1
|
Zhang H, Zhang Y, Li L, Huang S, Ma W, Xu B, Ng HY, Kim DH, Kang S, Shi X. An innovative high-rate biofilm-based process: Biopolymer production and recovery from wastewater organic pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124800. [PMID: 40056594 DOI: 10.1016/j.jenvman.2025.124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 02/06/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
In this study, a novel high-rate moving bed biofilm reactor (MBBR) was constructed to enhance wastewater COD bio-conversion and biopolymer recovery with a hydraulic retention time (HRT) of 1.0 h and an organic loading rate (OLR) of 4.8 kg COD·m-3·d-1. A superior specific COD reduction rate of 4.1 kg COD·m-3·d-1 was obtained. The settleability analyses showed that within a settling time of 30 min, a low effluent suspended solids (SS) concentration (40.6 mg/L) with a high biomass recovery rate (83.3%) was achieved. From the recovered biomass, a remarkably higher alginate-like exopolymer (ALE) yield (274.2-385.1 mg/g VSS) was extracted as compared with seeding sludge (148.3 mg/g VSS). In addition, high protein/polysaccharide ratios of 8.5-12.4 were revealed owing to the short HRT condition. Moreover, key functional genes involving classic ALE synthesis were fully detected in such mixed-cultured bioprocess through metagenomic sequencing. Overall, this study offers a proof of concept that bio-refinery of organics into value-added biopolymers could provide a promising direction for the transformation of wastewater treatment plants from energy/resource-consuming factories to resource-recovery factories.
Collapse
Affiliation(s)
- Haifeng Zhang
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Yi Zhang
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Lin Li
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Shujuan Huang
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Weiwei Ma
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Boyan Xu
- Centre for Water Research, Advanced Institute of National Sciences, Beijing Normal University at Zhuhai, 519087, China
| | - How Yong Ng
- Centre for Water Research, Advanced Institute of National Sciences, Beijing Normal University at Zhuhai, 519087, China
| | - Dong-Hoon Kim
- Department of Smart City Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Xueqing Shi
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China.
| |
Collapse
|
2
|
Shi W, Tian Z, Luan X, Wang Y, Chi Y, Zhang H, Zhang Y, Yang M. Porous polyurethane biocarriers could enhance system nitrification resilience under high organic loading by retaining key functional bacteria. WATER RESEARCH 2025; 272:122950. [PMID: 39674142 DOI: 10.1016/j.watres.2024.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Resilience to increasing organic loading rates (OLRs) is the key to maintaining stable performance in treating industrial wastewater. First, this study compared the stability, particularly the nitrification performance, of two lab-scale moving bed biofilm reactors (MBBRs) filled with porous polyurethane biocarriers with two conventional activated sludge reactors (ASRs) in the treatment of synthetic coking wastewater under OLRs increasing from 0.3 kg to 1.5 kg COD m-3 day-1. In comparison with the ASRs, which could only achieve complete nitrification (99.31 % ± 0.43 %) at an OLR of 0.7 kg COD m-3 day-1, the MBBRs could achieve efficient NH4+-N removal (99.45 % ± 0.21 %) at an OLR as high as 1.3 kg COD m-3 day-1. Even at an OLR of 1.5 kg COD m-3 day-1 where nitrification was inhibited, the porous polyurethane biocarriers in the MBBRs still maintained a highly diversified bacterial community (Shannon index, 4.34 ± 0.31) by retaining the slow-growing nitrifying bacteria and phenol-degrading bacteria, including Methyloversatilis and Acinetobacter, whose phenol degradation functions were confirmed by metagenome-assembled genome extraction and analysis, while the ASRs lost diversity (Shannon index, 1.41 ± 0.45) due to the sequential occurrence of filamentous and viscous sludge bulking. The advantage of the MBBR was further verified in a full-scale coking wastewater treatment system, where a reactor series filled with 4.35 % porous polyurethane biocarriers exhibited better NH4+-N removal of 99.57 % ± 0.34 % compared to 96.85 % ± 2.56 % for a conventional one under an OLR of 0.54 ± 0.12 kg COD m-3 day-1. The results could contribute to the development of more effective and resilient treatment systems for industrial wastewater.
Collapse
Affiliation(s)
- Wen Shi
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Tian
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiao Luan
- China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Yun Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China; School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Yongzhi Chi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Honghu Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China; School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Yu Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Shang Q, Li L, Zhang Y, Shi X, Ratnaweera H, Kim DH, Zhang H. Bio-Refinery of Organics into Value-Added Biopolymers: Exploring the Effects of Hydraulic Retention Time and Organic Loading Rate on Biopolymer Harvesting from a Biofilm-Based Process. TOXICS 2025; 13:183. [PMID: 40137510 PMCID: PMC11945702 DOI: 10.3390/toxics13030183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
This study aimed to examine the impacts of hydraulic retention time (HRT) and organic loading rate (OLR) on the alginate-like exopolymers' (ALEs) recovery potential from a biofilm-based process. A lab-scale moving bed biofilm reactor (MBBR) was operated under different HRT (12.0, 6.0, and 2.0 h) and OLR (1.0, 2.0, and 6.0 kg COD/m3/d) conditions. The results demonstrated that the reduction in HRT and increase in OLR had remarkable effects on enhancing ALE production and improving its properties, which resulted in the ALE yield increasing from 177.8 to 221.5 mg/g VSS, with the protein content rising from 399.3 to 494.3 mg/g ALE and the enhanced alginate purity by 39.8%, corresponding to the TOC concentration increasing from 108.3 to 157.0 mg/g ALE. Meanwhile, to illustrate different ALE recovery potentials, microbial community compositions of the MBBR at various operational conditions were also assessed. The results showed that a higher relative abundance of EPS producers (29.86%) was observed in the MBBR with an HRT of 2.0 h than that of 12.0 h and 6.0 h, revealing its higher ALE recovery potential. This study yields crucial results in terms of resource recovery for wastewater reclamation by providing an effective approach to directionally cultivating ALEs.
Collapse
Affiliation(s)
- Qingna Shang
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China; (Q.S.); (L.L.); (Y.Z.); (X.S.); (H.R.)
| | - Lin Li
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China; (Q.S.); (L.L.); (Y.Z.); (X.S.); (H.R.)
| | - Yi Zhang
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China; (Q.S.); (L.L.); (Y.Z.); (X.S.); (H.R.)
| | - Xueqing Shi
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China; (Q.S.); (L.L.); (Y.Z.); (X.S.); (H.R.)
| | - Harsha Ratnaweera
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China; (Q.S.); (L.L.); (Y.Z.); (X.S.); (H.R.)
| | - Dong-Hoon Kim
- Department of Smart City Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, Republic of Korea;
| | - Haifeng Zhang
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China; (Q.S.); (L.L.); (Y.Z.); (X.S.); (H.R.)
| |
Collapse
|
4
|
Amancio Frutuoso FK, P S G da Silva VE, C V Silva TF, P Vilar VJ, Bezerra Dos Santos A. Solids retention time (SRT) control in the co-treatment of leachate with domestic sewage in aerobic granular sludge systems: Impacts on system performance, operational stability, and bioresource production. BIORESOURCE TECHNOLOGY 2025; 415:131664. [PMID: 39424012 DOI: 10.1016/j.biortech.2024.131664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
This study investigates the co-treatment of leachate and domestic sewage in municipal wastewater treatment plants using aerobic granular sludge (AGS) systems, focusing on granule formation, system stability, and resource production in two units (R1 and R2). In R2, solids retention time (SRT) was controlled between 10 and 25 days, while R1 maintained approximately 9 days. The results show that low leachate proportions (5 %) did not affect system performance or stability. However, increasing the leachate to 10 % reduced the structural stability of extracellular polymeric substances (EPS), leading to a significant decrease in alginate-like exopolysaccharides (ALE) production in R1 (216 mgALE/gVSS) and R2 (125 mgALE/gVSS). Principal component analysis revealed that SRT was crucial for optimizing biopolymer synthesis. Furthermore, SRT control in R2 improved filamentous control, biomass retention, and total nitrogen removal. Thus, selective biomass discharge is essential for maintaining granule stability, enhancing treatment efficiency, and supporting resource production.
Collapse
Affiliation(s)
| | | | - Tânia Filomena C V Silva
- LSRE‑LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200‑465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200‑465 Porto, Portugal
| | - Vítor Jorge P Vilar
- LSRE‑LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200‑465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200‑465 Porto, Portugal.
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
5
|
Hao Y, Guo T, Li H, Liu W, Chen Z, Zhang W, Wang X, Guo J. Fe/GMP functional nanomaterial enhancing the denitrification efficiency by bi-signal regulation: Electron transfer and microbial community. BIORESOURCE TECHNOLOGY 2024; 413:131533. [PMID: 39326537 DOI: 10.1016/j.biortech.2024.131533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
A novel functional nanomaterial composed of guanosine monophosphate (GMP) and Fe enhanced denitrification efficiency by regulating electron transfer and microbial community. Fe/GMP enhanced nitrate (NO3-) degradation rates by 3.00-fold in serum vial batch experiments, with a rate constant of 17.39 mg/(L·h) in sequencing batch reactor. Fe/GMP-mediated interface promoted the secretion of redox-active substances in the extracellular polymeric substances to enhance the extracellular electron transfer. Specifically, Fe/GMP regulated electron transfer and metabolism activity by dynamic conversion of Fe3+/Fe2+ redox signal. Additionally, enzyme activity assays verified the optimized electron distribution function of Fe/GMP and thus enhanced intracellular electron transfer. High-throughput sequencing confirmed Fe/GMP selectively enriched microorganisms (especially Thauera 50.70 %). The tetraethylammonium stress experiment demonstrated Fe/GMP as an exogenous signaling molecule to restore microbial communication for microbial community regulation. The study proposes a multifaceted synergistic mechanism based on the repeater function of Fe/GMP in denitrification and offers insights for practical applications.
Collapse
Affiliation(s)
- Yunzhe Hao
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Tingting Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Wenli Liu
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China
| | - Zhi Chen
- Department of Building, Civil, and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W. Montreal, Quebec, Canada
| | - Wenjuan Zhang
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Xiaoping Wang
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China.
