1
|
Chen D, Yu H, Li H, Li G, An T. Associations Between Aromatic Compounds and Hepatorenal Biomarkers Among Coking Workers: Insights from Mediation Analysis. TOXICS 2025; 13:298. [PMID: 40278614 PMCID: PMC12031308 DOI: 10.3390/toxics13040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025]
Abstract
Coking activities produce high concentrations of aromatic compounds (ACs) and related substances, which may have impacts on human health. However, the health effects of these substances on humans exposed to coking sites have not been fully elucidated. A total of 637 people were recruited to participate in this cross-sectional study. Using multiple linear regression and Bayesian kernel machine regression, we investigated the relationships between the urinary parent or metabolite forms of ACs (including metabolites of PAHs and their derivatives, nitrophenols, and chlorophenols) and hepatorenal biomarkers (HRBs), including total bilirubin, aspartate aminotransferase/alanine aminotransferase, serum uric acid, creatinine, albumin/globulin, and urea. The HRBs adopted in this study can effectively represent the status of human liver and kidney function. Mediation analysis was performed to investigate the possible mediating relationship between ACs and HRBs using oxidative stress markers as mediators. Our study indicated that ACs were significantly associated with increases in TBIL, AST/ALT, A/G, and UA, as well as a significant decrease in Cr. UREA showed no association with ACs among coking workers. The oxidative stress markers 8-hydroxy-2'-deoxyguanosine, 8-iso-prostaglandin-F2α, and 8-iso,15(R)-prostaglandinF2α mediated the induction of ACs on TBIL. Our results suggest that AC exposure in coking workers may be associated with adverse changes in hepatorenal biomarkers. This study highlights the significant impact of ACs from coking activities on workers' hepatorenal biomarkers, providing crucial evidence for health risk assessment and prevention in affected populations.
Collapse
Affiliation(s)
- Dongming Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; (D.C.); (H.L.); (G.L.); (T.A.)
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hang Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; (D.C.); (H.L.); (G.L.); (T.A.)
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hailing Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; (D.C.); (H.L.); (G.L.); (T.A.)
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; (D.C.); (H.L.); (G.L.); (T.A.)
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; (D.C.); (H.L.); (G.L.); (T.A.)
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Yessentayeva K, Reinhard A, Berzhanova R, Mukasheva T, Urich T, Mikolasch A. Bacterial crude oil and polyaromatic hydrocarbon degraders from Kazakh oil fields as barley growth support. Appl Microbiol Biotechnol 2024; 108:189. [PMID: 38305872 PMCID: PMC10837267 DOI: 10.1007/s00253-024-13010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Bacterial strains of the genera Arthrobacter, Bacillus, Dietzia, Kocuria, and Micrococcus were isolated from oil-contaminated soils of the Balgimbaev, Dossor, and Zaburunye oil fields in Kazakhstan. They were selected from 1376 isolated strains based on their unique ability to use crude oil and polyaromatic hydrocarbons (PAHs) as sole source of carbon and energy in growth experiments. The isolated strains degraded a wide range of aliphatic and aromatic components from crude oil to generate a total of 170 acid metabolites. Eight metabolites were detected during the degradation of anthracene and of phenanthrene, two of which led to the description of a new degradation pathway. The selected bacterial strains Arthrobacter bussei/agilis SBUG 2290, Bacillus atrophaeus SBUG 2291, Bacillus subtilis SBUG 2285, Dietzia kunjamensis SBUG 2289, Kocuria rosea SBUG 2287, Kocuria polaris SBUG 2288, and Micrococcus luteus SBUG 2286 promoted the growth of barley shoots and roots in oil-contaminated soil, demonstrating the enormous potential of isolatable and cultivable soil bacteria in soil remediation. KEY POINTS: • Special powerful bacterial strains as potential crude oil and PAH degraders. • Growth on crude oil or PAHs as sole source of carbon and energy. • Bacterial support of barley growth as resource for soil remediation.
