob) and evaluated for their anti-tyrosinase and antioxidant activity and for the production of biotechnologically relevant enzymes. P. citrinopileatus showed the most interesting tyrosinase inhibitory activity, while A. biennis showed the highest DPPH(2,2-diphenyl-1-picryl-hydrazyl) scavenging potential. Corn cobs were the most appropriate carbon source for maximizing the inhibitory effect of fungal biomasses on both activities, while the use of oil mill wastewater selectively increased the anti-tyrosinase potential of P. citrinopileatus culture filtrate. All strains were found to be preferential lignin degraders, similarly to most white-rot fungi. Bioinformatic analyses were performed on the proteome of the strains P. citrinopileatus and A. biennis, focusing on CAZymes with biotechnological relevance, and the results were compared with the enzyme activities of culture supernatants. Overall, all three strains showed strong production of oxidative enzymes for biomass conversion applications.
Collapse
|
6
|
Mahmoud YAG, Abd El-Zaher EH. Recent advancements in biofuels production with a special attention to fungi. SUSTAINABLE BIOFUELS 2021:73-99. [DOI: 10.1016/b978-0-12-820297-5.00009-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Paecilomyces and Its Importance in the Biological Control of Agricultural Pests and Diseases. PLANTS 2020; 9:plants9121746. [PMID: 33321854 PMCID: PMC7763231 DOI: 10.3390/plants9121746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
Incorporating beneficial microorganisms in crop production is the most promising strategy for maintaining agricultural productivity and reducing the use of inorganic fertilizers, herbicides, and pesticides. Numerous microorganisms have been described in the literature as biological control agents for pests and diseases, although some have not yet been commercialised due to their lack of viability or efficacy in different crops. Paecilomyces is a cosmopolitan fungus that is mainly known for its nematophagous capacity, but it has also been reported as an insect parasite and biological control agent of several fungi and phytopathogenic bacteria through different mechanisms of action. In addition, species of this genus have recently been described as biostimulants of plant growth and crop yield. This review includes all the information on the genus Paecilomyces as a biological control agent for pests and diseases. Its growth rate and high spore production rate in numerous substrates ensures the production of viable, affordable, and efficient commercial formulations for agricultural use.
Collapse
|
8
|
Nait M'Barek H, Arif S, Taidi B, Hajjaj H. Consolidated bioethanol production from olive mill waste: Wood-decay fungi from central Morocco as promising decomposition and fermentation biocatalysts. ACTA ACUST UNITED AC 2020; 28:e00541. [PMID: 33102160 PMCID: PMC7578684 DOI: 10.1016/j.btre.2020.e00541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 11/24/2022]
Abstract
First report on lignocellulolytic activity and diversity of fungi from central Morocco. Olive Mill Waste (OMW) is a suitable biomass for local biorefinery in Meknes region. Fusaria isolates produce high and diversified lignocellulases using Consolidated Bioprocess. Fusarium oxysporum (76) achieves 2.47 g.L−1 bioethanol production and 0.84 g.g−1 yield. Bioethanol is maximally produced during the oxygen-limiting phase.
Meknes region is a Moroccan olive-processing area generating high amounts of non-valorized Olive Mill Waste (OMW). Fungi are natural decomposers producing varied enzyme classes and effectively contributing to the carbon cycle. However, structural complexity of biomass and modest performances of wild fungi are major limits for local biorefineries. The objective of current research is to assess the ability of local fungi for bioethanol production from OMW using Consolidated Bioprocessing (CBP). This is done by characterizing lignocellulolytic potential of six wood-decay and compost-inhabiting ascomycetes and selecting potent fermentation biocatalysts. High and diversified activities were expressed by Fusarium solani and Fusarium oxysporum: 9.36 IU. mL−1 and 2.88 IU. mL−1 total cellulase activity, 0.54 IU. mL−1 and 0.57 IU. mL−1 laccase activity, respectively, and 8.43 IU. mL−1 lignin peroxidase activity for the latter. F. oxysporum had maximum bioethanol production and yield of 2.47 g.L-1 and 0.84 g.g−1, respectively, qualifying it as an important bio-agent for single-pot local biorefinery.