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
6
|
Willett MR, Codd SL, Seymour JD, Kirkland CM. Relaxation-weighted MRI analysis of biofilm EPS: Differentiating biopolymers, cells, and water. Biofilm 2024; 8:100235. [PMID: 39610831 PMCID: PMC11603125 DOI: 10.1016/j.bioflm.2024.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024] Open
Abstract
Biofilms are a highly complex community of microorganisms embedded in a protective extracellular polymeric substance (EPS). Successful biofilm control requires a variety of approaches to better understand the structure-function relationship of the EPS matrix. Magnetic resonance imaging (MRI) is a versatile tool which can measure spatial structure, diffusion, and flow velocities in three dimensions and in situ. It is well-suited to characterize biofilms under natural conditions and at different length scales. MRI contrast is dictated by T 1 and T 2 relaxation times which vary spatially depending on the local chemical and physical environment of the sample. Previous studies have demonstrated that MRI can provide important insights into the internal structure of biofilms, but the contribution of major biofilm components-such as proteins, polysaccharides, and cells-to MRI contrast is not fully understood. This study explores how these components affect contrast in T 1 -and T 2 -weighted MRI by analyzing artificial biofilms with well-defined properties modeled after aerobic granular sludge (AGS), compact spherical biofilm aggregates used in wastewater treatment. MRI of these biofilm models showed that certain gel-forming polysaccharides are a major source of T 2 contrast, while other polysaccharides show minimal contrast. Proteins were found to reduce T 2 contrast slightly when combined with polysaccharides, while cells had a negligible impact on T 2 but showed T 1 contrast. Patterns observed in the model biofilms served as a reference for examining T 2 and T 1 -weighted contrast in the void spaces of two distinct AGS granules, allowing for a qualitative evaluation of the EPS components which may be present. Further insights provided by MRI may help improve understanding of the biofilm matrix and guide how to better manage biofilms in wastewater, clinical, and industrial settings.
Collapse
Affiliation(s)
- Matthew R. Willett
- Department of Chemical Engineering, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Sarah L. Codd
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Joseph D. Seymour
- Department of Chemical Engineering, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Catherine M. Kirkland
- Department of Civil Engineering, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|
7
|
Li J, Yang W, Hao X, Lin Y, van Loosdrecht MCM. Little alginates synthesized in EPS: Evidences from high-throughput community and metagenes. WATER RESEARCH 2024; 265:122211. [PMID: 39137456 DOI: 10.1016/j.watres.2024.122211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
As a significant structure in activated sludge, extracellular polymeric substances (EPS) hold considerable value regarding resource recovery and applications. The present study aimed to elucidate the relationship between the microbial community and the composition and properties of EPS. A biological nutrient removal (BNR) reactor was set up in the laboratory and controlled under different solid retention times (SRT), altering microbial species within the system. Then EPS was extracted from activated and analyzed by chemical and spectroscopic methods. High-throughput sequencing and metagenomic approaches were employed to investigate bacterial community and metabolic pathways. The results showed that lower SRT with a higher abundance of the family-level Proteobacteria (27.7%-53.5%) favored EPS synthesis, while another dominant group Bacteroidetes (20.0%-32.6%) may not significantly affect EPS synthesis. Furthermore, the abundance of alginates-producing bacteria including Pseudomonas spp. and Azotobacter vinelandii was only 2.53%-6.76% and 1.98%-6.34%, respectively. The alginate synthesis pathway genes Alg8 and Alg44 were also present at very low levels (0.05‱-0.11‱, 0.01‱-0.02‱, respectively). Another important gene related to alginates operons, AlgK, was absent across all the SRT-operated reactors. These findings suggest an impossible and incomplete alginate synthesis pathway within sludge. In light of these results, it can be concluded that EPS does not necessarily contain alginate components.
Collapse
Affiliation(s)
- Ji Li
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Centre of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China; Dept. of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Wanbang Yang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Centre of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Centre of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China.
| | - Yuemei Lin
- Dept. of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Mark C M van Loosdrecht
- Dept. of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
8
|
Tang C, Yue Q, Liu H, Dang H, Lv W, Li X, Chen Y. Optimizing operation strategy to improve storage of intracellular carbon sources in anaerobic/oxic/anoxic system: Enhanced nitrogen removal by endogenous denitrification. CHEMOSPHERE 2024; 365:143306. [PMID: 39255857 DOI: 10.1016/j.chemosphere.2024.143306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/25/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Endogenous denitrification (ED) can make full use of the carbon sources and avoid replenishment of it. However, strengthening the storage of intracellular carbon sources is an important factor in improving ED efficiency. In this study, employed batch experiments using real domestic wastewater in the anaerobic/oxic (A/O) process. The anaerobic and oxic processes were run for 4 h under ambient conditions with the dissolved oxygen (DO) concentrations in the oxic stage controlled at 0.5, 1.0, 1.5, and 3.0 mg/L, respectively. The results showed that the content of poly-β-hydroxyalkanoates (PHA) reached its peak at 60 min (1.25 mmolC/L). And with DO concentrations of 1.5 mg/L, the contents of glycogen (Gly) were 27.74 mmolC/L. Subsequently, the AOA-SBR was established to investigate its effect on the long-term nitrogen removal performance of domestic wastewater by optimizing the anaerobic time and DO concentrations. The results showed that at an anaerobic time of 60 min and DO concentration of 1.5 mg/L, the storage of the intracellular carbon sources was highest and the total nitrogen (TN) removal efficiency increased to 82.12%. In addition, Candidatus Competibacter dominated gradually in the system as the strategy was optimized.
Collapse
Affiliation(s)
- Chenxin Tang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Qiong Yue
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Hong Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Hongzhong Dang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Wei Lv
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Xiaofan Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Yongzhi Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China.
| |
Collapse
|
9
|
Liu C, Han X, Li N, Jin Y, Yu J. Ultra-rapid development of 'solid' aerobic granular sludge by stable transition/filling of inoculated 'hollow' mycelial pellets in hypersaline wastewater. BIORESOURCE TECHNOLOGY 2024; 406:131006. [PMID: 38889867 DOI: 10.1016/j.biortech.2024.131006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/20/2024]
Abstract
To overcome the long start-up period in cultivating aerobic granular sludge (AGS) under hypersaline environment, mycelial pellets (MPs) of halotolerant fungus Cladosporium tenuissimum NCSL-XY8 were inoculated to try to realize the ultra-rapid development of salt-tolerant AGS by stable transition of 'hollow' MPs into 'solid' AGS without apparent fragmentation. The granules directly met the standard of AGS after inoculating MPs (Day 0), and it basically satisfied relatively strict standards of AGS (SVI30 < 50 mL/g, D50 > 300 μm, D10 > 200 μm and SVI30/SVI5 > 0.9) under anaerobic/aerobic mode during whole cultivation processes. Microstructure of the granular cross section clarified that MPs with hollow/loose inner layer transitioned into solid/dense AGS under anaerobic/aerobic mode within 7 days, while formed skin-like floating pieces and unstable double-layer hollow granules under aerobic mode. Organics removal reached relatively stable within 13 days under anaerobic/aerobic mode, 6 days faster than aerobic mode. This study provided a strategy for ultra-rapid and stable development of AGS, which showed the shortest granulation period in various AGS-cultivation strategies.
Collapse
Affiliation(s)
- Changshen Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Ningning Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Jin
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jianguo Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
10
|
Adekunle A, Ukaigwe S, Bezerra Dos Santos A, Iorhemen OT. Potential for curdlan recovery from aerobic granular sludge wastewater treatment systems - A review. CHEMOSPHERE 2024; 362:142504. [PMID: 38825243 DOI: 10.1016/j.chemosphere.2024.142504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
The aerobic granular sludge (AGS) biotechnology has been explored for wastewater treatment for over two decades. AGS is gaining increased interest due to its enhanced treatment performance ability and the potential for resource recovery from AGS-based wastewater treatment systems. Resource recovery from AGS is a promising approach to sustainable wastewater treatment and attaining a circular economy in the wastewater management industry. Currently, research is at an advanced stage on recovering value-added resources such as phosphorus, polyhydroxyalkanoates, alginate-like exopolysaccharides, and tryptophan from waste aerobic granules. Recently, other value-added resources, including curdlan, have been identified in the aerobic granule matrix, and this may increase the sustainability of biotechnology in the wastewater industry. This paper provides an overview of AGS resource recovery potential. In particular, the potential for enhanced curdlan biosynthesis in the granule matrix and its recovery from AGS wastewater treatment systems is outlined.
Collapse
Affiliation(s)
- Adedoyin Adekunle
- School of Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
| | - Sandra Ukaigwe
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Oliver Terna Iorhemen
- School of Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada.
| |
Collapse
|
11
|
Wang JY, Zhao B, An Q, Dan Q, Guo JS, Chen YP. The acceleration of aerobic sludge granulation by alternating organic loading rate: Performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119047. [PMID: 37778070 DOI: 10.1016/j.jenvman.2023.119047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
As a highly promising treatment technology for wastewater, long start-up time is one of the bottlenecks hindering the widespread application of aerobic granular sludge (AGS). This study focused on exploring the possibility of alternating organic loading rate (OLR) in promoting AGS granulation. Under alternating OLR (3.6-14.4 kgCOD/m3·d), AGS granulation was significantly accelerated. The mean granule size under alternating load reached 234.6 μm at 17 d, while under constant OLR (7.2 kgCOD/m3·d), the mean granule size was only 179.2 μm. Moreover, the granule size maintained continuous growth even when the alternating OLR was changed to constant OLR. Alternating load significantly increased the content of extracellular polymeric substances (EPS), especially proteins (PN) in tightly bound EPS (TB-EPS), which was likely the main reason for accelerating AGS granulation. Moreover, alternating load reduced the hydrophilicity of EPS and promoted the content of proteins secondary structures that favored aggregation in TB-EPS, which were also beneficial for granulation. Microbial community results showed that alternating load might promote the enrichment of EPS producing bacteria, such as Thauera, Brevundimonas and Shinella. Meanwhile, the content of enzymes that regulated amino acids metabolism also increased under alternating load, which might be related to the increase of PN in EPS. These results further demonstrated that alternating load promoted granulation through EPS.
Collapse
Affiliation(s)
- Jin Yi Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Bin Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Qiang An
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Qiao Dan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Jin Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - You Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| |
Collapse
|
12
|
Hao X, Li H, Yuan T, Wu Y. Recovering and potentially applying of alginate like extracellular polymers from anaerobic digested sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165549. [PMID: 37454849 DOI: 10.1016/j.scitotenv.2023.165549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Extracellular polymeric substances (EPS) are biopolymers contained in both aerobic and anaerobic sludge. In EPS, alginate like extracellular polymers (ALE) is thought as a highly valued material, which have been widely studied with aerobic sludge. Nevertheless, a curiosity on ALE remains in anaerobic digested sludge (ADS). With 5 different sludge sources, anaerobic digestion of excess sludge was conducted in a batch mode, and then ADS was used to extract ALE and to analyze its physicochemical properties for potential applications. The yield of ALE extracted from ADS (ALE-ADS) ranged from 119.4 to 179.4 mg/g VSS. The compositional characteristics of ALE-ADS observed by FT-IR, 3D-EEM and UV-Vis spectroscopy revealed that there were minor differences in the composition and property of ALE-ADS but a similarity of 62 %-70 % to a commercial alginate remained in terms of chemical functional groups. Moreover, ALE-ADS composed of 1,4-linked β-d-mannuronic acid (M) and 1,4 α-l-guluronic acid (G) residues that form blocks of GG (20.8 %-33.8 %), MG (12.8 %-30.1 %) and MM (6.6 %-15.1 %), respectively. Based on the gel-forming capacity, film-forming property, adsorbility, and amphiphilicity, ALE-ADS seems potential as a water-proof coating with even a better performance than the commercial alginate, as a seed coating with an increased germination rate, and as a bio-adsorbent with a similar performance to the commercial alginate and ALE from aerobic sludge.