Collapse
Affiliation(s)
- Kuralay Yessentayeva
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Anne Reinhard
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Ramza Berzhanova
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Togzhan Mukasheva
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave 71, 050040, Almaty, Kazakhstan
| | - Tim Urich
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Annett Mikolasch
- Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany.
| |
Collapse
|
3
|
Du J, Jia T, Liu J, Chai B. Relationships among protozoa, bacteria and fungi in polycyclic aromatic hydrocarbon-contaminated soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115904. [PMID: 38181605 DOI: 10.1016/j.ecoenv.2023.115904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Soil bacterial and fungal communities play key roles in the degradation of organic contaminants, and their structure and function are regulated by bottom-up and top-down factors. Microbial ecological effects of polycyclic aromatic hydrocarbons (PAHs) and trophic interactions among protozoa and bacteria/fungi in PAH-polluted soils have yet to be determined. We investigated the trophic interactions and structure of the microbiome in PAH-contaminated wasteland and farmland soils. The results indicated that the total concentration of the 16 PAHs (∑PAHs) was significantly correlated with the Shannon index, NMDS1 and the relative abundances of bacteria, fungi and protozoa (e.g., Pseudofungi) in the microbiome. Structural equation modelling and linear fitting demonstrated cascading relationships among PAHs, protozoan and bacterial/fungal communities in terms of abundance and diversity. Notably, individual PAHs were significantly correlated with microbe-grazing protozoa at the genus level, and the abundances of these organisms were significantly correlated with those of PAH-degrading bacteria and fungi. Bipartite networks and linear fitting indicated that protozoa indirectly modulate PAH degradation by regulating PAH-degrading bacterial and fungal communities. Therefore, protozoa might be involved in regulating the microbial degradation of PAHs by predation in contaminated soil.
Collapse
Affiliation(s)
- Jingqi Du
- Shanxi Key Laboratory of Ecological Restoration on the Loess Plateau, Institute of the Loess Plateau, Shanxi University, Taiyuan, China; Department of Life Sciences, Lyuliang University, Lyuliang, China
| | - Tong Jia
- Shanxi Key Laboratory of Ecological Restoration on the Loess Plateau, Institute of the Loess Plateau, Shanxi University, Taiyuan, China
| | - Jinxian Liu
- Shanxi Key Laboratory of Ecological Restoration on the Loess Plateau, Institute of the Loess Plateau, Shanxi University, Taiyuan, China
| | - Baofeng Chai
- Shanxi Key Laboratory of Ecological Restoration on the Loess Plateau, Institute of the Loess Plateau, Shanxi University, Taiyuan, China.
| |
Collapse
|
4
|
Chen Z, Hu H, Xu P, Tang H. Soil bioremediation by Pseudomonas brassicacearum MPDS and its enzyme involved in degrading PAHs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152522. [PMID: 34953839 DOI: 10.1016/j.scitotenv.2021.152522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) commonly coexist in contaminated sites, posing a significant threat to ecosystem. Strains that degrade a wide range of substrates play important roles in bioremediation of contaminated environment. In this study, we reveal that Pseudomonas brassicacearum MPDS was able to remove 31.1% naphthalene of 500 mg/kg from soil within 2 d, while its relative abundance decreased significantly on Day 20, indicating its applicable potential in soil remediation. In addition to naphthalene, dibenzofuran, dibenzothiophene, and fluorene as reported previously, strain MPDS is able to degrade carbazole, phenanthrene, pyrene, and 2-bromonaphthalene. Moreover, NahA from strain MPDS has multi-substrate catalytic capacities on naphthalene, dibenzofuran, dibenzothiophene, phenanthrene, and 2-bromonaphthalene into dihydrodiols, while converts fluorene and carbazole into monohydroxy compounds according to GC-MS analysis. This study provides further insights into the exploration of soil remediation by strain MPDS and the mining of enzymes involved in the degradation of PAHs.
