1
|
Oehlenschläger K, Hengsbach JN, Volkmar M, Ulber R. From pre-culture to solvent: current trends in Clostridium acetobutylicum cultivation. Appl Microbiol Biotechnol 2025; 109:47. [PMID: 39964448 PMCID: PMC11835921 DOI: 10.1007/s00253-025-13428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/21/2025]
Abstract
The biological production of butanol via ABE (acetone-butanol-ethanol) fermentation using Clostridium acetobutylicum has a storied history of over 100 years, initially driven by the demand for synthetic rubber during World War I and later for industrial applications. Despite its decline due to the rise of petrochemical alternatives, renewed interest has emerged due to the global shift towards sustainable energy sources and rising oil prices. This review highlights the challenges in the cultivation process of C. acetobutylicum, such as strain degeneration, solvent toxicity, and substrate costs, and presents recent advancements aimed at overcoming these issues. Detailed documentation of the entire cultivation process including cell conservation, pre-culture, and main culture is seen as a fundamental step to facilitate further progress in research. Key strategies to improve production efficiency were identified as controlling pH to facilitate the metabolic shift from acidogenesis to solventogenesis, employing in situ product removal techniques, and advancing metabolic engineering for improved solvent tolerance of C. acetobutylicum. Furthermore, the use of renewable resources, particularly lignocellulosic biomass, positions ABE fermentation as a viable solution for sustainable solvent production. By focusing on innovative research avenues, including co-cultivation and bioelectrochemical systems, the potential for C. acetobutylicum to contribute significantly to a bio-based economy can be realized. KEY POINTS: • Historical significance and revival of ABE fermentation with Clostridium acetobutylicum • Current challenges and innovative solutions in cultivating C. acetobutylicum • New avenues for enhancing productivity and sustainability.
Collapse
Affiliation(s)
- Katharina Oehlenschläger
- Department of Mechanical and Process Engineering, Institute of Bioprocess Engineering, RPTU Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| | - Jan-Niklas Hengsbach
- Department of Mechanical and Process Engineering, Institute of Bioprocess Engineering, RPTU Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| | - Marianne Volkmar
- Department of Mechanical and Process Engineering, Institute of Bioprocess Engineering, RPTU Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| | - Roland Ulber
- Department of Mechanical and Process Engineering, Institute of Bioprocess Engineering, RPTU Kaiserslautern-Landau, 67663, Kaiserslautern, Germany.
| |
Collapse
|
2
|
Rudnyckyj S, Kucheryavskiy S, Chaturvedi T, Thomsen MH. Organic waste and beechwood cellulose blend saccharification and validation of hydrolysates by fermentation. Appl Microbiol Biotechnol 2024; 108:517. [PMID: 39540966 PMCID: PMC11564323 DOI: 10.1007/s00253-024-13349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
This study demonstrates the sustainable advancement of fermentation media by blending the organic fraction of municipal solid waste (OFMSW) with organosolv beechwood cellulose. Investigations examined the effects of enzyme dosages and OFMSW integration into organosolv beechwood cellulose on sugar yield. The findings indicate that OFMSW inclusion and Cellic® CTec3 dosage significantly influence hydrolysis across two different batches of beechwood cellulose. Experimental data showed that OFMSW inclusion levels of 35% and 45% (w/w) produced sugar levels comparable to pure beechwood cellulose, achieving 58% to 68% (w/w) saccharification with sugar concentrations of 44 to 46 g/L. This highlights OFMSW's potential as a buffer substitute during the enzymatic conversion of organosolv cellulose. The resulting sugar-rich hydrolysates, derived from OFMSW-cellulose blends and pure cellulose, were evaluated for ethanol and cell biomass production using Saccharomyces cerevisiae and Mucor indicus, yielding 30 g of ethanol/L hydrolysate. Furthermore, OFMSW inclusion in beechwood cellulose proved to be an excellent alternative to synthetic nitrogen agents for S. cerevisiae cell production, reaching 12.2 g of biomass/L and surpassing the biomass concentration from cultivation on cellulose hydrolysate with nitrogen supplementation by threefold. However, M. indicus did not grow in the OFMSW-cellulose blend, suggesting that the inhibitory compounds of OFMSW may be a bottleneck in the proposed process. The present study demonstrates the benefits of incorporating OFMSW into cellulose material, as it enhances both cost-effectiveness and sustainability. This is attributed to the natural buffering properties and nitrogen content of OFMSW, which reduces the need for synthetic agents in fermentation-based lignocellulose biorefineries. KEY POINTS: • OFMSW inclusion significantly influences beechwood cellulose saccharification. • OFMSW could be an excellent alternative for synthetic agents in biorefinery. • S. cerevisiae achieved higher biomass growth on OFMSW/cellulose mix compared to YPD.