Collapse
Affiliation(s)
- Hasna Nait M'Barek
- Faculty of Sciences of Meknes, Laboratory of Plant Biotechnology and Molecular Biology, BP 11201, Zitoune Meknes City, Morocco.,Cluster of Competency «Agri-food, Safety and Security» IUC VLIR-UOS, Moulay Ismail University, Marjane 2, BP 298, Meknes City, Morocco
| | - Soukaina Arif
- Faculty of Sciences of Meknes, Laboratory of Plant Biotechnology and Molecular Biology, BP 11201, Zitoune Meknes City, Morocco.,Cluster of Competency «Agri-food, Safety and Security» IUC VLIR-UOS, Moulay Ismail University, Marjane 2, BP 298, Meknes City, Morocco
| | - Behnam Taidi
- CentraleSupélec, SFR Condorcet FR, CNRS 3417, Paris-Saclay University, European Center of Biotechnology and Bioeconomy (CEBB) - LGPM, 3 Rue des Rouges Terres, 51110, Pomacle, France
| | - Hassan Hajjaj
- Faculty of Sciences of Meknes, Laboratory of Plant Biotechnology and Molecular Biology, BP 11201, Zitoune Meknes City, Morocco.,Cluster of Competency «Agri-food, Safety and Security» IUC VLIR-UOS, Moulay Ismail University, Marjane 2, BP 298, Meknes City, Morocco
| |
Collapse
|
9
|
Apostolidi ME, Kalantzi S, Hatzinikolaou DG, Kekos D, Mamma D. Catalytic and thermodynamic properties of an acidic α-amylase produced by the fungus Paecilomyces variotii ATHUM 8891. 3 Biotech 2020; 10:311. [PMID: 32582508 DOI: 10.1007/s13205-020-02305-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/13/2020] [Indexed: 02/08/2023] Open
Abstract
An extracellular acid stable α-amylase from Paecilomyces variotii ATHUM 8891 (PV8891 α-amylase) was purified to homogeneity applying ammonium sulfate fractionation, ion exchange and gel filtration chromatography and exhibited a reduced molecular weight of 75 kDa. The purified enzyme was optimally active at pH 5.0 and 60 °C and stable in acidic pH (3.0-6.0). K m, v max and k cat for starch hydrolysis were found 1.1 g L-1, 58.5 μmole min-1 (mg protein)-1, and 73.1 s-1, respectively. Amylase activity was marginally enhanced by Ca2+ and Fe2+ ions while Cu2+ ions strongly inhibited it. Thermodynamic parameters determined for starch hydrolysis (Ε α, ΔH*, ΔG*, ΔS*, Δ G E - S ∗ and Δ G E - T ∗ ) suggests an effective capacity of PV8891 α-amylase towards starch hydrolysis. Thermal stability of PV8891 α-amylase was assessed at different temperatures (30-80 οC). Thermodynamic parameters ( E a d , ΔH*, ΔG*, ΔS*) as well as the integral activity of a continuous system for starch hydrolysis by the PV8891 α-amylase revealed satisfactory thermostability up to 60 °C. The acidic nature and its satisfactory performance at temperatures lower than the industrially used amylases may represent potential applications of PV8891 α-amylase in starch processing industry.
Collapse
|
10
|
Abo BO, Gao M, Wang Y, Wu C, Ma H, Wang Q. Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes. REVIEWS ON ENVIRONMENTAL HEALTH 2019; 34:57-68. [PMID: 30685745 DOI: 10.1515/reveh-2018-0054] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/17/2018] [Indexed: 05/14/2023]
Abstract
Bioethanol is currently the only alternative to gasoline that can be used immediately without having to make any significant changes in the way fuel is distributed. In addition, the carbon dioxide (CO2) released during the combustion of bioethanol is the same as that used by the plant in the atmosphere for its growth, so it does not participate in the increase of the greenhouse effect. Bioethanol can be obtained by fermentation of plants containing sucrose (beet, sugar cane…) or starch (wheat, corn…). However, large-scale use of bioethanol implies the use of very large agricultural surfaces for maize or sugarcane production. Lignocellulosic biomass (LCB) such as agricultural residues for the production of bioethanol seems to be a solution to this problem due to its high availability and low cost even if its growth still faces technological difficulties. In this review, we present an overview of lignocellulosic biomass, the different methods of pre-treatment of LCB and the various fermentation processes that can be used to produce bioethanol from LCB.