Collapse
Affiliation(s)
- Zhengshi Chen
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
5
|
Yuan K, Li S, Zhong F. Treatment of coking wastewater in biofilm-based bioaugmentation process: Biofilm formation and microbial community analysis. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123117. [PMID: 32574876 DOI: 10.1016/j.jhazmat.2020.123117] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Coking wastewater (CWW) containing complicated organic compositions and strong toxicity cause potential hazards to natural water bodies as well as human health. The aim of this study was integrating newly isolated Comamonas sp. ZF-3, biofilm-based bioaugmentation and fluidized bed reactor into an anoxic filter-fluidized bed reactor (AF-FBR) system to treat actual CWW. The results showed that 93 % of chemical oxygen demand (COD) and 97 % of ammonia nitrogen (NH4+-N) removal efficiency were achieved with hydraulic retention time of 70 h. The main pollutants including phenolic compounds, heterocyclic compounds and polycyclic aromatic hydrocarbons could be removed via biofilm-based process in AF-FBR. The formation of carrier biofilm was consistent with the system performance as well as the biofilm community evolution, during which the microbial community was gradually dominated by some functional genus (e.g., Comamonas, Thiobacillus, Pseudomonas and Thauera), meanwhile, ammonium-oxidizing bacteria Nitrosomonas, nitrite-oxidizing bacteria Nitrospira and denitrifiers (e.g., Pseudomonas, Thiobacillus and Bacillus) coexisted in biofilm to form a microbial community for biological nitrogen removal. Such microbial community structure explained the observed simultaneous removal of COD and NH4+-N in the AF-FBR.
Collapse
Affiliation(s)
- Ke Yuan
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Suqin Li
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Fa Zhong
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Yuan K, Li S, Zhong F. Characterization of a newly isolated strain Comamonas sp. ZF-3 involved in typical organics degradation in coking wastewater. BIORESOURCE TECHNOLOGY 2020; 304:123035. [PMID: 32111454 DOI: 10.1016/j.biortech.2020.123035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
The aim of this study was to investigate the characteristic of a newly isolated strain Comamonas sp. ZF-3 involved in typical organics degradation in coking wastewater (CWW). The results showed that the isolated strain had efficient biodegradability of phenolic compounds and heterocyclic compounds in CWW, meanwhile, phenol and indole could be respectively used as sole carbon source for its growth, which demonstrated the bioaugmentation potential of the isolated strain in CWW treatment. During phenol and indole degradation processes, part of metabolites (e.g., 2,3-hexanedione, 2-ethyl-1-hexanol, nonanal, 2-propyl-1-heptanol, butanoic acid, butyl ester and butanoic acid, anhydride) remained in effluents, with NH4+-N concentration having no obvious reduction, which implied the biological treatment of CWW should be accomplished by complex microbial communities in many steps.
Collapse
Affiliation(s)
- Ke Yuan
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Suqin Li
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Fa Zhong
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
7
|
Screening and Immobilizing the Denitrifying Microbes in Sediment for Bioremediation. WATER 2019. [DOI: 10.3390/w11030614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, immobilized microbial beads were proposed as a solution for excessive nitrogen concentration of the river sediment. The predominant denitrifying microbes were screened from the river sediment. The optimized production of immobilized microbial beads and long-term nitrogen removal efficiency were investigated. 16S rRNA gene sequencing analysis showed that denitrifying bacteria such as Pseudomonas, Alcaligenes, Proteiniclasticum, Achromobacter and Methylobacillus were dominant microflora in the enriched microbial agent, which accounted for 94.43% of the total microbes. Pseudomonas belongs to Gammaproteo bacteria, accounting for 49.22% and functioned as the most predominant denitrifying bacteria. The material concentration of 8% polyvinyl alcohol, 0.5% sodium alginate and 12.5% microbial biomass were found to be the optimal immobilizing conditions. The NH4+-N and total nitrogen (TN) removal rates in sediment with dosing immobilized microbial beads were estimated as 68.1% and 67.8%, respectively, when compared to the dosing liquid microbial agent were 50.5% and 49.3%. Meanwhile, the NH4+-N and TN removal rates in overlying water went up from 53.14% to 59.69% and from 68.03% to 78.13%, respectively, by using immobilized microbial beads.
