1
|
Shi ZQ, Liu YS, Xiong Q, Cai WW, Ying GG. Occurrence, toxicity and transformation of six typical benzotriazoles in the environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:407-421. [PMID: 30677686 DOI: 10.1016/j.scitotenv.2019.01.138] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 01/12/2019] [Indexed: 05/28/2023]
Abstract
Benzotriazoles (BTs) are a group of heterocyclic compounds which have been widely applied in industrial activities and domestic life mainly as corrosive inhibitors. BTs have been ubiquitously detected in receiving environments and cause potential toxicity to non-target organisms. This paper reviews the occurrence and fate of six selected benzotriazole compounds in different environmental and biological matrices, as well as the transformation and toxicity. Due to their high hydrophilicity and insufficient removal in wastewater treatment plants (WWTPs), these compounds were widely detected in aquatic environments with concentrations mainly from tens ng/L to tens μg/L. Considerable residual levels of BTs in plant, fish, air, tap water and human urine have implied the potential risks to various organsims. The reported acute toxicity of BTs are generally low (EC50 in mg/L level). Some observed sublethal effects including endocrine disrupting effects, hepatotoxicity and neurotoxicity, as well as the ability to promote the development of endometrial carcinoma still raise a concern. BTs are found often more recalcitrant to biodegradation compared to photolysis and ozonation. Environmental factors including pH, temperature, irradiation wavelength, redox condition as well as components of matrix are proved crucial to the removal of BTs. Further studies are needed to explore the precise environment fate and toxicity mechanism of BTs, and develop advanced treatment technologies to reduce the potential ecological risks of BTs.
Collapse
Affiliation(s)
- Zhou-Qi Shi
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Sheng Liu
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Qian Xiong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Wen Cai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Guo Ying
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
2
|
Miran W, Jang J, Nawaz M, Shahzad A, Lee DS. Biodegradation of the sulfonamide antibiotic sulfamethoxazole by sulfamethoxazole acclimatized cultures in microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1058-1065. [PMID: 29426125 DOI: 10.1016/j.scitotenv.2018.01.326] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/12/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Microbial fuel cells (MFCs) are known for their ability to enhance the removal rate of toxins while generating power. This research presents a performance assessment of MFCs for power generation and sulfamethoxazole (SMX) degradation using SMX acclimatized cultures. Experiments were performed in MFC batch mode using different SMX concentrations in synthetic wastewater. The experimental results showed that voltage generation was >400mV up to the SMX concentration of 0.20mM (at 400Ω external resistance). Control experiments supported the inference that biodegradation was the main process for SMX removal compared to sorption by SMX acclimatized cultures and that the process results in efficient removal of SMX in MFC mode. The specific removal rates of SMX in MFC with SMX acclimatized sludge were 0.67, 1.37, 3.43, 7.32, and 13.36μm/h at initial SMX concentrations of 0.04, 0.08, 0.20, 0.39, and 0.79mM, respectively. Moreover, the MFC was able to remove >90% of the TOC from the wastewater up to SMX concentrations of 0.08mM. However, this TOC removal produces negative effects at higher SMX concentrations due to toxic intermediates. Microbial community analysis revealed large changes in bacterial communities at the phylum, class, and genus levels after SMX acclimatization and MFC operation. Thauera, a well-known aromatic-degrading bacteria, was the most dominant genus present in post-acclimatized conditions. In summary, this study showed that acclimatized sludge can play an important role in the biodegradation of SMX in MFCs.
Collapse
Affiliation(s)
- Waheed Miran
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jiseon Jang
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Mohsin Nawaz
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Asif Shahzad
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
3
|
Herzog B, Dötsch A, Lemmer H, Horn H, Müller E. Profiling 5-tolyltriazole biodegrading sludge communities using next-generation sequencing and denaturing gradient gel electrophoresis. Syst Appl Microbiol 2017; 40:508-515. [DOI: 10.1016/j.syapm.2017.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/04/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
4
|
Mazioti AA, Stasinakis AS, Psoma AK, Thomaidis NS, Andersen HR. Hybrid Moving Bed Biofilm Reactor for the biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:299-310. [PMID: 27396311 DOI: 10.1016/j.jhazmat.2016.06.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 06/06/2023]
Abstract
A laboratory scale Hybrid Moving Bed Biofilm Reactor (HMBBR) was used to study the removal of five benzotriazoles and one benzothiazole from municipal wastewater. The HMBBR system consisted of two serially connected fully aerated bioreactors that contained activated sludge (AS) and K3-biocarriers and a settling tank. The average removal of target compounds ranged between 41% (4-methyl-1H-benzotriazole; 4TTR) and 88% (2-hydroxybenzothiazole; OHBTH). Except for 4TTR, degradation mainly occurred in the first bioreactor. Calculation of biodegradation constants in batch experiments and application of a model for describing micropollutants removal in the examined system showed that AS is mainly involved in biodegradation of OHBTH, 1H-benzotriazole (BTR) and xylytriazole (XTR), carriers contribute significantly on 4TTR biodegradation, while both types of biomass participate on elimination of 5-chlorobenzotriazole (CBTR) and 5-methyl-1H-benzotriazole (5TTR). Comparison of the HMBBR system with MBBR or AS systems from literature showed that the HMBBR system was more efficient for the biodegradation of the investigated chemicals. Biotransformation products of target compounds were identified using ultra high-performance liquid chromatography, coupled with a quadrupole-time-of-flight high-resolution mass spectrometer (UHPLC-QToF-MS). Twenty two biotransformation products were tentatively identified, while retention time denoted the formation of more polar transformation products than the parent compounds.