Collapse
Affiliation(s)
- Bodjui Olivier Abo
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ming Gao
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Yonglin Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chuanfu Wu
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Hongzhi Ma
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Qunhui Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
11
|
Carrillo-Nieves D, Rostro Alanís MJ, de la Cruz Quiroz R, Ruiz HA, Iqbal HM, Parra-Saldívar R. Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2019; 102:63-74. [DOI: 10.1016/j.rser.2018.11.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Duwe A, Tippkötter N, Ulber R. Lignocellulose-Biorefinery: Ethanol-Focused. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 166:177-215. [PMID: 29071401 DOI: 10.1007/10_2016_72] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development prospects of the world markets for petroleum and other liquid fuels are diverse and partly contradictory. However, comprehensive changes for the energy supply of the future are essential. Notwithstanding the fact that there are still very large deposits of energy resources from a geological point of view, the finite nature of conventional oil reserves is indisputable. To reduce our dependence on oil, the EU, the USA, and other major economic zones rely on energy diversification. For this purpose, alternative materials and technologies are being sought, and is most obvious in the transport sector. The objective is to progressively replace fossil fuels with renewable and more sustainable fuels. In this respect, biofuels have a pre-eminent position in terms of their capability of blending with fossil fuels and being usable in existing cars without substantial modification. Ethanol can be considered as the primary renewable liquid fuel. In this chapter enzymes, micro-organisms, and processes for ethanol production based on renewable resources are described.
Collapse
Affiliation(s)
- A Duwe
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany.
| | - N Tippkötter
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - R Ulber
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| |
Collapse
|
13
|
Yang P, Zhang H, Jiang S. Construction of recombinant sestc Saccharomyces cerevisiae for consolidated bioprocessing, cellulase characterization, and ethanol production by in situ fermentation. 3 Biotech 2016; 6:192. [PMID: 28330264 PMCID: PMC5010821 DOI: 10.1007/s13205-016-0512-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/28/2016] [Indexed: 12/04/2022] Open
Abstract
Bioethanol is an important oil substitute produced by the sugar fermentation process. To improve the efficiency of cellulase expression of Saccharomyces cerevisiae, a eukaryotic expression vector harboring a single-enzyme-system-three-cellulase gene (sestc) was integrated into the S. cerevisiae genome by the protoplast method. Using PCR screening, RT-PCR, and “transparent circle” detection, several recombinant S. cerevisiae strains, capable of efficiently expressing the heterogeneous cellulase, were selected. The total activity of cellulase, endo-β-D-glucanase, exo-β-D-glucanase, and xylanase of the recombinant S. cerevisiae transformant (designated number 14) was 1.1, 378, 1.44, and 164 U ml−1, respectively, which was 27.5-, 63-, 24-, and 19-fold higher than that of the wild-type strain. The concentration of ethanol produced by the engineered S. cerevisiae strain was 8.1 gl−1, with wheat bran as the carbon source, under submerged conditions; this was 57.86-fold higher than that produced by the wild-type strain (0.14 gl−1).
Collapse
Affiliation(s)
- Peizhou Yang
- The Key Laboratory for Agricultural Products Processing of Anhui Province, College of Food Science and Technology, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, Anhui, China.