Collapse
|
8
|
Liu X, Wang W, Hu H, Lu X, Zhang L, Xu P, Tang H. 2-Hydroxy-4-(3′-oxo-3′H-benzofuran-2′-yliden)but-2-enoic acid biosynthesis from dibenzofuran using lateral dioxygenation in a Pseudomonas putida strain B6-2 (DSM 28064). BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0209-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
9
|
Jiang J, Liu Y, Liu Y, Hou S. A Novel ZnONPs/PVA-Functionalized Biomaterials for Bacterial Cells Immobilization and its Strengthening Effects on Quinoline Biodegradation. Curr Microbiol 2017; 75:316-322. [DOI: 10.1007/s00284-017-1382-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/23/2017] [Indexed: 11/29/2022]
|
10
|
Woźniak-Karczewska M, Čvančarová M, Chrzanowski Ł, Corvini PFX, Cichocka D. Bacterial isolates degrading ritalinic acid-human metabolite of neuro enhancer methylphenidate. N Biotechnol 2017; 43:30-36. [PMID: 28855122 DOI: 10.1016/j.nbt.2017.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/22/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
Abstract
The consumption of nootropic drugs has increased tremendously in the last decade, though the studies on their environmental fate are still scarce. Nootropics are bioactive compounds designed to alter human's physiology therefore the adverse effects towards wildlife can be expected. In order to understand their environmental impact, the knowledge on their transformation pathways is necessary. Methylphenidate belongs to the most prescribed neuro-enhancers and is among the most favored smart drugs used in non-medical situations. It is metabolized in human liver and excreted as ritalinic acid. Here, we showed for the first time that ritalinic acid can be biodegraded and used as a sole carbon and nitrogen source by various microbial strains originating from different environmental samples. Five axenic strains were isolated and identified as: Arthrobacter sp. strain MW1, MW2 and MW3, Phycicoccus sp. strain MW4 and Nocardioides sp. strain MW5. Our research provides the first insight into the metabolism of ritalinic acid and suggests that it may differ depending on the strain and growth conditions, especially on availability of nitrogen. The isolates obtained in this study can serve as model organisms in further studies on the catabolism of ritalinic acid and methylphenidate but potentially also other compounds with similar structures. Our findings have important implication for the sewage epidemiology. We demonstrated that ritalinic acid is subject to quick and efficient biodegradation thus its use as a stable biomarker should be reconsidered.
Collapse
Affiliation(s)
- Marta Woźniak-Karczewska
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland; Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, 4132 Muttenz, Switzerland
| | - Monika Čvančarová
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, 4132 Muttenz, Switzerland
| | - Łukasz Chrzanowski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Philippe F-X Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, 4132 Muttenz, Switzerland; School of the Environment, Nanjing University, Hankou Road 22, 210093 Nanjing, China
| | - Danuta Cichocka
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, 4132 Muttenz, Switzerland.
| |
Collapse
|
11
|
Xue L, Liu J, Li M, Tan L, Ji X, Shi S, Jiang B. Enhanced treatment of coking wastewater containing phenol, pyridine, and quinoline by integration of an E-Fenton process into biological treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9765-9775. [PMID: 28251539 DOI: 10.1007/s11356-017-8644-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
In this study, the pyridine and quinoline could be cometabolically degraded by phenol-cultivated Comamonas sp. strain JB(strain JB). The integration of magnetically immobilized cells of JB and an E-Fenton process into one entity has been designed to prepare a novel integration system to improve the treatment efficiency of phenol, pyridine, and quinoline in coking wastewater. The optimal pH for the integration system was 3.5. Degradation rates of phenol, pyridine, quinoline, and COD by the integration system were significantly exceeded the sum degradation rates of the single E-Fenton process and magnetically immobilized cells at the optimal voltage of 1 V. During the 6 cycles, the integration system still showed higher degradation rates than that by the single magnetically immobilized cells for all the compounds. These findings demonstrated that a synergistic effect existed between the biological treatment and the E-Fenton process, and the applied voltage in the integration system played the key roles in the synergistic effect, which not only electrogenerated H2O2 but also improved the activity of phenol hydroxylase and strain JB concentration.
Collapse
Affiliation(s)
- Lanlan Xue
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Jiaxin Liu
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Meidi Li
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Liang Tan
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Xiangyu Ji
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian, 116081, China.
| | - Bei Jiang
- School of Life Science, Liaoning Normal University, Dalian, 116081, China.
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| |
Collapse
|
12
|
Jiang B, Du C, Shi S, Tan L, Li M, Liu J, Xue L, Ji X. Enhanced treatment performance of coking wastewater and reduced membrane fouling using a novel EMBR. BIORESOURCE TECHNOLOGY 2017; 229:39-45. [PMID: 28107720 DOI: 10.1016/j.biortech.2016.12.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/30/2016] [Accepted: 12/31/2016] [Indexed: 06/06/2023]
Abstract
A novel EMBR (electric field applied in MBR) by placing stainless steel mesh cathode inside a flat membrane module and stainless steel mesh anode outside the module was built and operated to enhance the treatment performance of coking wastewater containing phenol, pyridine and quinoline and reduce the membrane fouling. The degradation rates of COD, phenol, pyridine and quinoline in EMBR with electric field (reactor A) were significantly higher than the sum of EMBR without electric field (reactor B) and only electro-catalytic degradation during the long-term treatment, confirming that a coupling effect was existed between biodegradation and electro-catalytic degradation process. Illumina sequencing data revealed that bacterial community was richer and more diverse in reactor A. Comamonas strain JB as the inoculums was the most dominant genus in each reactor and electric field applied in reactor A further improved the abundance of strain JB. The membrane fouling in reactor A was reduced.