Collapse
Affiliation(s)
| | - Athanasios S Stasinakis
- Department of Environment, University of the Aegean, 81100 Mytilene, Greece; Department of Environmental Engineering, Technical University of Denmark, Miljøvej, B 113, 2800 Kgs. Lyngby, Denmark.
| | - Aikaterini K Psoma
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, B 113, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Mazioti AA, Stasinakis AS, Pantazi Y, Andersen HR. Biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater by activated sludge and moving bed biofilm reactor systems. BIORESOURCE TECHNOLOGY 2015; 192:627-635. [PMID: 26093257 DOI: 10.1016/j.biortech.2015.06.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/05/2015] [Accepted: 06/07/2015] [Indexed: 06/04/2023]
Abstract
Two laboratory scale fully aerated continuous flow wastewater treatment systems were used to compare the removal of five benzotriazoles and one benzothiazole by suspended and attached growth biomass. The activated sludge system was operated under low organic loading conditions. The moving bed biofilm reactor (MBBR) system consisted of two serially connected reactors filled with K3-biocarriers. It was either operated under low or high organic loading conditions. Target compounds were removed partially and with different rates in tested systems. For MBBR, increased loading resulted in significantly lower biodegradation for 4 out of 6 examined compounds. Calculation of specific removal rates (normalized to biomass) revealed that attached biomass had higher biodegradation potential for target compounds comparing to suspended biomass. Clear differences in the biodegradation ability of attached biomass grown in different bioreactors of MBBR systems were also observed. Batch experiments showed that micropollutants biodegradation by both types of biomass is co-metabolic.
Collapse
Affiliation(s)
| | - Athanasios S Stasinakis
- Department of Environment, University of the Aegean, Mytilene, Greece; Department of Environmental Engineering, Technical University of Denmark, Miljøvej, B 113, 2800 Kgs. Lyngby, Denmark.
| | - Ypapanti Pantazi
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, B 113, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Pimda W, Bunnag S. Growth performance and biodegradation of waste motor oil by Nostoc piscinale strain TISTR 8401 in the presence of heavy metals and nutrients as co-contaminants. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2015.02.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Biodegradation of waste motor oil by Nostoc hatei strain TISTR 8405 in water containing heavy metals and nutrients as co-contaminants. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2015.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Mazioti AA, Stasinakis AS, Gatidou G, Thomaidis NS, Andersen HR. Sorption and biodegradation of selected benzotriazoles and hydroxybenzothiazole in activated sludge and estimation of their fate during wastewater treatment. CHEMOSPHERE 2015; 131:117-123. [PMID: 25828067 DOI: 10.1016/j.chemosphere.2015.03.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 06/04/2023]
Abstract
Biodegradation of benzotriazole (BTR), 5-chlorobenzotriazole (CBTR), xylytriazole (XTR), 4-methyl-1H-benzotriazole (4TTR), 5-methy-1H-lbenzotriazole (5TTR) and 2-hydroxybenzothiazole (OHBTH) was studied in activated sludge batch experiments under aerobic and anoxic conditions, presence of organic substrate and different sludge residence times (SRTs). Their sludge-water distribution coefficients were also calculated in sorption experiments and ranged between 87 and 220 L kg(-1). Significant biodegradation of BTR, CBTR, XTR and OHBTH was observed in all biotic experiments. Half-life values ranged between 23 and 45 h (BTR), 18 and 47 h (CBTR), 14 and 26 h (XTR), 6.5 and 24 h (OHBTH). The addition of substrate did not suppress biodegradation kinetics; whereas in some cases accelerated biodegradation of microcontaminants. Except for CBTR, no effect of SRT on biodegradation constants was observed. Prediction of micropollutants removal in Sewage Treatment Plants (STPs) indicated that they will be partially removed, mainly due to aerobic biodegradation. Higher removal is expected at STPs operating at higher SRT and higher suspended solids concentrations.
Collapse
Affiliation(s)
| | | | - Georgia Gatidou
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - Nikolaos S Thomaidis
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, B 113, 2800 Kgs., Lyngby, Denmark
| |
Collapse
|