Collapse
Affiliation(s)
- Stanislav Rudnyckyj
- Department of Energy, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark.
| | - Sergey Kucheryavskiy
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Tanmay Chaturvedi
- Department of Energy, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | | |
Collapse
|
3
|
Elkasaby T, Hanh DD, Kahar P, Kawaguchi H, Sazuka T, Kondo A, Ogino C. Utilization of sweet sorghum juice as a carbon source for enhancement of itaconic acid production in engineered Corynebacterium glutamicum. Enzyme Microb Technol 2024; 172:110345. [PMID: 37857081 DOI: 10.1016/j.enzmictec.2023.110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Itaconic acid is a promising biochemical building block that can be used in polymer synthesis. Itaconic acid is currently produced in industry by the natural producer fungus Aspergillus terreus using glucose as a main carbon source. Most research for itaconic acid production using lignocellulosic-based carbon sources was carried out by A. terreus. Engineered Corynebacterium glutamicum strain which can grow in presence of fermentation inhibitors without effect on growth, was used for production of itaconic acid using sweet sorghum juice and bagasse sugar lysate (BSL). BSL contains many inhibitors unlike sorghum juice. C. glutamicum could grow in the media containing both types of lignocellulose-based carbon sources without showing any growth inhibition, however, sorghum juice was better in itaconic acid production than BSL. Different constructed strains of C. glutamicum were used for itaconic acid production, however, C. glutamicum ATCC 13032 pCH-Tad1optAdi1opt strain expressing Adi1/Tad1 genes (trans-pathway) from Ustilago maydis proved to be better in itaconic acid production giving final titer of 8.4 and 4.02 g/L using sweet sorghum juice and BSL as the sole carbon sources by fed-batch fermentation. Our study is the first for production of itaconic acid using sweet sorghum juice and BSL. The present study also proved that C. glutamicum can be used for enhancing itaconic acid production using lignocellulosic-based carbon sources.
Collapse
Affiliation(s)
- Taghreed Elkasaby
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Botany Department, Faculty of Science, Mansoura University, 60 Elgomhoria st, Mansoura 35516, Egypt
| | - Dao Duy Hanh
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Prihardi Kahar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Takashi Sazuka
- Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
4
|
Corbu VM, Gheorghe-Barbu I, Dumbravă AȘ, Vrâncianu CO, Șesan TE. Current Insights in Fungal Importance-A Comprehensive Review. Microorganisms 2023; 11:1384. [PMID: 37374886 DOI: 10.3390/microorganisms11061384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Besides plants and animals, the Fungi kingdom describes several species characterized by various forms and applications. They can be found in all habitats and play an essential role in the excellent functioning of the ecosystem, for example, as decomposers of plant material for the cycling of carbon and nutrients or as symbionts of plants. Furthermore, fungi have been used in many sectors for centuries, from producing food, beverages, and medications. Recently, they have gained significant recognition for protecting the environment, agriculture, and several industrial applications. The current article intends to review the beneficial roles of fungi used for a vast range of applications, such as the production of several enzymes and pigments, applications regarding food and pharmaceutical industries, the environment, and research domains, as well as the negative impacts of fungi (secondary metabolites production, etiological agents of diseases in plants, animals, and humans, as well as deteriogenic agents).
Collapse
Affiliation(s)
- Viorica Maria Corbu
- Genetics Department, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Andreea Ștefania Dumbravă
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Corneliu Ovidiu Vrâncianu
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Tatiana Eugenia Șesan
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Academy of Agricultural Sciences and Forestry, 61 Bd. Mărăşti, District 1, 011464 Bucharest, Romania
| |
Collapse
|
5
|
Hanh DD, Elkasaby T, Kawaguchi H, Tsuge Y, Ogino C, Kondo A. Enhanced production of itaconic acid from enzymatic hydrolysate of lignocellulosic biomass by recombinant Corynebacteriumglutamicum. J Biosci Bioeng 2023:S1389-1723(23)00083-X. [PMID: 37120372 DOI: 10.1016/j.jbiosc.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 05/01/2023]
Abstract
Itaconic acid (IA) is a value-added chemical currently produced by Aspergillus terreus from edible glucose and starch but not from inedible lignocellulosic biomass owing to the high sensitivity to fermentation inhibitors present in the hydrolysate of lignocellulosic biomass. To produce IA from lignocellulosic biomass, a gram-positive bacterium, Corynebacterium glutamicum, with a high tolerance to fermentation inhibitors was metabolically engineered to express a fusion protein composed of cis-aconitate decarboxylase from A. terreus responsible for IA formation from cis-aconitate and a maltose-binding protein (malE) from Escherichia coli. The codon-optimized cadA_malE gene was expressed in C. glutamicum ATCC 13032, and the resulting recombinant strain produced IA from glucose. IA concentration increased 4.7-fold by the deletion of the ldh gene encoding lactate dehydrogenase. With the Δldh strain HKC2029, an 18-fold higher IA production was observed from enzymatic hydrolysate of kraft pulp as a model lignocellulosic biomass than from glucose (6.15 and 0.34 g/L, respectively). The enzymatic hydrolysate of kraft pulp contained various potential fermentation inhibitors involved in furan aldehydes, benzaldehydes, benzoic acids, cinnamic acid derivatives, and aliphatic acid. Whereas cinnamic acid derivatives severely inhibited IA production, furan aldehydes, benzoic acids, and aliphatic acid improved IA production at low concentrations. The present study suggests that lignocellulosic hydrolysate contains various potential fermentation inhibitors; however, some of them can serve as enhancers for microbial fermentation likely due to the changing of redox balance in the cell.