Collapse
Affiliation(s)
- Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| | - Hui Li
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Tugui Yuan
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Yuanyuan Wu
- Beijing Capital Eco-Environment Protection Group Co., Ltd., Beijing 100044, PR China
| |
Collapse
|
13
|
Tong Y, Lu P, Zhang W, Liu J, Wang Y, Quan L, Ding A. The shock of benzalkonium chloride on aerobic granular sludge system and its microbiological mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165010. [PMID: 37353018 DOI: 10.1016/j.scitotenv.2023.165010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Quaternary ammonium compounds (QACs) are a kind of biocides and surfactants widely used around the world and wastewater treatment systems were identified as its largest pool. QACs could significantly inhibit microbial activity in biological treatment. Aerobic granular sludge (AGS) is an emerging wastewater biological treatment technology with high efficiency and resistance, but it is still unclear if AGS system could tolerate QACs shock. In this study, a typical QAC (benzalkonium chloride (BACC12)) was selected to investigate its effect on AGS system. Results indicate that BAC could inhibit the pollutants removal performance of AGS system, including COD, NH4+-N and PO43- in the short term and the inhibition ratio had positive correlation with BAC concentration. However, AGS system could gradually adapt to the BAC stress and recover its original performance. BAC shock could destroy AGS structure by decreasing its particle size and finally leading to particle disintegration. Although AGS could secret more EPS to resist the stress, BAC still had significant inhibition on cell activity. Microbial community analysis illustrated that after high BAC concentration shock in short term, Thauera decreased significantly while Flavobacterium became the dominant genus. However, after the performance of AGS system recovered the dominant genus returned to Thauera and relevant denitrifiers Phaeodactylibacter, Nitrosomonas and Pseudofulvimonas also increased. The typical phosphorous removal microorganism Rubrivivax and Leadbetterella also showed the similar trend. The variation of denitrification and phosphorus removal microbial community was consistent with AGS system performance indicating the change of functional microorganism played key role in the AGS response to BAC stress.
Collapse
Affiliation(s)
- Yuhao Tong
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Wenyu Zhang
- Chongqing Three Gorges Water Service Co., Ltd., Chongqing 400020, China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jun Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yuhai Wang
- Sinopec Chongqing Shale Gas Co., Ltd, Chongqing, 408400, China
| | - Lin Quan
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Aqiang Ding
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
14
|
Zhu Q, Qian D, Yuan M, Li Z, Xu Z, Liang S, Yu W, Yuan S, Yang J, Hou H, Hu J. Revealing the roles of chemical communication in restoring the formation and electroactivity of electrogenic biofilm under electrical signaling disruption. WATER RESEARCH 2023; 243:120421. [PMID: 37523919 DOI: 10.1016/j.watres.2023.120421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Electrogenic biofilms in microbial electrochemical systems have played significant roles in simultaneous wastewater treatment and energy recovery owing to their unique extracellular electron transfer. Their formation has been shown to be regulated by electrical and chemical communication, but the interaction between these signal communication pathways has not been studied. This research investigated the coordination between intracellular c-di-GMP signaling and reinforced quorum sensing with or without exogenous HSL (a common quorum sensing molecule), on the formation of mixed-cultured electrogenic biofilm under electrical signaling disruption by tetraethylammonium (TEA, a broad-range potassium channel blocker). Intracellular c-di-GMP was spontaneously reinforced in response to TEA stress, and metagenomic analysis revealed that the dominant DGC (the genes for producing c-di-GMP) induced the eventual biofilm formation by mediating exopolysaccharide synthesis. Meanwhile, reinforced quorum sensing by exogenous HSL could also benefit the biofilm restoration, however, it alleviated the TEA-induced communication stress, resulting in the weakening of c-di-GMP dominance. Interestingly, suppressing electrical communication with or without HSL addition both induced selective enrichment of Geobacter of 85.5% or 30.1% respectively. Functional contribution analysis revealed the significant roles of Geobacter and Thauera in c-di-GMP signaling, especially Thauera in resistance to TEA stress. This study proposed a potential strategy for electrogenic biofilm regulation from the perspectives of cell-to-cell communication.
Collapse
Affiliation(s)
- Qian Zhu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China
| | - Dingkang Qian
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Mengjiao Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Zhen Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Ziming Xu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Wenbo Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Shushan Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
15
|
Zahra SA, Purba LDA, Abdullah N, Yuzir A, Iwamoto K, Lei Z, Hermana J. Characteristics of algal-bacterial aerobic granular sludge treating real wastewater: Effects of algal inoculation and alginate-like exopolymers recovery. CHEMOSPHERE 2023; 329:138595. [PMID: 37023906 DOI: 10.1016/j.chemosphere.2023.138595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/16/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Limited information is available on the characteristics of algal-bacterial aerobic granular sludge (AGS) treating real wastewater, especially on its alginate-like exopolymers (ALE) production. In addition, the effect of target microalgae species inoculation on the system performance has not been fully understood. This study aimed to reveal the effect of microalgae inoculation on the characteristics of algal-bacterial AGS and its ALE production potential. Two photo-sequencing batch reactors (PSBR) were employed, namely R1 with activated sludge and R2 with Tetradesmus sp. and activated sludge being inoculated, respectively. Both reactors were fed with locally sourced municipal wastewater and operated for 90 days. Algal-bacterial AGS were successfully cultivated in both reactors. No significant difference was observed between the performances of R1 and R2, reflecting that the inoculation of target microalgae species may not be crucial for the development of algal-bacterial AGS when treating real wastewater. Both reactors achieved an ALE yield of about 70 mg/g of volatile suspended solids (VSS), indicating that a substantial amount of biopolymer can be recovered from wastewater. Interestingly, boron was detected in all the ALE samples, which might contribute to granulation and interspecies quorum sensing. The enrichment of lipids content in ALE from algal-bacterial AGS treating real wastewater reveals its high resource recovery potential. Overall, the algal-bacterial AGS system is a promising biotechnology for simultaneous municipal wastewater treatment and resource (like ALE) recovery.
Collapse
Affiliation(s)
- Sasmitha Aulia Zahra
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Laila Dina Amalia Purba
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Norhayati Abdullah
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia; UTM International, Aras 8, Menara Razak, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Ali Yuzir
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Koji Iwamoto
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Joni Hermana
- Department of Environmental Engineering, Faculty of Civil, Planning and Geoengineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| |
Collapse
|
16
|
Wang S, Wang G, Yan P, Chen Y, Fang F, Guo J. Non-filamentous sludge bulking induced by exopolysaccharide variation in structure and properties during aerobic granulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162786. [PMID: 36907402 DOI: 10.1016/j.scitotenv.2023.162786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The forming mechanism of non-filamentous sludge bulking during aerobic granulation were investigated basing on three feeding strategies (R1 direct aeration after fast feeding, R2 anaerobic stirring after fast feeding and R3 anaerobic plug-flow slow feeding). Results showed that strong selection stress (shortening settling time) led to a sharp flocs washout and the subsequent increase of food to microorganisms (F/M) in R1 and R3 reactors, but not found in R2 due to the different strategies of feeding modes. With the increase of F/M, zeta potential and hydrophobicity of sludge surfaces significantly decreased and thus leading to an enhanced repulsive force and energy barriers for sludge aggregation. Particularly, when F/M exceeded 1.2 kgCOD/(kgMLSS·d), non-filamentous sludge bulking was ultimately triggered in R1 and R3. Further analysis showed that massive extracellular exopolysaccharide (PS) accumulated on the surfaces of non-filamentous bulking sludge due to the increased abundance of the microorganisms related to PS secretion during sludge bulking. In addition, significantly increased intracellular second messenger (c-di-GMP), a key substance regulating PS biosynthesis, was confirmed via its concentration determination as well as microbial function prediction analysis, which played a critical role in sludge bulking. Combing with the systematic detection from surface plasmon resonance system, rheometer and size-exclusion chromatography-multiangle laser light detection-refractive index system, higher molecular weight, compact conformation, higher viscosity and higher hydrophilicity was determined in sludge bulking PS relative to PS extracted from non-filamentous bulking sludge. Clearly, the changes of PS (content, structures and properties) driven by c-di-GMP are the dominant mechanism for the formation of non-filamentous sludge bulking during aerobic granulation. This work could provide theoretical support for successful start-up and application of aerobic granular sludge technology.
Collapse
Affiliation(s)
- Shuai Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Gonglei Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Youpeng Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Jinsong Guo
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
17
|
Zou J, Cai L, Lin J, Wang R, Li J, Jia M. Anaerobic fermentation of aerobic granular sludge: Insight into the effect of granule size and sludge structure on hydrolysis and acidification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118202. [PMID: 37229861 DOI: 10.1016/j.jenvman.2023.118202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Aerobic granular sludge (AGS) has different physicochemical properties and microbial communities compared to conventional activated sludge (CAS), which may result in different behaviors during anaerobic fermentation and require further investigation. This study investigated the effect of granule size and sludge structure on the hydrolysis and acidification of AGS. Experimental results show that AGS exhibited significantly higher soluble chemical oxygen demand (SCOD) dissolution and total volatile fatty acids (TVFA) production (330.6-430.3 mg/gVSS and 231.0-312.5 mgCOD/gVSS) compared to conventional activated sludge (CAS) (167.0 mg/gVSS and 133.3 mgCOD/gVSS). This is because AGS (90.6-96.9 mg/gVSS) had higher extracellular polymeric substances (EPS) content than CAS (81.2 mg/gVSS). EPS can not only serve as substrates but also release the trapped hydrolases. Moreover, the relative abundances of hydrolytic/acidogenic bacteria and genes were higher in AGS (0.46%-3.60% and 3.01 × 10-3%-4.04 × 10-3%) than in CAS (0.30% and 1.23 × 10-3%). The optimal granule size for AGS fermentation was found to be 500-1600 μm. The crushing of granule structure promoted the dissolution of small amounts of EPS and the release of some trapped hydrolases, thereby potentially enhancing the enzyme-substrate contacts and bacteria-substrate interactions. Therefore, the highest SCOD dissolution (510.6 mg/gVSS) and TVFA production (352.1 mgCOD/gVSS) from crushed 500-1600 μm AGS were observed. Overall, the findings of this study provide valuable insights into the recovery of organic carbon from AGS via anaerobic fermentation.