| | - Haifeng Zhang
- The Key Laboratory for Agricultural Products Processing of Anhui Province, College of Food Science and Technology, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, Anhui, China
| | - Shaotong Jiang
- The Key Laboratory for Agricultural Products Processing of Anhui Province, College of Food Science and Technology, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, Anhui, China
| |
Collapse
|
14
|
Alfenore S, Molina-Jouve C. Current status and future prospects of conversion of lignocellulosic resources to biofuels using yeasts and bacteria. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.07.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Meethit P, Ratanaprasit P, Sakdaronnarong C. Candida shehataeandSaccharomyces cerevisiaework synergistically to improve ethanol fermentation from sugarcane bagasse and rice straw hydrolysate in immobilized cell bioreactor. Eng Life Sci 2016. [DOI: 10.1002/elsc.201500147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Pareena Meethit
- Department of Chemical Engineering; Faculty of Engineering; Mahidol University; Nakorn Pathom Thailand
| | - Pirayaprach Ratanaprasit
- Department of Chemical Engineering; Faculty of Engineering; Mahidol University; Nakorn Pathom Thailand
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering; Faculty of Engineering; Mahidol University; Nakorn Pathom Thailand
| |
Collapse
|
16
|
Ali SS, Nugent B, Mullins E, Doohan FM. Fungal-mediated consolidated bioprocessing: the potential of Fusarium oxysporum for the lignocellulosic ethanol industry. AMB Express 2016; 6:13. [PMID: 26888202 PMCID: PMC4757592 DOI: 10.1186/s13568-016-0185-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 02/09/2016] [Indexed: 12/21/2022] Open
Abstract
Microbial bioprocessing of lignocellulose to bioethanol still poses challenges in terms of substrate catabolism. The most important challenge is to overcome substrate recalcitrance and to thus reduce the number of steps needed to biorefine lignocellulose. Conventionally, conversion involves chemical pretreatment of lignocellulose, followed by hydrolysis of biomass to monomer sugars that are subsequently fermented into bioethanol. Consolidated bioprocessing (CBP) has been suggested as an efficient and economical method of manufacturing bioethanol from lignocellulose. CBP integrates the hydrolysis and fermentation steps into a single process, thereby significantly reducing the amount of steps in the biorefining process. Filamentous fungi are remarkable organisms that are naturally specialised in deconstructing plant biomass and thus they have tremendous potential as components of CBP. The fungus Fusarium oxysporum has potential for CBP of lignocellulose to bioethanol. Here we discuss the complexity and potential of CBP, the bottlenecks in the process, and the potential influence of fungal genetic diversity, substrate complexity and new technologies on the efficacy of CPB of lignocellulose, with a focus on F. oxysporum.
Collapse
|
17
|
Horisawa S, Ando H, Ariga O, Sakuma Y. Direct ethanol production from cellulosic materials by consolidated biological processing using the wood rot fungus Schizophyllum commune. BIORESOURCE TECHNOLOGY 2015; 197:37-41. [PMID: 26318920 DOI: 10.1016/j.biortech.2015.08.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 05/28/2023]
Abstract
In the present study, ethanol production from polysaccharides or wood chips was conducted in a single reactor under anaerobic conditions using the white rot fungus Schizophyllum commune NBRC 4928, which produces enzymes that degrade lignin, cellulose and hemicellulose. The ethanol yields produced from glucose and xylose were 80.5%, and 52.5%, respectively. The absolute yields of ethanol per microcrystalline cellulose (MCC), xylan and arabinogalactan were 0.26g/g-MCC, 0.0419g/g-xylan and 0.0508g/g-arabinogalactan, respectively. By comparing the actual ethanol yields from polysaccharides with monosaccharide fermentation, it was shown that the rate of saccharification was slower than that in fermentation. S. commune NBRC 4928 is concluded to be suitable for CBP because it can produce ethanol from various types of sugar. From the autoclaved cedar chip, only little ethanol was produced by S. commune NBRC 4928 alone but ethanol production was enhanced by combined use of ethanol fermenting and lignin degrading fungi.
Collapse
Affiliation(s)
- Sakae Horisawa
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan.
| | - Hiromasa Ando
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Osamu Ariga
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Yoh Sakuma
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
18
|
Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K. Lignocellulosic ethanol: Technology design and its impact on process efficiency. Biotechnol Adv 2015; 33:1091-107. [DOI: 10.1016/j.biotechadv.2014.12.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022]
|
19
|
Herrera Bravo de Laguna I, Toledo Marante FJ, Mioso R. Enzymes and bioproducts produced by the ascomycete fungus Paecilomyces variotii. J Appl Microbiol 2015; 119:1455-66. [PMID: 26274842 DOI: 10.1111/jam.12934] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/28/2022]
Abstract
Due its innate ability to produce extracellular enzymes which can provide eco-friendly solutions for a variety of biotechnological applications, Paecilomyces variotii is a potential source of industrial bioproducts. In this review, we report biotechnological records on the biochemistry of different enzymes produced by the fermentation of the P. variotii fungus, including tannases, phytases, cellulases, xylanases, chitinases, amylases and pectinases. Additionally, the main physicochemical properties which can affect the enzymatic reactions of the enzymes involved in the conversion of a huge number of substrates to high-value bioproducts are described. Despite all the background information compiled in this review, more research is required to consolidate the catalytic efficiency of P. variotii, which must be optimized so that it is more accurate and reproducible on a large scale.