Collapse
Affiliation(s)
- Dao Duy Hanh
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Taghreed Elkasaby
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Botany Department, Faculty of Science, Mansoura University, 60 Elgomhoria St, Mansoura 35516, Egypt
| | - Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yota Tsuge
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
6
|
Cellulosic Fiber Waste Feedstock for Bioethanol Production via Bioreactor-Dependent Fermentation. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The bioconversion of environmental wastes into energy is gaining much interest in most developing and developed countries. The current study is concerned with the proper exploitation of some industrial wastes. Cellulosic fiber waste was selected as a raw material for producing bioethanol as an alternative energy source. A combination of physical, chemical, and enzymatic hydrolysis treatments was applied to maximize the concentration of glucose that could be fermented with yeast into bioethanol. The results showed that the maximum production of 13.9 mg/mL of glucose was achieved when 5% cellulosic fiber waste was treated with 40% HCl, autoclaved, and followed with enzymatic hydrolysis. Using SEM and FTIR analysis, the instrumental characterization of the waste fiber treatment confirmed the effectiveness of the degradation by turning the long threads of the fibers into small pieces, in addition to the appearance of new functional groups and peak shifting. A potent yeast strain isolated from rotten grapes was identified as Starmerella bacillaris STDF-G4 (accession number OP872748), which was used to ferment the obtained glucose units into bioethanol under optimized conditions. The maximum production of 3.16 mg/mL of bioethanol was recorded when 7% of the yeast strain was anaerobically incubated at 30 °C in a broth culture with the pH adjusted to 5. The optimized conditions were scaled up from flasks to a fermentation bioreactor to maximize the bioethanol concentration. The obtained data showed the ability of the yeast strain to produce 4.13 mg/mL of bioethanol after the first 6 h of incubation and double the amount after 36 h of incubation to reach 8.6 mg/mL, indicating the efficiency of the bioreactor in reducing the time and significantly increasing the product.
Collapse
|
7
|
Recent Advances on the Production of Itaconic Acid via the Fermentation and Metabolic Engineering. FERMENTATION 2023. [DOI: 10.3390/fermentation9010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Itaconic acid (ITA) is one of the top 12 platform chemicals. The global ITA market is expanding due to the rising demand for bio-based unsaturated polyester resin and its non-toxic qualities. Although bioconversion using microbes is the main approach in the current industrial production of ITA, ecological production of bio-based ITA faces several issues due to: low production efficiency, the difficulty to employ inexpensive raw materials, and high manufacturing costs. As metabolic engineering advances, the engineering of microorganisms offers a novel strategy for the promotion of ITA bio-production. In this review, the most recent developments in the production of ITA through fermentation and metabolic engineering are compiled from a variety of perspectives, including the identification of the ITA synthesis pathway, the metabolic engineering of natural ITA producers, the design and construction of the ITA synthesis pathway in model chassis, and the creation, as well as application, of new metabolic engineering strategies in ITA production. The challenges encountered in the bio-production of ITA in microbial cell factories are discussed, and some suggestions for future study are also proposed, which it is hoped offers insightful views to promote the cost-efficient and sustainable industrial production of ITA.
Collapse
|
8
|
Saha BC, Kennedy GJ, Bowman MJ, Qureshi N, Nichols NN. Itaconic acid production by Aspergillus terreus from glucose up to pilot scale and from corn stover and wheat straw hydrolysates using new manganese tolerant medium. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Nascimento MF, Marques N, Correia J, Faria NT, Mira NP, Ferreira FC. Integrated perspective on microbe-based production of itaconic acid: from metabolic and strain engineering to upstream and downstream strategies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Kawaguchi H, Takada K, Elkasaby T, Pangestu R, Toyoshima M, Kahar P, Ogino C, Kaneko T, Kondo A. Recent advances in lignocellulosic biomass white biotechnology for bioplastics. BIORESOURCE TECHNOLOGY 2022; 344:126165. [PMID: 34695585 DOI: 10.1016/j.biortech.2021.126165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Lignocellulosic biomass has great potential as an inedible feedstock for bioplastic synthesis, although its use is still limited compared to current edible feedstocks of glucose and starch. This review focuses on recent advances in the production of biopolymers and biomonomers from lignocellulosic feedstocks with downstream processing and chemical polymer syntheses. In microbial production, four routes composed of existing poly (lactic acid) and polyhydroxyalkanoates (PHAs) and the emerging biomonomers of itaconic acid and aromatic compounds were presented to review present challenges and future perspectives, focusing on the use of lignocellulosic feedstocks. Recently, advances in purification technologies decreased the number of processes and their environmental burden. Additionally, the unique structures and high-performance of emerging lignocellulose-based bioplastics have expanded the possibilities for the use of bioplastics. The sequence of processes provides insight into the emerging technologies that are needed for the practical use of bioplastics made from lignocellulosic biomass.