Collapse
Affiliation(s)
- Jinte Zou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, 312000, China
| | - Lei Cai
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianrui Lin
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ruyi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Jun Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mingsheng Jia
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
18
|
Sethi S, Gupta R, Bharshankh A, Sahu R, Biswas R. Celebrating 50 years of microbial granulation technologies: From canonical wastewater management to bio-product recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162213. [PMID: 36796691 DOI: 10.1016/j.scitotenv.2023.162213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Microbial granulation technologies (MGT) in wastewater management are widely practised for more than fifty years. MGT can be considered a fine example of human innovativeness-driven nature wherein the manmade forces applied during operational controls in the biological process of wastewater treatment drive the microbial communities to modify their biofilms into granules. Mankind, over the past half a century, has been refining the knowledge of triggering biofilm into granules with some definite success. This review captures the journey of MGT from inception to maturation providing meaningful insights into the process development of MGT-based wastewater management. The full-scale application of MGT-based wastewater management is discussed with an understanding of functional microbial interactions within the granule. The molecular mechanism of granulation through the secretion of extracellular polymeric substances (EPS) and signal molecules is also highlighted in detail. The recent research interest in the recovery of useful bioproducts from the granular EPS is also emphasized.
Collapse
Affiliation(s)
- Shradhanjali Sethi
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Rohan Gupta
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Ankita Bharshankh
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Rojalin Sahu
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Rima Biswas
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India.
| |
Collapse
|
19
|
Amancio Frutuoso FK, Ferreira Dos Santos A, da Silva França LL, Mendes Barros AR, Bezerra Dos Santos A. Influence of operating regime on resource recovery in aerobic granulation systems under osmotic stress. BIORESOURCE TECHNOLOGY 2023; 376:128850. [PMID: 36898562 DOI: 10.1016/j.biortech.2023.128850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Aerobic granular sludge (AGS) systems have great potential for biopolymers recovery, especially when subjected to adverse conditions. This work aimed to study the production of alginate-like exopolymers (ALE) and tryptophan (TRY) under osmotic pressure in conventional and staggered feeding regimes. The results revealed that systems operated with conventional feed accelerated the granulation, although less resistant to saline pressures. The staggered feeding systems favored better denitrification conditions and long-term stability. Salt addition gradient increase influenced biopolymers' production. However, staggered feeding, despite decreasing the famine period, did not influence the production of resources and extracellular polymeric substances (EPS). Sludge retention time (SRT), which was not controlled, proved to be an important operational parameter with negative influences on biopolymers' production in values greater than 20 days. Thus, the principal component analysis confirmed that the production of ALE at low SRT is related to better-formed granules with good sedimentation characteristics and good AGS performances.
Collapse
Affiliation(s)
| | - Amanda Ferreira Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
20
|
Niu X, Han X, Jin Y, Yue J, Zhu J, Xie W, Yu J. Aerobic granular sludge treating hypersaline wastewater: Impact of pH on granulation and long-term operation at different organic loading rates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117164. [PMID: 36603256 DOI: 10.1016/j.jenvman.2022.117164] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
pH is one of the major parameters that influence the granulation and long-term operation of aerobic granular sludge (AGS). In hypersaline wastewater, the impact of pH on granulation and the extent of organic loading rate (OLR) that AGS can withstand under different pH are still not clear. In this study, AGS was cultivated at 3% salinity in three sequencing batch reactors with influent pH values of 5.0, 7.0, and 9.0, respectively, and the OLR was stepwise increased from 2.4 to 16.8 kg COD/m3·d after the granules maturation. The results showed the satisfactory granulation and organic removal under different influent pH conditions, in which the granulation was completed on day 43, 23, and 23, respectively. Neutral influent was the most appropriate for development of salt-tolerant aerobic granular sludge (SAGS), while acidic environment induced the formation of fluffy filamentous granules, and alkaline environment weakened the granule stability. Metagenomic analysis revealed the similar microbial community of neutral and alkaline conditions, with the predominance of genus Paracoccus_f__Rhodobacteraceae. While in acidic environment, fungus Fusarium formed the skeleton of filamentous granules and functioned as the carrier of bacteria including Azoarcus and Pararhodobacter. With the elevation of OLR, SAGSs were found to maintain the compact structure under OLRs of 2.4, 7.2, and 2.4 kg COD/m3·d, and obtain high TOC removal (>95.0%) under OLRs of 7.2, 14.4, and 14.4 kg COD/m3·d, respectively. For hypersaline high-strength organic wastewater, satisfactory TOC removal could also be obtained at broad pH ranges (5.0-9.0), in which neutral environment was the most suitable and acidic environment was the worst. This study contributed to a better understanding of SAGS granulation and treatment of hypersaline high-strength organic wastewater with different pH values.
Collapse
Affiliation(s)
- Xueying Niu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yan Jin
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingxue Yue
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingyi Zhu
- PetroChina Planning & Engineering Institute, 3 Zhixinxi Road, Beijing, 100083, China
| | - Weihong Xie
- PetroChina Planning & Engineering Institute, 3 Zhixinxi Road, Beijing, 100083, China
| | - Jianguo Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
21
|
Amancio Frutuoso FK, Ferreira Dos Santos A, da Silva França LL, Mendes Barros AR, Bezerra Dos Santos A. Influence of salt addition to stimulating biopolymers production in aerobic granular sludge systems. CHEMOSPHERE 2023; 311:137006. [PMID: 36330972 DOI: 10.1016/j.chemosphere.2022.137006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The influence of salt addition to stimulating biopolymers production in aerobic granular sludge (AGS) systems was evaluated. The control systems (R1: acetate and R2: propionate) initially obtained less accumulation of mixed liquor volatile suspended solids (MLVSS), indicating that the osmotic pressure in the salt-supplemented systems (R3: acetate and R4: propionate) contributed to biomass growth. However, the salt-supplemented systems collapsed between days 110 and 130 of operation. R3 and R4 showed better performance regarding nutrients removal due to the greater abundance of nitrifying and denitrifying bacteria and phosphate-accumulating organisms. Salt also contributed to the higher production of biopolymers such as alginate-like exopolymers (ALE) per gram of volatile suspended solids (VSS) (R1: 397 mgALE∙gVSS-1, R2: 140 mgALE∙gVSS-1, R3: 483 mgALE∙gVSS-1, R4: 311 mgALE∙gVSS-1). Amino acids like tyrosine and tryptophan were better identified in extracellular polymeric substances extract from salt-operated reactors. This study brings important results in the context of resource recovery by treating saline effluents.
Collapse
Affiliation(s)
| | - Amanda Ferreira Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
22
|
Cydzik-Kwiatkowska A, Gusiatin MZ, Zielińska M, Wojnowska-Baryła I, Kulikowska D, Bernat K. Alginate-like polymers from full-scale aerobic granular sludge: content, recovery, characterization, and application for cadmium adsorption. Sci Rep 2022; 12:22260. [PMID: 36564508 PMCID: PMC9789099 DOI: 10.1038/s41598-022-26743-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Aerobic granular sludge (AGS) is a proven resource for the recovery of biopolymers like alginate-like polymers (ALP). This is the first report on the dynamics of ALP produced by AGS (ALP-AGS) in a full-scale wastewater treatment plant (WWTP), optimization of ALP recovery from AGS, and adsorption of cadmium (Cd2+) by ALP. Recovery of ALP was highest when using 120 mL of 0.2 M Na2CO3 at 70 °C for 45 min. Seasonal (1.5 years, over 3100 cycles) and intra-cycle changes in ALP-AGS in the WWTP were monitored. The ALP content in AGS increased in the transition period between winter and spring, reaching over 150 mg/g MLSS. In the batch reactor cycle, the ALP-AGS level peaked 2 h after the start of aeration (mean peak level: 120 mg/g MLSS), then decreased about two-fold by the end of the cycle. The ALP-AGS had a small surface area and a lamellar structure with crystalline outgrowths. The optimal conditions of Cd2+ adsorption with ALP were a dosage of 7.9 g d.m./L, a pH of 4-8, and an equilibrium time of 60 min. Carboxyl and hydroxyl groups were the key functional groups involved in Cd2+ adsorption. According to the Sips model, the maximum Cd2+ adsorption capacity of ALP-AGS was 29.5 mg/g d.m., which is similar to that of commercial alginate. AGS is a richer source of ALP than activated sludge, which ensures the cost-effectiveness of ALP recovery and increases the sustainability of wastewater treatment. Information on the chemical properties and yields of ALP from full-scale WWTPs is important for downstream applications with the recovered ALP.
Collapse
Affiliation(s)
- Agnieszka Cydzik-Kwiatkowska
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709, Olsztyn, Poland
| | - Mariusz Z Gusiatin
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709, Olsztyn, Poland.
| | - Magdalena Zielińska
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709, Olsztyn, Poland
| | - Irena Wojnowska-Baryła
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709, Olsztyn, Poland
| | - Dorota Kulikowska
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709, Olsztyn, Poland
| | - Katarzyna Bernat
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709, Olsztyn, Poland
| |
Collapse
|
23
|
Chen X, Lee YJ, Yuan T, Lei Z, Adachi Y, Zhang Z, Lin Y, van Loosdrecht MCM. A review on recovery of extracellular biopolymers from flocculent and granular activated sludges: Cognition, key influencing factors, applications, and challenges. BIORESOURCE TECHNOLOGY 2022; 363:127854. [PMID: 36067889 DOI: 10.1016/j.biortech.2022.127854] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
A reasonable recovery of excess sludge may shift the waste into wealth. Recently an increasing attention has been paid to the recycling of extracellular biopolymers from conventional and advanced biological wastewater treatment systems such as flocculent activated sludge (AS), bacterial aerobic granular sludge (AGS), and algal-bacterial AGS processes. This review provides the first overview of current research developments and future directions in the recovery and utilization of high value-added biopolymers from the three types of sludge. It details the discussion on the recent evolvement of cognition or updated knowledge on functional extracellular biopolymers, as well as a comprehensive summary of the operating conditions and wastewater parameters influencing the yield, quality, and functionality of alginate-like exopolymer (ALE). In addition, recent attempts for potential practical applications of extracellular biopolymers are discussed, suggesting research priorities for overcoming identification challenges and future prospects.