Collapse
Affiliation(s)
- Bei Jiang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China
| | - Cong Du
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian 116081, China.
| | - Liang Tan
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Meidi Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Jiaxin Liu
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Lanlan Xue
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Xiangyu Ji
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
13
|
Oberoi AS, Philip L. Variation in toxicity during the biodegradation of various heterocyclic and homocyclic aromatic hydrocarbons in single and multi-substrate systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:337-346. [PMID: 27770649 DOI: 10.1016/j.ecoenv.2016.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
In the present study, an attempt was made to understand the variation in the toxicity during the biodegradation of aromatic hydrocarbons in single and multi-substrate system. The bacterial bioassay based on the inhibition of dehydrogenase enzyme activity of two different bacterial sp. E.coli and Pseudomonas fluorescens was used for toxicity assessment. Amongst the chosen pollutants, the highest acute toxicity was observed for benzothiophene followed by benzofuran having EC50 value of 16.60mg/L and 19.30mg/L respectively. Maximum residual toxicity of 30.8% was observed at the end during the degradation of benzothiophene. Due to the accumulation of transitory metabolites in both single and multisubstrate systems, reduction in toxicity was not proportional to the decrease in pollutant concentration. In multi-substrate system involving mixture of heterocyclic hydrocarbons, maximum residual toxicity of 39.5% was observed at the end of biodegradation. Enhanced degradation of benzofuran, benzothiophene and their metabolic intermediates were observed in the presence of naphthalene resulting in significant reduction in residual toxicity. 2 (1H) - quinolinone, an intermediate metabolite of quinoline was observed having significant eco-toxicity amongst all other intermediates investigated.
Collapse
Affiliation(s)
- Akashdeep Singh Oberoi
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, IIT Madras, Chennai 600 036, India
| | - Ligy Philip
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, IIT Madras, Chennai 600 036, India.
| |
Collapse
|
14
|
Jiang B, Tan L, Ning S, Shi S. A novel integration system of magnetically immobilized cells and a pair of graphite plate-stainless iron mesh electrodes for the bioremediation of coking wastewater. BIORESOURCE TECHNOLOGY 2016; 216:684-690. [PMID: 27289060 DOI: 10.1016/j.biortech.2016.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Magnetically immobilized cells of Comamonas sp. JB coupling with electrode reaction was developed to enhance the treatment efficiency of coking wastewater containing phenol, carbazole (CA), dibenzofuran (DBF), and dibenzothiophene (DBT). The pair of graphite plate-stainless iron mesh electrodes was chosen as the most suitable electrodes. Magnetically immobilized cells coupling with graphite plate-stainless iron mesh electrodes (coupling system) exhibited high degradation activity for all the compounds, which were significantly higher than the sum by single magnetically immobilized cells and electrode reaction at the optimal voltage. Recycling experiments demonstrated that the degradation activity of coupling system increased gradually during eight recycles, indicating that there was a coupling effect between the biodegradation and electrode reaction. Phenol hydroxylase and qPCR assays confirmed that appropriate electrical stimulation could improve phenol hydroxylase activity and promote cells growth. Toxicity assessment suggested the treatment of the coking wastewater by coupling system led to less toxicity than untreated wastewater.