Collapse
Affiliation(s)
- Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kenji Takada
- Energy and Environmental Area, Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Taghreed Elkasaby
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Botany Department, Faculty of Science, Mansoura University, 60 Elgomhoria st, Mansoura 35516, Egypt
| | - Radityo Pangestu
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, West Java 16911, Indonesia
| | - Masakazu Toyoshima
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Prihardi Kahar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tatsuo Kaneko
- Energy and Environmental Area, Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Biomass Engineering Research Division, RIKEN, 1-7-22 Suehiro, Turumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
11
|
Plaza PE, Coca M, Lucas Yagüe S, Fernández‐Delgado M, López‐Linares JC, García‐Cubero MT. Exploring the use of high solid loadings in enzymatic hydrolysis to improve biobutanol production from brewers' spent grains. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Pedro E. Plaza
- Institute of Sustainable Processes/Department of Chemical Engineering and Environmental Technology University of Valladolid Valladolid Spain
| | - Mónica Coca
- Institute of Sustainable Processes/Department of Chemical Engineering and Environmental Technology University of Valladolid Valladolid Spain
| | - Susana Lucas Yagüe
- Institute of Sustainable Processes/Department of Chemical Engineering and Environmental Technology University of Valladolid Valladolid Spain
| | - Marina Fernández‐Delgado
- Institute of Sustainable Processes/Department of Chemical Engineering and Environmental Technology University of Valladolid Valladolid Spain
| | - Juan C. López‐Linares
- Institute of Sustainable Processes/Department of Chemical Engineering and Environmental Technology University of Valladolid Valladolid Spain
| | - María T. García‐Cubero
- Institute of Sustainable Processes/Department of Chemical Engineering and Environmental Technology University of Valladolid Valladolid Spain
| |
Collapse
|
12
|
Teleky BE, Vodnar DC. Recent Advances in Biotechnological Itaconic Acid Production, and Application for a Sustainable Approach. Polymers (Basel) 2021; 13:3574. [PMID: 34685333 PMCID: PMC8539575 DOI: 10.3390/polym13203574] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Intense research has been conducted to produce environmentally friendly biopolymers obtained from renewable feedstock to substitute fossil-based materials. This is an essential aspect for implementing the circular bioeconomy strategy, expressly declared by the European Commission in 2018 in terms of "repair, reuse, and recycling". Competent carbon-neutral alternatives are renewable biomass waste for chemical element production, with proficient recyclability properties. Itaconic acid (IA) is a valuable platform chemical integrated into the first 12 building block compounds the achievement of which is feasible from renewable biomass or bio-wastes (agricultural, food by-products, or municipal organic waste) in conformity with the US Department of Energy. IA is primarily obtained through fermentation with Aspergillus terreus, but nowadays several microorganisms are genetically engineered to produce this organic acid in high quantities and on different substrates. Given its trifunctional structure, IA allows the synthesis of various novel biopolymers, such as drug carriers, intelligent food packaging, antimicrobial biopolymers, hydrogels in water treatment and analysis, and superabsorbent polymers binding agents. In addition, IA shows antimicrobial, anti-inflammatory, and antitumor activity. Moreover, this biopolymer retains qualities like environmental effectiveness, biocompatibility, and sustainability. This manuscript aims to address the production of IA from renewable sources to create a sustainable circular economy in the future. Moreover, being an essential monomer in polymer synthesis it possesses a continuous provocation in the biopolymer chemistry domain and technologies, as defined in the present review.
Collapse
Affiliation(s)
- Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania;
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Gopaliya D, Kumar V, Khare SK. Recent advances in itaconic acid production from microbial cell factories. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Zeghlouli J, Christophe G, Guendouz A, El Modafar C, Belkamel A, Michaud P, Delattre C. Optimization of Bioethanol Production from Enzymatic Treatment of Argan Pulp Feedstock. Molecules 2021; 26:2516. [PMID: 33925856 PMCID: PMC8123427 DOI: 10.3390/molecules26092516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Argan pulp is an abundant byproduct from the argan oil process. It was investigated to study the feasibility of second-generation bioethanol production using, for the first time, enzymatic hydrolysis pretreatment. Argan pulp was subjected to an industrial grinding process before enzymatic hydrolysis using Viscozyme L and Celluclast 1.5 L, followed by fermentation of the resulting sugar solution by Saccharomyces cerevisiae. The argan pulp, as a biomass rich on carbohydrates, presented high saccharification yields (up to 91% and 88%) and an optimal ethanol bioconversion of 44.82% and 47.16% using 30 FBGU/g and 30 U/g of Viscozyme L and Celluclast 1.5 L, respectively, at 10%w/v of argan biomass.
Collapse
Affiliation(s)
- Jihane Zeghlouli
- Laboratoire d’Agrobiotechnologie et Bioingénierie, Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Marrakesh 40000, Morocco; (J.Z.); (A.G.); (C.E.M.); (A.B.)
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France; (G.C.); (P.M.)
| | - Gwendoline Christophe
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France; (G.C.); (P.M.)
| | - Amine Guendouz
- Laboratoire d’Agrobiotechnologie et Bioingénierie, Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Marrakesh 40000, Morocco; (J.Z.); (A.G.); (C.E.M.); (A.B.)
| | - Cherkaoui El Modafar
- Laboratoire d’Agrobiotechnologie et Bioingénierie, Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Marrakesh 40000, Morocco; (J.Z.); (A.G.); (C.E.M.); (A.B.)
| | - Abdeljalil Belkamel
- Laboratoire d’Agrobiotechnologie et Bioingénierie, Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Marrakesh 40000, Morocco; (J.Z.); (A.G.); (C.E.M.); (A.B.)
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France; (G.C.); (P.M.)
| | - Cédric Delattre
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France; (G.C.); (P.M.)
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| |
Collapse
|
15
|
Ning P, Yang G, Hu L, Sun J, Shi L, Zhou Y, Wang Z, Yang J. Recent advances in the valorization of plant biomass. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:102. [PMID: 33892780 PMCID: PMC8063360 DOI: 10.1186/s13068-021-01949-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/07/2021] [Indexed: 05/28/2023]
Abstract
Plant biomass is a highly abundant renewable resource that can be converted into several types of high-value-added products, including chemicals, biofuels and advanced materials. In the last few decades, an increasing number of biomass species and processing techniques have been developed to enhance the application of plant biomass followed by the industrial application of some of the products, during which varied technologies have been successfully developed. In this review, we summarize the different sources of plant biomass, the evolving technologies for treating it, and the various products derived from plant biomass. Moreover, the challenges inherent in the valorization of plant biomass used in high-value-added products are also discussed. Overall, with the increased use of plant biomass, the development of treatment technologies, and the solution of the challenges raised during plant biomass valorization, the value-added products derived from plant biomass will become greater in number and more valuable.