Collapse
Affiliation(s)
- Xingyu Chen
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yu-Jen Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Tian Yuan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Yasuhisa Adachi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| |
Collapse
|
24
|
He Q, Yan X, Fu Z, Zhang Y, Bi P, Mo X, Xu P, Ma J. Rapid start-up and stable operation of an aerobic/oxic/anoxic simultaneous nitrification, denitrification, and phosphorus removal reactor with no sludge discharge. BIORESOURCE TECHNOLOGY 2022; 362:127777. [PMID: 35985464 DOI: 10.1016/j.biortech.2022.127777] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
An anaerobic/aerobic/anoxic mode simultaneous nitrification, denitrification, and phosphorus removal system was visited for enhanced low-strength wastewater treatment and dramatic in situ sludge reduction. Results showed that rapid start-up was achieved with conventional activated sludge after 15 days, with effluent ammonia nitrogen, total nitrogen, total phosphorus, and chemical oxygen demand being 0.25, 7.89, 0.12, 24.37 mg/L, respectively. A two-stage biomass growth rate was observed with the sludge yield of 0.285 (day 1-50) and 0.017 g MLSS/g COD (day 51-110) without sludge discharge. Dynamics of bacterial community has been identified with outstanding accumulation of Candidatus_Competibacter up to 29.06 %, which contributed to both simultaneous nutrients removal and sludge reduction. Further analysis via PICRUSt2 revealed the main pathway of nitrogen metabolism, while proposed mechanism for phosphorus removal with no sludge discharge was analyzed from the intracellular and extracellular perspectives. Overall, this study provided guidance and reference for the development and application of A/O/A-SNDPR technology.
Collapse
Affiliation(s)
- Qiulai He
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China.
| | - Xiaohui Yan
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Zhidong Fu
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Yihang Zhang
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Peng Bi
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Xingliang Mo
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Peng Xu
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Jingwei Ma
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
25
|
Chen L, Wang XD, Chang JS, Lee DJ. Biofilm with highly heterogeneous interior structure for pollutant removal: Effects of individual extracellular polymeric substance. BIORESOURCE TECHNOLOGY 2022; 361:127669. [PMID: 35878769 DOI: 10.1016/j.biortech.2022.127669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
For the first time, this study reveals the effects of an individual component of extracellular polymeric substances on the substrate consumption rates by the embedded cells based on the highly heterogeneous interior structures of a working biofilm. The flow-across mode in operation established a boundary-layer flow field with high transport resistance, making the uniformly structured model valid. Conversely, the flow field of the flow-through mode is determined by 46% jointly by proteins and β-d-glucopyranose polysaccharides. The substrate consumption rates hindered by β-d-glucopyranose polysaccharide is up to 60% over the 20%-40% biofilm height from the bottom, much lower than expected by the uniformly structured models. The strategies to maximize the biofilm performance have been suggested.
Collapse
Affiliation(s)
- Liuyi Chen
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China; School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiao-Dong Wang
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China; School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering & Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
26
|
Ferreira Dos Santos A, Amancio Frutuoso FK, de Amorim de Carvalho C, Sousa Aguiar Lira VN, Mendes Barros AR, Bezerra Dos Santos A. Carbon source affects the resource recovery in aerobic granular sludge systems treating wastewater. BIORESOURCE TECHNOLOGY 2022; 357:127355. [PMID: 35609753 DOI: 10.1016/j.biortech.2022.127355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the influence of carbon sources on alginate-like exopolymers (ALE) and tryptophan (Trp) biosynthesis in the aerobic granular sludge (AGS). With acetate, the highest biopolymers levels, per gram of volatile suspended solids (VSS) (418.7 mgALE∙g-1 and 4.1 mgTrp∙gVSS-1), were found likely due to biomass loss throughout the operation, which resulted in lower sludge age (4-7 days) and shorter famine period. During granulation, encouraging results on ALE production were obtained with propionate (>250 mgALE∙gVSS-1), significantly higher than those found with glycerol, glucose, and sucrose. Regarding tryptophan production, propionate and glycerol proved to be good substrates, although the content was still lower than acetate (1.6 mgTrp∙gVSS-1). Granules fed with glucose showed the worst results compared to the other substrates (38.5 mgALE∙VSS-1 and 0.6 mgTrp∙gVSS-1) due to the filamentous microorganisms' abundance found. Therefore, this study provides insights to value the production of compounds of industrial interest in AGS systems.
Collapse
Affiliation(s)
- Amanda Ferreira Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Clara de Amorim de Carvalho
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
27
|
Chen X, Wang J, Wang Q, Li Z, Yuan T, Lei Z, Zhang Z, Shimizu K, Lee DJ. A comparative study on simultaneous recovery of phosphorus and alginate-like exopolymers from bacterial and algal-bacterial aerobic granular sludges: Effects of organic loading rate. BIORESOURCE TECHNOLOGY 2022; 357:127343. [PMID: 35605775 DOI: 10.1016/j.biortech.2022.127343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The effects of organic loading rate (OLR) on simultaneous phosphorus (P) and alginate-like exopolymers (ALE) recovery from bacterial aerobic granular sludge (AGS) and algal-bacterial AGS were examined and compared during 70 days' operation. With the increase of OLR (0.6-1.2 g COD/(L·day)), both AGS showed good settleability and granular strength with P bioavailability > 92% (Stage III). The moderate increase in OLR had a positive influence on simultaneous recovery of P and ALE. On day 60, the contents of ALE and guluronic acid/guluronic acid (GG) blocks reached the highest in algal-bacterial AGS, about 13.37 and 2.13 mg/g-volatile suspended solids (VSS), respectively. Meanwhile, about daily 0.55 kg of P is estimated to be recovered from the wastewater treatment plant with a treatment capacity of 10,000 m3/day. P mass balance analysis during ALE extraction from both AGS was conducive to further evaluation of P removal pathway and its application potentials.
Collapse
Affiliation(s)
- Xingyu Chen
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jixiang Wang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Qian Wang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zejiao Li
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tian Yuan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| |
Collapse
|
28
|
Yang F, Qu J, Huang X, Chen Y, Yan P, Guo J, Fang F. Phosphorus deficiency leads to the loosening of activated sludge: The role of exopolysaccharides in aggregation. CHEMOSPHERE 2022; 290:133385. [PMID: 34942214 DOI: 10.1016/j.chemosphere.2021.133385] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Whether phosphorus deficiency in influent will affect the aggregation and sedimentation of activated sludge needs to be further clarified. This paper systematically studied the structure, aggregation and settlement of activated sludge, and the composition, properties and chemical structure of extracellular polymers and microbial community structure of sludge under different influent phosphorus contents to determine the causes of sludge aggregation and structural deterioration. The results show that phosphorus deficiency in influent leads to a decrease in the aggregation capacity and a loose structure of activated sludge, and the reduction of hydrophobic interactions is the main factor of sludge aggregation and structural deterioration. The content, functional groups and protein secondary structure of extracellular protein were almost unchanged. An increase in the content and hydrophilicity of extracellular polysaccharide (PS) results in a decrease in sludge hydrophobicity. Under phosphorus deficiency, the changes in microbial species related to PS secretion were the reasons for the increase in PS content and hydrophilicity. The negative effects of PS content and hydrophilicity on sludge aggregation and structure are important findings of this work and are expected to be useful for better understanding the restoration of activated sludge performance in the treatment of phosphorus-deficient wastewater.
Collapse
Affiliation(s)
- Fan Yang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Jianwei Qu
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xiaoxiao Huang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Youpeng Chen
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Peng Yan
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Jinsong Guo
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
29
|
Chen X, Wang J, Wang Q, Yuan T, Lei Z, Zhang Z, Shimizu K, Lee DJ. Simultaneous recovery of phosphorus and alginate-like exopolysaccharides from two types of aerobic granular sludge. BIORESOURCE TECHNOLOGY 2022; 346:126411. [PMID: 34838630 DOI: 10.1016/j.biortech.2021.126411] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Wastewater treatment plants are expected to realize not only pollutants removal from wastewater but also resources recovery such as phosphorus (P) and alginate-like exopolysaccharides (ALE) from the produced sludge. In this study, ALE extraction and fractionation from the same activated sludge-derived bacterial aerobic granular sludge (AGS) and algal-bacterial AGS were performed in addition to P fate examination during ALE recovery. Results showed that the ALE content recovered from algal-bacterial AGS was 8.81 ± 0.02 mg/g-volatile suspended solids (VSS), about 2.8 times higher than that from bacterial AGS when fed with the same synthetic wastewater. Moreover, the mannuronic acid to guluronic acid (MG) blocks accounted for the largest proportion of ALE from the two granular sludges. In particular, the extracellular polymeric substances (EPS) extracted from bacterial and algal-bacterial AGS contained about 25.10 ± 1.85 and 19.53 ± 0.04 mg-P/g-SS, respectively, and both granular sludges possessed high P bioavailability of 97-99%.
Collapse
Affiliation(s)
- Xingyu Chen
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jixiang Wang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Qian Wang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tian Yuan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| |
Collapse
|
30
|
A Distinct, Flocculent, Acidogenic Microbial Community Accompanies Methanogenic Granules in Anaerobic Digesters. Microbiol Spectr 2021; 9:e0078421. [PMID: 34756083 PMCID: PMC8579839 DOI: 10.1128/spectrum.00784-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The formation of dense, well-settling methanogenic granules is essential for the operation of high-rate, up-flow anaerobic bioreactors used for wastewater treatment. Granule formation (granulation) mechanisms have been previously proposed, but an ecological understanding of granule formation is still lacking. Additionally, much of the current research on granulation only examines the start-up phase of bioreactor operation, rather than monitoring the fate of established granules and how new granules emerge over time. This paper, therefore, attempts to provide an insight into the microbial ecology of granule formation outside the start-up phase of bioreactor operation and develop an ecological granulation model. The microbial communities of granules actively undergoing growth, breakage, and reformation were examined, and an ecological granulation model was proposed. A distinct pregranular microbial community, with a high proportion of acidogenic organisms, such as the Streptococcaceae, was identified and suggested to have a role in initiating granulation by providing simpler substrates for the methanogenic and syntrophic communities which developed during granule growth. After initial granule formation, deterministic influences on microbial community assembly increased with granule size and indicated that microbial community succession was influenced by granule growth, leading to the formation of a stepwise ecological model for granulation. IMPORTANCE Complex microbial communities in engineered environments can aggregate to form surface-attached biofilms. Others form suspended biofilms, such as methanogenic granules. The formation of dense, methanogenic granules underpins the performance of high-rate, anaerobic bioreactors in industrial wastewater treatment. Granule formation (granulation) has been well studied from a physico-chemical perspective, but the ecological basis is poorly understood. We identified a distinct, flocculent, microbial community, which was present alongside granules, comprising primary consumers likely key in providing simpler substrates to granules. This flocculent community is understudied in anaerobic digestion and may initiate, or perpetuate, granule formation. We propose that it may be possible to influence bioreactor performance (e.g., to regulate volatile fatty acid concentrations) by manipulating this community. The patterns of microbial community diversity and assembly revealed by the study indicate that cycles of granule growth and breakage lead to overall diversification of the bioreactor meta-community, with implications for bioreactor process stability.