Collapse
Affiliation(s)
- Bei Jiang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China
| | - Liang Tan
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Shuxiang Ning
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
15
|
State of the art of biological processes for coal gasification wastewater treatment. Biotechnol Adv 2016; 34:1064-1072. [DOI: 10.1016/j.biotechadv.2016.06.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/19/2016] [Accepted: 06/26/2016] [Indexed: 11/17/2022]
|
16
|
Identification of a new operon involved in desulfurization of dibenzothiophenes using a metagenomic study and cloning and functional analysis of the genes. Enzyme Microb Technol 2016; 87-88:24-8. [DOI: 10.1016/j.enzmictec.2016.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 02/06/2023]
|
17
|
Oberoi AS, Philip L. Biological Degradation of Heterocyclic Aromatic Hydrocarbons with Naphthalene-Enriched Consortium: Substrate Interaction Studies and Fate of Metabolites. Appl Biochem Biotechnol 2016; 180:400-425. [DOI: 10.1007/s12010-016-2106-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
|
18
|
Zhang F, Zhang Y, Wang K, Liu G, Yang M, Zhao Z, Li S, Cai J, Cao J. Protective effect of diallyl trisulfide against naphthalene-induced oxidative stress and inflammatory damage in mice. Int J Immunopathol Pharmacol 2016; 29:205-16. [PMID: 26813860 DOI: 10.1177/0394632015627160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to investigate the possible protective effects of diallyl trisulfide (DATS) against naphthalene-induced oxidative and inflammatory damage in the livers and lungs of mice. Elevated serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels showed significant hepatic damage after the challenge with 100 mg/kg naphthalene. Hepatic malondialdehyde (MDA) contents and the activity of myeloperoxidase (MPO) increased significantly, accompanying a decrease in the hepatic activity of total superoxide dismutase (SOD) and glutathione (GSH) levels after the naphthalene damage. In addition, the serum levels of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 8 (IL-8) increased significantly in the groups damaged with naphthalene. The main parameters related to oxidative stress and inflammatory responses in the lungs, including the NO, MPO, and GSH contents, were determined, and the histopathological and immunohistochemical changes in the lung and liver tissues were also observed. In the DATS-treated groups, all of the oxidative and inflammatory damage in the serum, liver, and lung tissues were significantly prevented.
Collapse
Affiliation(s)
- Fang Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Yongchun Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan, PR China School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, Shandong, PR China
| | - Kaiming Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Guangpu Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Min Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, Jinan, PR China Jiangsu Shengshi Kangde Biotech Corporation, Lianyungang, Jiangsu, China
| | - Shanzhong Li
- Jiangsu Shengshi Kangde Biotech Corporation, Lianyungang, Jiangsu, China
| | - Jianhua Cai
- Jiangsu Shengshi Kangde Biotech Corporation, Lianyungang, Jiangsu, China
| | - Jimin Cao
- Jiangsu Shengshi Kangde Biotech Corporation, Lianyungang, Jiangsu, China
| |
Collapse
|
19
|
Shi S, Qu Y, Zhou H, Ma Q, Ma F. Characterization of a novel cometabolic degradation carbazole pathway by a phenol-cultivated Arthrobacter sp. W1. BIORESOURCE TECHNOLOGY 2015; 193:281-287. [PMID: 26142994 DOI: 10.1016/j.biortech.2015.06.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
Arthrobacter sp. W1 was used to characterize the pathways involved in cometabolic degradation of carbazole (CA) with phenol as the primary substrate. To clarify the upper pathway of cometabolic degradation CA, Escherichia coli strain BL21 expressing phenol hydroxylase from strain W1 (PHIND) was investigated to degrade CA. Firstly, CA was initially monohydroxylated at C-2 and C-4 positions to produce 2- and 4-hydroxycarbazole, followed by successively hydroxylated to the corresponding 1,2- and 3,4-dihydroxycarbazole, of which 3,4-dihydroxycarbazole was unequivocally identified for the first time. To characterize the downstream cometabolic degradation CA pathway, purified 3,4-dihydroxycarbazole was used as the substrate for phenol-grown W1, and a series of novel indole derivatives were identified. These results suggested that a novel pathway of CA catabolism was employed by strain W1 via a successive hydroxylation and meta-cleavage pathway. These findings provide new insights into the cometabolic degradation CA process and have potential applications in biotechnology and bioremediation.