Collapse
Affiliation(s)
- Peng Ning
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lihong Hu
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Jingxin Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Lina Shi
- Agricultural Integrated Service Center of Zhuyouguan, Longkou, Yantai, China
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
16
|
Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources. Molecules 2021; 26:molecules26030753. [PMID: 33535536 PMCID: PMC7867074 DOI: 10.3390/molecules26030753] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
As the need for non-renewable sources such as fossil fuels has increased during the last few decades, the search for sustainable and renewable alternative sources has gained growing interest. Enzymatic hydrolysis in bioethanol production presents an important step, where sugars that are fermented are obtained in the final fermentation process. In the process of enzymatic hydrolysis, more and more new effective enzymes are being researched to ensure a more cost-effective process. There are many different enzyme strategies implemented in hydrolysis protocols, where different lignocellulosic biomass, such as wood feedstocks, different agricultural wastes, and marine algae are being used as substrates for an efficient bioethanol production. This review investigates the very recent enzymatic hydrolysis pathways in bioethanol production from lignocellulosic biomass.
Collapse
|
17
|
Schlembach I, Hosseinpour Tehrani H, Blank LM, Büchs J, Wierckx N, Regestein L, Rosenbaum MA. Consolidated bioprocessing of cellulose to itaconic acid by a co-culture of Trichoderma reesei and Ustilago maydis. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:207. [PMID: 33317635 PMCID: PMC7737373 DOI: 10.1186/s13068-020-01835-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/17/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Itaconic acid is a bio-derived platform chemical with uses ranging from polymer synthesis to biofuel production. The efficient conversion of cellulosic waste streams into itaconic acid could thus enable the sustainable production of a variety of substitutes for fossil oil based products. However, the realization of such a process is currently hindered by an expensive conversion of cellulose into fermentable sugars. Here, we present the stepwise development of a fully consolidated bioprocess (CBP), which is capable of directly converting recalcitrant cellulose into itaconic acid without the need for separate cellulose hydrolysis including the application of commercial cellulases. The process is based on a synthetic microbial consortium of the cellulase producer Trichoderma reesei and the itaconic acid producing yeast Ustilago maydis. A method for process monitoring was developed to estimate cellulose consumption, itaconic acid formation as well as the actual itaconic acid production yield online during co-cultivation. RESULTS The efficiency of the process was compared to a simultaneous saccharification and fermentation setup (SSF). Because of the additional substrate consumption of T. reesei in the CBP, the itaconic acid yield was significantly lower in the CBP than in the SSF. In order to increase yield and productivity of itaconic acid in the CBP, the population dynamics was manipulated by varying the inoculation delay between T. reesei and U. maydis. Surprisingly, neither inoculation delay nor inoculation density significantly affected the population development or the CBP performance. Instead, the substrate availability was the most important parameter. U. maydis was only able to grow and to produce itaconic acid when the cellulose concentration and thus, the sugar supply rate, was high. Finally, the metabolic processes during fed-batch CBP were analyzed in depth by online respiration measurements. Thereby, substrate availability was again identified as key factor also controlling itaconic acid yield. In summary, an itaconic acid titer of 34 g/L with a total productivity of up to 0.07 g/L/h and a yield of 0.16 g/g could be reached during fed-batch cultivation. CONCLUSION This study demonstrates the feasibility of consortium-based CBP for itaconic acid production and also lays the fundamentals for the development and improvement of similar microbial consortia for cellulose-based organic acid production.
Collapse
Affiliation(s)
- Ivan Schlembach
- Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany
| | - Hamed Hosseinpour Tehrani
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Lars M. Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Jochen Büchs
- AVT‑Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Lars Regestein
- Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Jena, Germany
| | - Miriam A. Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
18
|
Tippkötter N, Roth J. Purified Butanol from Lignocellulose – Solvent‐Impregnated Resins for an Integrated Selective Removal. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202000200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nils Tippkötter
- University of Applied Sciences Aachen Bioprocess Engineering Heinrich-Mußmann-Straße 1 52428 Jülich Germany
| | - Jasmine Roth
- University of Applied Sciences Aachen Bioprocess Engineering Heinrich-Mußmann-Straße 1 52428 Jülich Germany
| |
Collapse
|
19
|
Saha BC, Kennedy GJ. Efficient itaconic acid production by Aspergillus terreus: Overcoming the strong inhibitory effect of manganese. Biotechnol Prog 2019; 36:e2939. [PMID: 31682331 DOI: 10.1002/btpr.2939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 01/15/2023]
Abstract
Itaconic acid (IA), a building block platform chemical, is produced industrially by Aspergillus terreus utilizing glucose. Lignocellulosic biomass can serve as a low cost source of sugars for IA production. However, the fungus could not produce IA from dilute acid pretreated and enzymatically saccharified wheat straw hydrolyzate even at 100-fold dilution. Furfural, hydroxymethyl furfural and acetic acid were inhibitory, as is typical, but Mn2+ was particularly problematic for IA production. It was present in the hydrolyzate at a level that was 230 times over the inhibitory limit (50 ppb). Recently, it was found that PO4 3- limitation decreased the inhibitory effect of Mn2+ on IA production. In the present study, a novel medium was developed for production of IA by varying PO4 3- , Fe3+ and Cu2+ concentrations using response surface methodology, which alleviated the strong inhibitory effect of Mn2+ . The new medium contained 0.08 g KH2 PO4 , 3 g NH4 NO3 , 1 g MgSO4 ·7H2 O, 5 g CaCl2 ·2 H2 O, 0.83 mg FeCl3 ·6H2 O, 8 mg ZnSO4 ·7H2 O, and 45 mg CuSO4 ·5H2 O per liter. The fungus was able to produce IA very well in the presence of Mn2+ up to 100 ppm in the medium. This medium will be extremely useful for IA production in the presence of Mn2+ . This is the first report on the development of Mn2+ tolerant medium for IA production by A. terreus.