Collapse
Affiliation(s)
- I Herrera Bravo de Laguna
- Department of Biology, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - F J Toledo Marante
- Department of Chemistry, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - R Mioso
- Department of Chemistry, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
20
|
Tanimura A, Kikukawa M, Yamaguchi S, Kishino S, Ogawa J, Shima J. Direct ethanol production from starch using a natural isolate, Scheffersomyces shehatae: Toward consolidated bioprocessing. Sci Rep 2015; 5:9593. [PMID: 25901788 PMCID: PMC5386104 DOI: 10.1038/srep09593] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/13/2015] [Indexed: 12/02/2022] Open
Abstract
Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a one-step process, is a promising strategy for cost-effective ethanol production from starchy biomass. To gain insights into starch-based ethanol production using CBP, an extensive screening was undertaken to identify naturally occurring yeasts that produce ethanol without the addition of any amylases. Three yeast strains were capable of producing a significant amount of ethanol. Quantitative assays revealed that Scheffersomyces shehatae JCM 18690 was the strain showing the highest ethanol production ability. This strain was able to utilize starch directly, and the ethanol concentration reached 9.21 g/L. We attribute the ethanol-producing ability of this strain to the high levels of glucoamylase activity, fermentation potential and ethanol stress tolerance. This study strongly suggests the possibility of starch-based ethanol production by consolidated bioprocessing using natural yeasts such as S. shehatae JCM 18690.
Collapse
Affiliation(s)
- Ayumi Tanimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Minako Kikukawa
- Research Division of Microbial Sciences, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shino Yamaguchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jun Shima
- Faculty of Law, Ryukoku University, 67 Fukakusatsukamoto-cho, Fushimi-ku, Kyoto 612-5662, Japan
| |
Collapse
|
21
|
Xu J, Wang X, Hu L, Xia J, Wu Z, Xu N, Dai B, Wu B. A novel ionic liquid-tolerant Fusarium oxysporum BN secreting ionic liquid-stable cellulase: consolidated bioprocessing of pretreated lignocellulose containing residual ionic liquid. BIORESOURCE TECHNOLOGY 2015; 181:18-25. [PMID: 25625459 DOI: 10.1016/j.biortech.2014.12.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
In this study, microbial communities from chemicals polluted microhabitats were cultured with the addition of imidazolium-based ionic liquid (IL) to enrich for IL-tolerant microbes. A strain of Fusarium oxysporum BN producing cellulase from these enrichments was capable of growing in 10% (w/v) 1-ethyl-3-methylimidazolium phosphinate, much higher than the normal IL concentrations in the lignocellulose regenerated from ILs. Cellulase secreted by the strain showed high resistance to ILs based on phosphate and sulfate radicals, evidencing of a high conformational stability in relevant media. Gratifyingly, F. oxysporum BN can directly convert IL-pretreated rice straw to bioethanol via consolidated bioprocessing (I-CBP). At optimum fermentation condition, a maximum ethanol yield of 0.125 g ethanol g(-1) of rice straw was finally obtained, corresponding to 64.2% of the theoretical yield.
Collapse
Affiliation(s)
- Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, 111 Changjiangxi Road, Huaian 223300, China
| | - Xinfeng Wang
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, 111 Changjiangxi Road, Huaian 223300, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China
| | - Lei Hu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, 111 Changjiangxi Road, Huaian 223300, China
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, 111 Changjiangxi Road, Huaian 223300, China
| | - Zhen Wu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, 111 Changjiangxi Road, Huaian 223300, China
| | - Ning Xu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, 111 Changjiangxi Road, Huaian 223300, China
| | - Benlin Dai
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, 111 Changjiangxi Road, Huaian 223300, China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, 30 Puzhunan Road, Nanjing 210000, China.
| |
Collapse
|