Collapse
|
31
|
Wan C, Li Z, Shen Y, Liu X. Alternating nitrogen feeding strategy induced aerobic granulation: Influencing conditions and mechanism. J Environ Sci (China) 2021; 109:135-147. [PMID: 34607662 DOI: 10.1016/j.jes.2021.03.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 06/13/2023]
Abstract
Effective cultivation of stable aerobic granular sludge (AGS) is a crucial step in the successful application of this technology, and the formation of AGS could be facilitated by some environmental stress conditions. Four identical sequencing batch reactors (SBRs) were established to investigate the aerobic granulation process under the same alternating ammonia nitrogen feeding strategy superimposed with different environmental conditions (inorganic carbon source, temperature, N/COD). Although various superimposed conditions induced a significant difference in the size, settling velocity, mechanic strength of AGS, mature aerobic granules could be successfully obtained in all four reactors after 70 days' operation, indicating the alternating ammonia nitrogen feeding strategy was the most critical factor for AGS formation. Based on the results of redundancy analysis, the presence of an inorganic carbon source could facilitate the cultivation of AGS with nitrification function, while the moderate temperature and fluctuant N/COD might benefit the cultivation of more stable AGS. In addition, superimposed stress conditions could result in the difference in the microbial population between four reactors, but the population diversity and abundance of microorganisms were not the determinants of AGS formation. This study provided an effective method for the cultivation of AGS by using alternating ammonia nitrogen feeding strategy.
Collapse
Affiliation(s)
- Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zhengwen Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yanggui Shen
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|
32
|
Li J, Hao X, Gan W, van Loosdrecht MCM, Wu Y. Recovery of extracellular biopolymers from conventional activated sludge: Potential, characteristics and limitation. WATER RESEARCH 2021; 205:117706. [PMID: 34600231 DOI: 10.1016/j.watres.2021.117706] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Extracellular polymeric substances (EPS) are biopolymers that can be recovered from excess sludge, which could contribute to a more sustainable wastewater treatment plant (WWTP) operation. An example is alginate like extracellular polymers (ALE) contained in the biopolymers could be a potential resource with a highly-added value. EPS extraction for ALE from aerobic granules sludge (AGS) has already been well studied and applied in the Netherlands. On the other hand, there is little attention to the recovery of biopolymers from conventional activated sludge (CAS). In this study, flocculent sludge from eight CAS-WWTPs in China was collected and their EPS/biopolymers were extracted to investigate their recovery potential, chemical & physical properties and limiting factors. The results revealed that the biopolymers extracted and purified from CAS ranged from 90 to 190 mg/g VSS. The compositional characteristics of the biopolymers were observed by FT-IR, 3D-EEM and UV-Visible spectra, demonstrating some differences in the composition and property of the biopolymers from the different WWTPs. The biopolymers had a similarity of about 60% to a commercial alginate with respect to chemical functional groups and the alginate equivalent was >400 mg/g biopolymers. Moreover, the biopolymers consisted of poly (guluronic acid) blocks (20%-30%) and poly (guluronic acid-mannuronic acid) blocks (8%-28%), and the ionic hydrogel formation tests indicated that condensed beads were immediately formed once the drops of the biopolymers came in contact with CaCl2 solution. These results demonstrated that the biopolymers extracted had a relatively high gel-forming capacity and might also have a potential application as commercial biopolymers. Furthermore, the factors influencing the biopolymers' formation such as influent substrate, nutrient content and microbial community and the related mechanisms were investigated. Among them, increasing soluble organics (SCOD) content and low nutrient content (C/N/P) in the influent could promote the biopolymers' formation. Also, different bacteria in BNR processes might have positive or negative effects on the biopolymers' formation. In conclusion, the diversity and abundance of bacteria were identified to be a crucial and decisive factor controlling biopolymers' extraction and composition.
Collapse
Affiliation(s)
- Ji Li
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Centre of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Centre of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China
| | - Wei Gan
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Centre of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China
| | - Mark C M van Loosdrecht
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Centre of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China; Dept. of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Yuanyuan Wu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Centre of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China
| |
Collapse
|
33
|
Amorim de Carvalho CD, Ferreira Dos Santos A, Tavares Ferreira TJ, Sousa Aguiar Lira VN, Mendes Barros AR, Bezerra Dos Santos A. Resource recovery in aerobic granular sludge systems: is it feasible or still a long way to go? CHEMOSPHERE 2021; 274:129881. [PMID: 33582539 DOI: 10.1016/j.chemosphere.2021.129881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Lately, wastewater treatment plants are much often being designed as wastewater-resource factories inserted in circular cities. Among biological treatment technologies, aerobic granular sludge (AGS), considered an evolution of activated sludge (AS), has received great attention regarding its resource recovery potential. This review presents the state-of-the-art concerning the influence of operational parameters on the recovery of alginate-like exopolysaccharides (ALE), tryptophan, phosphorus, and polyhydroxyalkanoates (PHA) from AGS systems. The carbon to nitrogen ratio was identified as a parameter that plays an important role for the optimal production of ALE, tryptophan, and PHA. The sludge retention time effect is more pronounced for the production of ALE and tryptophan. Additionally, salinity levels in the bioreactors can potentially be manipulated to increase ALE and phosphorus yields simultaneously. Some existing knowledge gaps in the scientific literature concerning the recovery of these resources from AGS were also identified. Regarding industrial applications, tryptophan has the longest way to go. On the other hand, ALE production/recovery could be considered the most mature process if we take into account that existing alternatives for phosphorus and PHA production/recovery are optimized for activated sludge rather than granular sludge. Consequently, to maintain the same effectiveness, these processes likely could not be applied to AGS without undergoing some modification. Therefore, investigating to what extent these adaptations are necessary and designing alternatives is essential.
Collapse
Affiliation(s)
- Clara de Amorim de Carvalho
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Amanda Ferreira Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
34
|
Chen Y, Ge J, Wang S, Su H. Insight into formation and biological characteristics of Aspergillus tubingensis-based aerobic granular sludge (AT-AGS) in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140128. [PMID: 32758956 DOI: 10.1016/j.scitotenv.2020.140128] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The long start-up time and facile biomass loss of aerobic granular sludge (AGS) impede its application for actual wastewater treatment. The present study investigates a novel assist-aggregation strategy based on Aspergillus tubingensis (AT) mycelium pellets to accelerate sludge granulation, and engineered Fe3O4 nanoparticles (NPs) were used to further enhance flocculent sludge (FS) aggregation. The AT mycelium pellets, modified by 0.5 g/L Fe3O4@SiO2-QC NPs (AT-V), had a more compact internal structure than the unmodified group (AT-I). The content of extracellular polymeric substances (EPS) and the zeta potential values were observed to increase from 39.86 mg/gVSS and -9.19 mv for AT-I to 69.64 mg/gVSS and 2.35 mv for AT-V, respectively. In optimized cultivation conditions, the aggregated sludge biomass of AT-V reached 1.54 g/g. An original AT-based AGS (AT-AGS) with a high biological activity (64.45 mgO2/gVSS·h as specific oxygen uptake rate) and enhanced velocity (58.22 m/h) was developed in only 9 days. The removal efficiencies of total nitrogen (TN) and total phosphorus (TP) of the AT-AGS were 12.24% and 16.29% higher than those of the inoculated FS under high feeding load. Additionally, the analysis of cyclic diguanylate (c-di-GMP) and con-focal microscope images implied that polysaccharide (PS) of EPS played an important role in maintaining the stability of the AT-AGS. Finally, the dominant functional species contributing to sludge aggregation and pollutants removal of the AT-AGS showed a larger richness and diversity than those of the inoculated FS. This study might provide a novel high-efficiency strategy for the fast formation of AGS.
Collapse
Affiliation(s)
- Yingyun Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Jiye Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Shaojie Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China; Institute of Nano Biomedicine and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
35
|
Evaluation of the production of alginate-like exopolysaccharides (ALE) and tryptophan in aerobic granular sludge systems. Bioprocess Biosyst Eng 2020; 44:259-270. [PMID: 32889571 DOI: 10.1007/s00449-020-02439-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/25/2020] [Indexed: 01/02/2023]
Abstract
The engineering and microbiological aspects involved in the production of alginate-like exopolysaccharides (ALE) and tryptophan (TRY) in aerobic granular sludge systems were evaluated. The inclusion of short anoxic phase (A/O/A cycle-anaerobic, oxic, and anoxic phase) and the control of sludge retention time (SRT ≈ 10 days) proved to be an important strategy to increase the content of these bioproducts in granules. The substrate concentration also has a relevant impact on the production of ALE and TRY. The results of the microbiological analysis showed that slow-growing heterotrophic microbial groups (i.e., PAOs and GAOs) might be associated with the production of ALE, and the EPS-producing fermentative bacteria might be associated with the TRY production. The preliminary economic evaluation indicated the potential of ALE recovery in AGS systems in decreasing the OPEX (operational expenditure) of the treatment, especially for larger sewage treatment plants or industrial wastewaters with a high organic load.
Collapse
|
36
|
Luiz de Sousa Rollemberg S, Queiroz de Oliveira L, Nascimento de Barros A, Igor Milen Firmino P, Bezerra Dos Santos A. Pilot-scale aerobic granular sludge in the treatment of municipal wastewater: Optimizations in the start-up, methodology of sludge discharge, and evaluation of resource recovery. BIORESOURCE TECHNOLOGY 2020; 311:123467. [PMID: 32388453 DOI: 10.1016/j.biortech.2020.123467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
This work evaluated the formation, maintenance, performance, and microbiology of a pilot-scale aerobic granular sludge reactor treating low-strength municipal wastewater under tropical climate conditions. Additionally, different resource recovery possibilities (phosphorous, tryptophan, and alginate-like exopolysaccharides) were investigated from the produced sludge. Granulation occurred after 35 days without external carbon source supplementation (CODinf ≈ 461 mg/L; COD/DBO5 ≈ 3.2). Some protocols were implemented: (i) fat separation to decrease granule flotation; (ii) high exchange rates (60%) during rainy periods to increase the organic load; (iii) selective sludge discharge methodology. After granules formation, optimizations were done to improve reactor performance (COD, BOD, NH4+, and PO43- removals close to 90%), and energy demand reduced from 0.43 (start-up) to 0.25 kWh/m3 (after optimizations). The produced sludge had a high concentration of phosphorus (0.020 g P/g VSS), tryptophan (0.048 g tryptophan/g VSS), and alginate-like exopolysaccharides (0.219 g ALE/g VSS), indicating a good resource recovery possibility.