Collapse
Affiliation(s)
- Badal C Saha
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U. S. Department of Agriculture, Peoria, Illinois
| | - Gregory J Kennedy
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U. S. Department of Agriculture, Peoria, Illinois
| |
Collapse
|
20
|
The Effect of Lignin Content in Birch and Beech Kraft Cellulosic Pulps on Simple Sugar Yields from the Enzymatic Hydrolysis of Cellulose. ENERGIES 2019. [DOI: 10.3390/en12152952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The results of enzymatic hydrolysis of birch and beech kraft cellulosic pulps indicate that they may be promising feedstocks for fermentation processes including biofuel manufacturing. The aim of this study was to investigate whether birch and beech wood require the same degree of delignification by kraft pulping as pine wood. The differences observed in the efficiency of hydrolysis for the raw materials tested suggest that the differences in the anatomical structure of the examined wood in relation to pine wood is essential for the efficiency of the enzymatic hydrolysis process. The yields of glucose and other reducing sugars obtained from the birch and beech cellulosic pulps were similar (up to around 75% and 98.3% dry weight, and 76% and 98.6% dry weight, respectively). The highest glucose yields from cellulose contained in the birch and beech pulp were around 81.2% (at a Kappa number of 28.3) and 83.1% (at a Kappa number of 30.4), respectively. The maximum glucose yields and total reducing sugars of birch wood on a dry weight basis (39.8% and 52.1%, respectively) were derived from the pulp at a Kappa number of 28.3, while the highest yields of glucose and total reducing sugars of beech wood on a dry weight basis (around 36.9% and 48.2%, respectively) were reached from the pulp at a Kappa number of 25.3. To obtain the highest glucose yields and total reducing sugars of a wood on a dry weight basis, total lignin elimination from the birch and beech pulps was not necessary. However more in-depth delignification of birch and beech wood is required than for pine wood.
Collapse
|
21
|
Gnanasekaran R, Dhandapani B, Iyyappan J. Improved itaconic acid production by Aspergillus niveus using blended algal biomass hydrolysate and glycerol as substrates. BIORESOURCE TECHNOLOGY 2019; 283:297-302. [PMID: 30921582 DOI: 10.1016/j.biortech.2019.03.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Superfluous algal biomass hydrolysate and purified glycerol obtained from biodiesel production were utilized for the production of itaconic acid by Aspergillus niveus. The lipid extracted Gracilaria edulis algal biomass residual was subjected to a pretreatment for the enhanced production of itaconic acid. Glycerol acquired from biodiesel production was pretreated and utilized as a substrate for itaconic acid production. The effect of individual and combined substrate concentration on itaconic acid production was investigated. Ultrasonication combined with the acid pretreated algal biomass produces higher itaconic acid due to the higher level of the total carbohydrate content (58.47 ± 2.57% w/v). After 168 h of incubation, A. niveus utilizes algal biomass hydrolysate and purified glycerol as substrate and produced 31.55 ± 1.25 g/L of itaconic acid and the dry cell weight is 18.24 ± 0.23 g/L respectively. Glycerol and algal biomass hydrolysate was a potential substrate for itaconic acid production by fungal species.
Collapse
Affiliation(s)
- Ramakrishnan Gnanasekaran
- Department of Biotechnology, Vel Tech High Tech Dr Rangarajan Dr Sakunthala Engineering College, Chennai, India
| | - Balaji Dhandapani
- Department of Chemical Engineering, SSN College of Engineering, Chennai, India.