Collapse
Affiliation(s)
- Shengnan Shi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiao Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
20
|
Shi S, Qu Y, Ma Q, Zhang X, Zhou J, Ma F. Performance and microbial community dynamics in bioaugmented aerated filter reactor treating with coking wastewater. BIORESOURCE TECHNOLOGY 2015; 190:159-166. [PMID: 25935396 DOI: 10.1016/j.biortech.2015.04.075] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
In this study, zeolite-biological aerated filters (Z-BAFs) bioaugmented by free and magnetically immobilized cells of Arthrobacter sp. W1 were designed to treat coking wastewater containing high concentrations of phenol and naphthalene along with carbazole (CA), dibenzofuran (DBF), and dibenzothiophene (DBT). All treatments were carried out for a period of 100days and the data indicated that bioaugmented Z-BAFs with magnetically immobilized cells was most efficient for treating coking wastewaters. Illumina high-throughput sequencing was used to reveal the microbial community structures of Z-BAFs. Both bioaugmentation treatments could accelerate the shift of the bacterial community structures. The introduced strain W1 remained dominant in the bioaugmented Z-BAFs with magnetically immobilized cells, indicating both strain W1 and the indigenous degrading bacteria played the most significant role in the treatment. Overall, bioaugmented Z-BAF with magnetically immobilized cells can be used to efficiently degrade phenol, naphthalene, CA, DBF, and DBT in coking wastewater.
Collapse
Affiliation(s)
- Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiao Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - XuWang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
21
|
Jiang B, Zhou Z, Dong Y, Tao W, Wang B, Jiang J, Guan X. Biodegradation of Benzene, Toluene, Ethylbenzene, and o-, m-, and p-Xylenes by the Newly Isolated Bacterium Comamonas sp. JB. Appl Biochem Biotechnol 2015; 176:1700-8. [DOI: 10.1007/s12010-015-1671-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 05/17/2015] [Indexed: 10/23/2022]
|
22
|
Genome Sequence of a Versatile Aromatic Hydrocarbon-Degrading Bacterium, Arthrobacter sp. W1. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00387-15. [PMID: 25908151 PMCID: PMC4408352 DOI: 10.1128/genomea.00387-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Arthrobacter sp. W1 is a versatile aromatic-degrading strain which can directly or cometabolically degrade various organic pollutants, such as phenol, naphthalene, carbazole, dibenzofuran, and dibenzothiophene. Here, we present a 3.8-Mb draft genome sequence of strain W1, which may provide comprehensive genetic information for the application in environmental pollution remediation.
Collapse
|
23
|
Jiang B, Zhou Z, Dong Y, Wang B, Jiang J, Guan X, Gao S, Yang A, Chen Z, Sun H. Bioremediation of Petrochemical Wastewater Containing BTEX Compounds by a New Immobilized Bacterium Comamonas sp. JB in Magnetic Gellan Gum. Appl Biochem Biotechnol 2015; 176:572-81. [DOI: 10.1007/s12010-015-1596-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/20/2015] [Indexed: 11/28/2022]
|
24
|
Shi S, Qu Y, Ma F, Zhou J. Bioremediation of coking wastewater containing carbazole, dibenzofuran and dibenzothiophene by immobilized naphthalene-cultivated Arthrobacter sp. W1 in magnetic gellan gum. BIORESOURCE TECHNOLOGY 2014; 166:79-86. [PMID: 24905045 DOI: 10.1016/j.biortech.2014.05.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/10/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
In this study, the cometabolic degradation of carbazole (CA), dibenzofuran (DBF), and dibenzothiophene (DBT) by immobilized Arthrobacter sp. W1 cells pregrown with naphthalene was investigated. Four kinds of polymers were evaluated as immobilization supports for strain W1. After comparison with agar, alginate, and κ-carrageenan, gellan gum was selected as the optimal immobilization support. Furthermore, magnetic Fe₃O₄ nanoparticle was selected as most suitable nanoparticle for immobilization and the optimal concentration was 80 mg/L. The relationship between specific degradation rate and the initial concentration of CA, DBF and DBT was described well by Michaelis-Menten kinetics. The recycling experiments demonstrated that the magnetically immobilized cells coupling with activation zeolite showed highly bioremediation activity on the coking wastewater containing high concentration of phenol, naphthalene, CA, DBF and DBT during seven recycles. Toxicity assessment indicated the treatment of the coking wastewater by magnetically immobilized cells with activation zeolite led to less toxicity than untreated wastewater.
Collapse
Affiliation(s)
- Shengnan Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
25
|
Fu H, Wei Y, Zou Y, Li M, Wang F, Chen J, Zhang L, Liu Z, Ding L. Research Progress on the <i>Actinomyces arthrobacter</i>. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aim.2014.412081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|