Collapse
Affiliation(s)
| | - Lorayne Queiroz de Oliveira
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Amanda Nascimento de Barros
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Paulo Igor Milen Firmino
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
37
|
Schambeck CM, Girbal-Neuhauser E, Böni L, Fischer P, Bessière Y, Paul E, da Costa RHR, Derlon N. Chemical and physical properties of alginate-like exopolymers of aerobic granules and flocs produced from different wastewaters. BIORESOURCE TECHNOLOGY 2020; 312:123632. [PMID: 32531737 DOI: 10.1016/j.biortech.2020.123632] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
The influence of wastewater (WW) composition and the bioaggregates types (floccular vs. aerobic granular sludge - AGS) on the content, physical-chemical, hydrogel and rheological properties of Alginate-Like Exopolymers (ALE) was studied. Results showed that ALE are a complex mixture of proteins, humic acids and polysaccharides. Overall, rather similar ALE content and composition was observed for the different types of sludge. Only the AGS fed with acetate and propionate yielded significantly larger amount of ALE (261 ± 33 mg VSALE/g VSsludge, +49%) and of uronic sugars in ALE (254 ± 32 mgglucuronic acid/g VSALE, +62%) than bioaggregates fed with no/very little volatile fatty acids. Mannuronic acids are involved in the cohesion of the hydrogels. ALE hydrogels elasticity changed significantly with the type/origin of the bioaggregates. ALE hydrogels elasticity from AGS was always higher than from flocs when fed with real WW. Hence, different types of sludge impact the properties of the recovered ALE.
Collapse
Affiliation(s)
- Cássio Moraes Schambeck
- Sanitary and Environmental Engineering Department, Federal University of Santa Catarina, 88040-970 Florianópolis, Brazil; Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Elisabeth Girbal-Neuhauser
- Laboratoire de Biotechnologies Agroalimentaire et Environmentale (LBAE), Université Paul Sabatier, 31000 Toulouse, France
| | - Lukas Böni
- Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Peter Fischer
- Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Etienne Paul
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Rejane Helena Ribeiro da Costa
- Sanitary and Environmental Engineering Department, Federal University of Santa Catarina, 88040-970 Florianópolis, Brazil
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
38
|
Schambeck CM, Magnus BS, de Souza LCR, Leite WRM, Derlon N, Guimarães LB, da Costa RHR. Biopolymers recovery: dynamics and characterization of alginate-like exopolymers in an aerobic granular sludge system treating municipal wastewater without sludge inoculum. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 263:110394. [PMID: 32174534 DOI: 10.1016/j.jenvman.2020.110394] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/04/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Alginate-like exopolymers (ALE) are present in the extracellular polymeric substances (EPS) of biological sludge such as aerobic granular sludge (AGS). The recovery of ALE from excess sludge produced by wastewater treatment plants (WWTP) is a relevant approach for the recovery of valuable products of industrial interest. However, little is known about dynamics of ALE content in sludge and associated factors. Thus, this study aimed at assessing the dynamics of EPS and ALE in terms of content, some chemical properties and influencing environmental factors along granulation in a sequencing batch reactor treating municipal wastewater. Results indicated that the EPS content was not correlated with the development of AGS, while the ALE content was higher, more stable and steadily increased after granulation achievement. Overall, 236 ± 27 mg VSALE/g VSsludge was recovered from AGS and 187 ± 94 mg VSALE/g VSsludge from flocs. However, the lower ALE content in flocs may be compensated by the higher sludge production rate in activated sludge systems. Principal component analysis (PCA) revealed that ALE content positively correlates with the nutrient and organic substrate conversion, and with the fraction of large AGS. Microbial analyses indicated that a stable microbial community composition was associated with a higher and more stable ALE content. ALE recovered from both flocs and AGS was endowed with hydrogel property, and no clear difference in their elemental composition and functional groups was observed. Therefore, our study provides insights about quantitative and qualitative aspects of ALE which are helpful for the improvement of waste biological sludge valorization.
Collapse
Affiliation(s)
- Cássio Moraes Schambeck
- Federal University of Santa Catarina, Trindade University Campus, Sanitary and Environmental Engineering Department, Florianópolis, Brazil.
| | - Bruna Scandolara Magnus
- Federal University of Santa Catarina, Trindade University Campus, Sanitary and Environmental Engineering Department, Florianópolis, Brazil
| | - Laís Cristina Rozone de Souza
- Federal University of Santa Catarina, Trindade University Campus, Sanitary and Environmental Engineering Department, Florianópolis, Brazil
| | - Wanderli Rogério Moreira Leite
- Federal University of Pernambuco, Civil and Environmental Engineering Department, Laboratory of Environmental Sanitation, Recife, Brazil
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Lorena Bittencourt Guimarães
- Federal University of Santa Catarina, Trindade University Campus, Sanitary and Environmental Engineering Department, Florianópolis, Brazil
| | - Rejane Helena Ribeiro da Costa
- Federal University of Santa Catarina, Trindade University Campus, Sanitary and Environmental Engineering Department, Florianópolis, Brazil
| |
Collapse
|
39
|
Du R, Cao S, Zhang H, Peng Y. Formation of partial-denitrification (PD) granular sludge from low-strength nitrate wastewater: The influence of loading rates. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121273. [PMID: 31585283 DOI: 10.1016/j.jhazmat.2019.121273] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Granular sludge has been believed to be a promising technology in wastewater biological treatment. However, the formation of granules at low substrate concentration is a difficult task that has seldom been achieved. This study aimed at forming the granules in the recently developed partial-denitrification (PD, NO3--N→NO2--N) for nitrite production. Two sequencing batch reactors (SBRs) were operated at a low nitrate of 30 mg N/L with nitrate loading rate (NLR) of 0.12 (R1) and 0.24 kg N/m3/d (R2). Results showed that the granulation of PD sludge experienced a developing and matured process with the progressive increase in size followed by maintaining a stable value. Higher NLR resulted in a more rapid granulation with the larger and looser structure. While the granules under lower NLR appeared to be denser and more compact with better settling ability. Microbial communities of two SBRs were revealed to show little difference, with the PD functional bacteria of Thauera (50.7% in R1 and 55.4% in R2) dominated during the granulation process. The Flavobacterium, likely to be closely related with sludge granulation, accounted for a higher proportion in R2 (10.16%) than R1 (5.91%), which might result in a larger granule formed in R2. This study clearly confirmed the feasibility of granulation of PD sludge under low nitrogen loads, shedding new light on the low-strength nitrate wastewater treatment with an efficient and economical way.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Shenbin Cao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Hanyu Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
40
|
Rollemberg SLDS, Ferreira TJT, Firmino PIM, Dos Santos AB. Impact of cycle type on aerobic granular sludge formation, stability, removal mechanisms and system performance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 256:109970. [PMID: 31989985 DOI: 10.1016/j.jenvman.2019.109970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/11/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
This paper aimed to assess the impact of the cycle type on aerobic granular sludge (AGS) formation, stability and system performance. Six AGS reactors were operated either on A/O cycles (anaerobic followed by oxic phase) or A/O/A cycles (anaerobic, followed by oxic and anoxic phases), changing only the phase time distribution. Reactors with high percentage of aerobic phase (65% of the total cycle time) generated granules with better settleability and resistance, however denitrification was impaired. On the other hand, reactors with long anaerobic or anoxic phases presented excellent nutrients removals, but the granules were fluffy and unstable. The best results in terms of performance and stability were achieved in an A/O/A reactor with short anoxic phase (10% of the total cycle) and medium aerobic phase (55% of the total cycle). Therefore, in AGS reactors, it is indispensable to optimize the cycle, aiming at fast biomass formation, long-term granule stability and high-rate pollutants removal.
Collapse
Affiliation(s)
| | | | - Paulo Igor Milen Firmino
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
41
|
Zhang B, Li W, Guo Y, Zhang Z, Shi W, Cui F, Lens PNL, Tay JH. A sustainable strategy for effective regulation of aerobic granulation: Augmentation of the signaling molecule content by cultivating AHL-producing strains. WATER RESEARCH 2020; 169:115193. [PMID: 31670083 DOI: 10.1016/j.watres.2019.115193] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/05/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
The positive roles of N-acyl homoserine lactone (AHL)-mediated quorum sensing (QS) in aerobic granular sludge (AGS) have been widely acknowledged. However, it is not feasible to manipulate granulation via direct addition of AHL chemicals or AHL-producing strains. Here, several strains with high AHL-producing capacity were successfully isolated from AGS. These QS strains were cultivated, mixed as a consortium, and then divided into two groups: AHLs supernatant and bacterial cells encapsulated in sodium alginate (CEBs). The potential of QS regulation, via doses of AHLs supernatant and CEBs, in accelerating granulation was evaluated. Results clearly indicated that short-term (days 21-70) addition of AHLs supernatant led to a rapid specific growth rate (0.08 d-1), compact structure without filamentous bacteria overgrowth, excellent settlement performance (SVI10 37.2 mL/g), and a high integrity coefficient (4.4%) of the granules. Sustainable release of AHLs (mainly C6- and C8-HSL) was induced by exogenous AHLs, possibly attributed to the enrichment of the genera Aeromonas and Pseudomonas. Further, tryptophan and aromatic protein substances were produced to maintain structural stability, suggesting that short-term QS regulation had long-term positive effects on the characteristics of AGS. By comparison, the addition of CEBs posed negligible or negative impact on the granulation, as evidenced by the rupture of smaller aggregates and poor characteristics of AGS. Overall, augmentation of the signaling content via addition of AHLs supernatant from QS strains is an economical and feasible regulation strategy to accelerate granulation and sustain long-term structural stability.
Collapse
Affiliation(s)
- Bing Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; Department of Civil Engineering, University of Calgary, Calgary, T2N 1N4, Canada
| | - Wei Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yuan Guo
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wenxin Shi
- School of Environment and Ecology, Chongqing University, Chongqing, 400030, China.
| | - Fuyi Cui
- School of Environment and Ecology, Chongqing University, Chongqing, 400030, China.
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, Westvest 7, 2601 DA, Delft, the Netherlands
| | - Joo Hwa Tay
- Department of Civil Engineering, University of Calgary, Calgary, T2N 1N4, Canada
| |
Collapse
|
42
|
Rollemberg SLDS, Barros AND, Lira VNSA, Firmino PIM, Dos Santos AB. Comparison of the dynamics, biokinetics and microbial diversity between activated sludge flocs and aerobic granular sludge. BIORESOURCE TECHNOLOGY 2019; 294:122106. [PMID: 31520857 DOI: 10.1016/j.biortech.2019.122106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
This work aimed to compare the dynamics, biokinetics, and microbial diversity between activated sludge flocs (ASF) and aerobic granular sludge (AGS) whose systems were operated under similar experimental conditions in terms of inoculum, feeding, substrate source, etc. Therefore, the kinetic parameters involved in the organic matter removal, nitrification, denitrification, and dephosphatation were determined, as well as the microbial changes were assessed by metagenomics analysis. Regarding the kinetic parameter yield coefficient (Y), values of 0.55 and 0.36 g VSS/g COD were found for ASF and AGS, respectively, showing a higher sludge production in ASF and the importance of feast/famine periods for lowering sludge production in AGS systems. AGS presented a lower sludge production and a higher endogenous consumption rate than ASF. The activity of phosphorus-accumulating bacteria was remarkably higher in AGS. Although both biomasses were aerobic, their kinetic parameters had significant differences.