| | - Jayaraj Iyyappan
- Department of Biotechnology, Vel Tech High Tech Dr Rangarajan Dr Sakunthala Engineering College, Chennai, India
| |
Collapse
|
22
|
Phosphate limitation alleviates the inhibitory effect of manganese on itaconic acid production by Aspergillus terreus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Bafana R, Sivanesan S, Pandey RA. Optimization and scale up of itaconic acid production from potato starch waste in stirred tank bioreactor. Biotechnol Prog 2019; 35:e2774. [DOI: 10.1002/btpr.2774] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 12/10/2018] [Accepted: 01/04/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Richa Bafana
- Academy of Scientific and Innovative Research; CSIR-National Environmental Engineering Research Institute; Nagpur, 440020 India
| | - Saravanadevi Sivanesan
- Academy of Scientific and Innovative Research; CSIR-National Environmental Engineering Research Institute; Nagpur, 440020 India
| | - R. A. Pandey
- Academy of Scientific and Innovative Research; CSIR-National Environmental Engineering Research Institute; Nagpur, 440020 India
| |
Collapse
|
24
|
Acid Assisted Organosolv Delignification of Beechwood and Pulp Conversion towards High Concentrated Cellulosic Ethanol via High Gravity Enzymatic Hydrolysis and Fermentation. Molecules 2018; 23:molecules23071647. [PMID: 29976912 PMCID: PMC6099605 DOI: 10.3390/molecules23071647] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/26/2022] Open
Abstract
Background: Future biorefineries will focus on converting low value waste streams to chemical products that are derived from petroleum or refined sugars. Feedstock pretreatment in a simple, cost effective, agnostic manner is a major challenge. Methods: In this work, beechwood sawdust was delignified via an organosolv process, assisted by homogeneous inorganic acid catalysis. Mixtures of water and several organic solvents were evaluated for their performance. Specifically, ethanol (EtOH), acetone (AC), and methyl- isobutyl- ketone (MIBK) were tested with or without the use of homogeneous acid catalysis employing sulfuric, phosphoric, and oxalic acids under relatively mild temperature of 175 °C for one hour. Results: Delignification degrees (DD) higher than 90% were achieved, where both AC and EtOH proved to be suitable solvents for this process. Both oxalic and especially phosphoric acid proved to be good alternative catalysts for replacing sulfuric acid. High gravity simultaneous saccharification and fermentation with an enzyme loading of 8.4 mg/gsolids at 20 wt.% initial solids content reached an ethanol yield of 8.0 w/v%. Conclusions: Efficient delignification combining common volatile solvents and mild acid catalysis allowed for the production of ethanol at high concentration in an efficient manner.
Collapse
|
25
|
Factors Affecting Production of Itaconic Acid from Mixed Sugars by Aspergillus terreus. Appl Biochem Biotechnol 2018; 187:449-460. [PMID: 29974379 DOI: 10.1007/s12010-018-2831-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
Itaconic acid (IA; a building block platform chemical) is currently produced industrially from glucose by fermentation with Aspergillus terreus. In order to expand the use of IA, its production cost must be lowered. Lignocellulosic biomass has the potential to serve as low-cost source of sugars for IA production. It was found that the fungus cannot produce IA from dilute acid pretreated and enzymatically saccharified wheat straw hydrolysate even at 100-fold dilution. The effects of typical compounds (acetic acid, furfural, HMF and Mn2+, enzymes, CaSO4), culture conditions (initial pH, temperature, aeration), and medium components (KH2PO4, NH4NO3, CaCl2·2H2O, FeCl3·6H2O) on growth and IA production by A. terreus NRRL 1972 using mixed sugar substrate containing glucose, xylose, and arabinose (4:3:1, 80 g L-1) mimicking the wheat straw hydrolysate were investigated. Acetic acid, furfural, Mn2+, and enzymes were strong inhibitors to both growth and IA production from mixed sugars. Optimum culture conditions (pH 3.1, 33 °C, 200 rpm) and medium components (0.8 g KH2PO4, 3 g NH4NO3, 2.0 g CaCl2·2H2O, 0.83-3.33 mg FeCl3·6H2O per L) as well as tolerable levels of inhibitors (0.4 g acetic acid, < 0.1 g furfural, 100 mg HMF, < 5.0 ppb Mn2+, 24 mg CaSO4 per L) for mixed sugar utilization were established. The results will be highly useful for developing a bioprocess technology for IA production from lignocellulosic feedstocks.
Collapse
|
26
|
Logistics of Lignocellulosic Feedstocks: Preprocessing as a Preferable Option. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 166:43-68. [PMID: 29934794 DOI: 10.1007/10_2017_58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In comparison to crude oil, biorefinery raw materials are challenging in concerns of transport and storage. The plant raw materials are more voluminous, so that shredding and compacting usually are necessary before transport. These mechanical processes can have a negative influence on the subsequent biotechnological processing and shelf life of the raw materials. Various approaches and their effects on renewable raw materials are shown. In addition, aspects of decentralized pretreatment steps are discussed. Another important aspect of pretreatment is the varying composition of the raw materials depending on the growth conditions. This problem can be solved with advanced on-site spectrometric analysis of the material. Graphical Abstract.
Collapse
|
27
|
|
28
|
Montipó S, Ballesteros I, Fontana RC, Liu S, Martins AF, Ballesteros M, Camassola M. Integrated production of second generation ethanol and lactic acid from steam-exploded elephant grass. BIORESOURCE TECHNOLOGY 2018; 249:1017-1024. [PMID: 30045483 DOI: 10.1016/j.biortech.2017.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 06/08/2023]
Abstract
Elephant grass was subjected to steam explosion to enhance cellulose accessibility and convert it into ethanol. After catalyzed pretreatment at 190 °C for 5 min, enzymatic hydrolysis was carried out using high rate of solid loading combined with different enzyme dosages. Assays employing 20% (w/v) solids loading and an enzyme dosage of 20 FPU g-1 substrate led to a yield of 86.02 g glucose released per 100 g potential glucose in the water insoluble solids. This condition was selected to carry out the simultaneous saccharification and fermentation procedure through S. cerevisiae CAT-1, producing 42.25 g L-1 ethanol with a yield of 74.57% regard to the maximum theoretical. The liquor containing C5 and C6-sugars was successfully converted into lactic acid using L. buchneri NRRL B-30929, resulting in 13.35 g L-1 with a yield of 68.21% in relation to the maximum theoretical.