Collapse
Affiliation(s)
| | - Amanda Nascimento de Barros
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Paulo Igor Milen Firmino
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
43
|
Chen H, Li A, Cui C, Ma F, Cui D, Zhao H, Wang Q, Ni B, Yang J. AHL-mediated quorum sensing regulates the variations of microbial community and sludge properties of aerobic granular sludge under low organic loading. ENVIRONMENT INTERNATIONAL 2019; 130:104946. [PMID: 31252169 DOI: 10.1016/j.envint.2019.104946] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/27/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Aerobic granular sludge (AGS) is promising in wastewater treatment. However, the formation and existence of AGS under low organic loading rate (OLR) is still not fully understood due to a knowledge gap in the variations and correlations of N-acyl-homoserine lactones (AHLs), the microbial community, extracellular polymeric substances (EPS) and other physiochemical granule properties. This study comprehensively investigated the AHL-mediated quorum sensing (QS) and microbial community characters in the AGS fed with ammonium-rich wastewater under a low OLR of 0.15 kg COD (m3 d)-1. The results showed that the AGS appeared within 90 days, and the size of mature granules was over 700 μm with strong settleability and ammonium removal performance. More tightly-bound extracellular polysaccharide and tightly-bound extracelluar protein were produced in the larger AGS. C10-HSL and C12-HSL gradually became dominant in sludge, and short-chain AHLs dominated in water. EPS producers and autotrophic nitrifiers were successfully retained in the AGS under low OLR. AHL-mediated QS utilized C10-HSL, C12-HSL and 3OC6-HSL as the critical AHLs to regulate the TB-EPS in aerobic granulation, and autotrophic nitrifiers may perform interspecific communication with C10-HSL. The correlations of bacterial genera with AGS properties and AHLs were complex due to the dynamic fluctuations of microbial composition and other variable factors in the mixed-culture system. These findings confirmed the participation of AHL-mediated QS in the regulation of microbial community characters and AGS properties under low OLR, which may provide guidance for the operation of AGS systems under low OLR from a microbiological viewpoint.
Collapse
Affiliation(s)
- Han Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| | - Chongwei Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| | - Di Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China; Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Heping Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bingjie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| |
Collapse
|
44
|
Rollemberg SLDS, de Oliveira LQ, Barros ARM, Melo VMM, Firmino PIM, Dos Santos AB. Effects of carbon source on the formation, stability, bioactivity and biodiversity of the aerobic granule sludge. BIORESOURCE TECHNOLOGY 2019; 278:195-204. [PMID: 30703637 DOI: 10.1016/j.biortech.2019.01.071] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Three aerobic granular sludge systems were operated as sequencing batch reactors (SBR) with acetate, ethanol and glucose as carbon source. The SBR cycle was 6 h, with an anaerobic phase followed by an aerobic phase. The acetate granules (>1.5 mm) had the greatest microbial diversity and better results in terms of removal efficiency for carbon and nutrients (TN ≈ 72% and TP ≈ 42%) and also in the resistance tests. However, partial disintegration was observed. On the other hand, when ethanol was the substrate, the granules were stable, good nitrogen removal was achieved (TN ≈ 53%), but phosphorus removal was not favored (TP ≈ 31%). Glucose presented the lowest efficiency values for nitrogen (TN ≈ 44%) and phosphorous removal (TP ≈ 21%), and the granules formed (<1 mm) had the lowest microbial diversity. Therefore, the carbon source had a high impact on the characteristics of the granules.
Collapse
Affiliation(s)
| | - Lorayne Queiroz de Oliveira
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Paulo Igor Milen Firmino
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
45
|
Guo Y, Zhang B, Zhang Z, Shi W, Zhang R, Cheng J, Li W, Cui F. Enhanced aerobic granulation by applying the low-intensity direct current electric field via reactive iron anode. WATER RESEARCH 2019; 149:159-168. [PMID: 30439579 DOI: 10.1016/j.watres.2018.10.095] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/12/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
A novel granulation strategy by applying the low-intensity direct current (DC) electric field via reactive iron anode into the aerobic granular sludge (AGS) system was systematically investigated in this study. Three identical sequencing batch reactors (SBRs, namely R1, R2, and R3) were operated for 100 days. Comparatively, the R1 and R3 were continuously subjected to the 1.0 V DC electric field via a reactive Fe anode and an inert Ti-Ir/Rh anode, respectively, while the R2 without DC exposure. The results showed that the sludge granulation processes were accelerated in order as follows: R2<R3<R1, and the properties of mature granules were improved in order as follows: R3<R2<R1. Interestingly, at the end of experiment, total phosphorus (TP) removal efficiency in R1 dramatically increased to 80.52%, which was 2.15 and 1.96 folds than that in R2 and R3, respectively. Further investigations revealed that this novel strategy could simultaneously improve the secretion of EPS and the release of iron ions in R1, which cooperatively enhanced the granulation process. Moreover, in R1, mineral precipitation of phosphate remarkably improved the capability of phosphorus removal. The observed effective and stable performance highlights the feasibility and potential of this novel strategy for the rapid start-up and stable operation of AGS system.
Collapse
Affiliation(s)
- Yuan Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiqiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wenxin Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400044, China.
| | - Ruijun Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fuyi Cui
- College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
46
|
Hamza RA, Sheng Z, Iorhemen OT, Zaghloul MS, Tay JH. Impact of food-to-microorganisms ratio on the stability of aerobic granular sludge treating high-strength organic wastewater. WATER RESEARCH 2018; 147:287-298. [PMID: 30317038 DOI: 10.1016/j.watres.2018.09.061] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/30/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
This work investigated the long-term stability of aerobic granular sludge treating high-strength organic wastewater in a semi-pilot scale sequential batch reactor (SBR). The reactor was operated for 316 days under different operational conditions. It was found that the F/M ratio is an important parameter affecting granules formation and stability. Three selection mechanisms were investigated: (1) cultivation and maturation at moderately high influent COD concentration (2500 mg/L) followed by increase in influent COD concentration to 7500 mg/L; (2) stressed cultivation and operation at high influent COD concentration of 4500 mg/L; and (3) alternate feed loading strategy (variable influent COD concentration across the daily schedule of cycles at 50%, 75%, and 100% of the peak concentration of 5000 mg/L). It was found that adopting high OLR at the reactor start-up accelerated the formation of granules. However, the overgrowth of biomass under high organics concentration negatively affected the stability of granules and led to disintegration due to the presence of methanogens in the granule core. Cultivation at high organics concentration resulted in a rapid loss of microbial diversity and reactor failure. Under alternate feed loading, adequate selection of microbial community was maintained and resulted in stable reactor performance. Moreover, a strong correlation between F/M ratio and the granules settling ability was observed. When F/M ratio exceeded 1.5 gCOD/gSS.d, granules showed poor settleability and under very high sludge loading rates (above 2.5), sludge bulking occurred and led to washout of sludge due to the strong selection pressure of short settling time. Operating the reactor at F/M ratio of 0.5-1.4 gCOD/gSS.d appears to favor stable long-term granule stability.
Collapse
Affiliation(s)
- Rania Ahmed Hamza
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | - Zhiya Sheng
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Oliver Terna Iorhemen
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Mohamed Sherif Zaghloul
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Joo Hwa Tay
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
47
|
Zhang X, Zhao B, Meng J, Zhou A, Yue X, Niu Y, Cui Y. Efficiency, granulation, and bacterial populations related to pollutant removal in an upflow microaerobic sludge reactor treating wastewater with low COD/TN ratio. BIORESOURCE TECHNOLOGY 2018; 270:147-155. [PMID: 30216924 DOI: 10.1016/j.biortech.2018.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
In this study, a novel upflow microaerobic sludge reactor (UMSR) was constructed to conduct anaerobic digestion of municipal wastewater with low carbon and nitrogen ratio (C/N). Oxygen in the UMSR was supplied by falling water and external recirculation. Excellent nitrogen removal performance was obtained in the UMSR for treating wastewater with low C/N ratio at a temperature of 25 °C and a hydraulic retention time of 24 h. Ammonium and total nitrogen removal efficiencies averaged 92.35% and 90.41%, respectively, and sludge granulation occurred during acclimation. The inferred metabolism of nitrogen removal and ecological positions of functional microbe were integrated into a granule model by scanning electron microscopy. Additionally, the analysis of microbial community indicated that aerobic nitrifying bacteria and heterotrophic bacteria survived on the surface of sludge floc and granules while the anaerobic autotrophic, heterotrophic denitrifying, and anaerobic ammonia oxidation bacteria were present in the inner layer.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Bowei Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Yukun Niu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Ying Cui
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
48
|
Effect of fluctuating hydraulic retention time (HRT) on denitrification in the UASB reactors. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Xia J, Ye L, Ren H, Zhang XX. Microbial community structure and function in aerobic granular sludge. Appl Microbiol Biotechnol 2018; 102:3967-3979. [PMID: 29550989 DOI: 10.1007/s00253-018-8905-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 12/28/2022]
Abstract
Aerobic granular sludge (AGS), a self-immobilized microbial consortium containing different functional microorganisms, is receiving growing attention, since it has shown great technological and economical potentials in the field of wastewater treatment. Microbial community is crucial for the formation, stability, and pollutant removal efficiency of aerobic granules. This mini-review systematically summarizes the recent findings of the microbial community structure and function of AGS and discusses the new research progress in the microbial community dynamics during the granulation process and spatial distribution patterns of the microbiota in AGS. The presented information may be helpful for the in-depth theoretical study and practical application of AGS technology in the future.
Collapse
Affiliation(s)
- Juntao Xia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
50
|
Freitas F, Torres CAV, Reis MAM. Engineering aspects of microbial exopolysaccharide production. BIORESOURCE TECHNOLOGY 2017; 245:1674-1683. [PMID: 28554522 DOI: 10.1016/j.biortech.2017.05.092] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Although the ability to secrete exopolysaccharides (EPS) is widespread among microorganisms, only a few bacterial (e.g. xanthan, levan, dextran) and fungal (e.g. pullulan) EPS have reached full commercialization. During the last years, other microbial EPS producers have been the subject of extensive research, including endophytes, extremophiles, microalgae and Cyanobacteria, as well as mixed microbial consortia. Those studies have demonstrated the great potential of such microbial systems to generate biopolymers with novel chemical structures and distinctive functional properties. In this work, an overview of the bioprocesses developed for EPS production by the wide diversity of reported microbial producers is presented, including their development and scale-up. Bottlenecks that currently hinder microbial EPS development are identified, along with future prospects for further advancement.
Collapse
Affiliation(s)
- Filomena Freitas
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Cristiana A V Torres
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Maria A M Reis
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|