Collapse
Affiliation(s)
- Sheila Montipó
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, RS 95070-560, Brazil.
| | - Ignacio Ballesteros
- Renewable Energies Department, CIEMAT - Research Centre for Energy, Environment and Technology, Madrid 28040, Spain
| | | | - Siqing Liu
- Renewable Product Technology, NCAUR-ARS, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | | | - Mercedes Ballesteros
- Renewable Energies Department, CIEMAT - Research Centre for Energy, Environment and Technology, Madrid 28040, Spain
| | - Marli Camassola
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, RS 95070-560, Brazil.
| |
Collapse
|
29
|
|
30
|
Ninety six well microtiter plate as microbioreactors for production of itaconic acid by six Aspergillus terreus strains. J Microbiol Methods 2018; 144:53-59. [DOI: 10.1016/j.mimet.2017.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 12/16/2022]
|
31
|
Krull S, Eidt L, Hevekerl A, Kuenz A, Prüße U. Itaconic acid production from wheat chaff by Aspergillus terreus. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. ACTA ACUST UNITED AC 2017; 44:303-315. [DOI: 10.1007/s10295-016-1878-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/19/2016] [Indexed: 12/12/2022]
Abstract
Abstract
Recently, itaconic acid (IA), an unsaturated C5-dicarboxylic acid, has attracted much attention as a biobased building block chemical. It is produced industrially (>80 g L−1) from glucose by fermentation with Aspergillus terreus. The titer is low compared with citric acid production (>200 g L−1). This review summarizes the latest progress on enhancing the yield and productivity of IA production. IA biosynthesis involves the decarboxylation of the TCA cycle intermediate cis-aconitate through the action of cis-aconitate decarboxylase (CAD) enzyme encoded by the CadA gene in A. terreus. A number of recombinant microorganisms have been developed in an effort to overproduce it. IA is used as a monomer for production of superabsorbent polymer, resins, plastics, paints, and synthetic fibers. Its applications as a platform chemical are highlighted. It has a strong potential to replace petroleum-based methylacrylic acid in industry which will create a huge market for IA.
Collapse
|
33
|
Duwe A, Tippkötter N, Ulber R. Lignocellulose-Biorefinery: Ethanol-Focused. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 166:177-215. [PMID: 29071401 DOI: 10.1007/10_2016_72] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development prospects of the world markets for petroleum and other liquid fuels are diverse and partly contradictory. However, comprehensive changes for the energy supply of the future are essential. Notwithstanding the fact that there are still very large deposits of energy resources from a geological point of view, the finite nature of conventional oil reserves is indisputable. To reduce our dependence on oil, the EU, the USA, and other major economic zones rely on energy diversification. For this purpose, alternative materials and technologies are being sought, and is most obvious in the transport sector. The objective is to progressively replace fossil fuels with renewable and more sustainable fuels. In this respect, biofuels have a pre-eminent position in terms of their capability of blending with fossil fuels and being usable in existing cars without substantial modification. Ethanol can be considered as the primary renewable liquid fuel. In this chapter enzymes, micro-organisms, and processes for ethanol production based on renewable resources are described.
Collapse
Affiliation(s)
- A Duwe
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany.
| | - N Tippkötter
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - R Ulber
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| |
Collapse
|
34
|
Li J, Wang L, Chen H. Periodic peristalsis increasing acetone–butanol–ethanol productivity during simultaneous saccharification and fermentation of steam-exploded corn straw. J Biosci Bioeng 2016; 122:620-626. [DOI: 10.1016/j.jbiosc.2016.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/28/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
|
35
|
Tsouko E, Kachrimanidou V, dos Santos AF, do Nascimento Vitorino Lima ME, Papanikolaou S, de Castro AM, Freire DMG, Koutinas AA. Valorization of By-Products from Palm Oil Mills for the Production of Generic Fermentation Media for Microbial Oil Synthesis. Appl Biochem Biotechnol 2016; 181:1241-1256. [DOI: 10.1007/s12010-016-2281-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
|
36
|
Pan SY, Lin YJ, Snyder SW, Ma HW, Chiang PC. Development of Low-Carbon-Driven Bio-product Technology Using Lignocellulosic Substrates from Agriculture: Challenges and Perspectives. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40518-015-0040-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Ndaba B, Chiyanzu I, Marx S. n-Butanol derived from biochemical and chemical routes: A review. ACTA ACUST UNITED AC 2015; 8:1-9. [PMID: 28352567 PMCID: PMC4980751 DOI: 10.1016/j.btre.2015.08.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/24/2015] [Accepted: 08/01/2015] [Indexed: 10/31/2022]
Abstract
Traditionally, bio-butanol is produced with the ABE (Acetone Butanol Ethanol) process using Clostridium species to ferment sugars from biomass. However, the route is associated with some disadvantages such as low butanol yield and by-product formation (acetone and ethanol). On the other hand, butanol can be directly produced from ethanol through aldol condensation over metal oxides/ hydroxyapatite catalysts. This paper suggests that the chemical conversion route is more preferable than the ABE process, because the reaction proceeds more quickly compared to the fermentation route and fewer steps are required to get to the product.
Collapse
Affiliation(s)
- B Ndaba
- Focus area: Energy system, School of Chemical and Minerals Engineering, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - I Chiyanzu
- Focus area: Energy system, School of Chemical and Minerals Engineering, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - S Marx
- Focus area: Energy system, School of Chemical and Minerals Engineering, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| |
Collapse
|