1
|
Guo H, Zhai X, Hu M, Chang JS, Lee DJ. Atypical removals of nitrogen and phosphorus with biochar-pyrite vertical flow constructed wetlands treating wastewater at low C/N ratio. BIORESOURCE TECHNOLOGY 2025; 422:132219. [PMID: 39954821 DOI: 10.1016/j.biortech.2025.132219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
This study constructed five laboratory-scale vertical flow constructed wetlands (VFCWs) using different ratios of biochar and pyrite as substrates to treat wastewater with a low carbon-to-nitrogen (C/N) ratio. Biochar can release organic carbon to enhance heterotrophic denitrification and serve as an electron shuttle for denitrification, but it can also release phosphate, negatively impacting total phosphorus removal efficiency. Pyrite releases Fe2+ and S2- to promote autotrophic denitrification, with Fe3+ reacting with phosphate to form FePO4 precipitates that deposit on and passivate the pyrite's surface. At a biochar-to-pyrite volume ratio of 1:1, total nitrogen removal efficiency peaked at 86.0 ± 2.5 %. However, due to the complex interactions between biochar, pyrite, and functional cells in the VFCWs, no optimal ratio for total phosphorus removal was identified. The atypical removal characteristics of TN and TP in the mixed biochar-pyrite VFCWs suggest the potential for manipulating TN and TP removals at low C/N ratios.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China; College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Xuetong Zhai
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Mingzhe Hu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan.
| |
Collapse
|
2
|
Nie Y, Yuan S, Zhang S, Peng G, Wang Q, Xie Y, Ming T, Wang Z. Microbial interactions elucidate the mechanisms of hydraulic retention time altering denitrification pathway in a sole pyrite-based electrochemical bioreactor (PEBR). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124467. [PMID: 39923637 DOI: 10.1016/j.jenvman.2025.124467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
In the current context of low-carbon wastewater treatment, pyrite-based autotrophic denitrification (PAD) has gained attention as an energy-efficient and environmentally sustainable method for nitrogen elimination. However, the limited dissolution of pyrite and the associated slow autotrophic denitrification rate restrict its practical application. To tackle this, a pyrite-based electrochemical bioreactor (PEBR) was constructed and the microbial effect of hydraulic retention time (HRT) on denitrification efficiency and sulfide or iron oxidation in the PEBR system was investigated. It was found that upon the conclusion of phase V (HRT = 12 h), the nitrate removal efficiency (NRE) reached 92.53% ± 0.96%, and the concentration of NH4+-N in the effluent reached 2.63 ± 0.57 mg/L with a minimal accumulation of NO2--N (0.03 ± 0.05 mg/L) when the optimal treatment performance was obtained. As the HRT increased, the proportion of heterotrophic denitrification decreased substantially to 1%. Desulfobacterota, a sulfate-reducing bacteria (SRB), became dominant, with a relative abundance ranging from 0.04% to 19.44%. The PAD-related genera, such as Thiobacillus and Ferritrophicum, exhibited a positive correlation with HRT, indicating that PAD was enhanced with the extension of HRT. The functional genes related to Fe2+ intracellular oxidation (e.g., korA/B) positively correlated with HRT. The positive correlation of dsrA/B with HRT highlighted the role of dissimilatory sulfate reduction (DSR) as a primary contributor to reduced sulfate production. Furthermore, the variations in the relative abundance of aprA/B for sulfate reduction with the extension of HRT reflected that HRT affected sulfate reduction probably via the APS→SO32- process. This study might shed light on the optimization of HRT in PEBR for the treatment of nitrogenous wastewater.
Collapse
Affiliation(s)
- Yuhu Nie
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Sicheng Yuan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China.
| | - Gang Peng
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Qinglong Wang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Yufan Xie
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Tingzhen Ming
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China.
| |
Collapse
|
3
|
Ma T, He Q, Cao G, Li X. Enhanced Nitrogen Removal from a Recirculating Aquaculture System Using a Calcined FeS x -Packed Denitrification Bioreactor. ACS OMEGA 2024; 9:51089-51097. [PMID: 39758661 PMCID: PMC11696438 DOI: 10.1021/acsomega.4c06374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
In this study, a recirculating aquaculture system (RAS) was constructed, and a denitrification bioreactor was installed to enhance nitrogen removal. In addition, the nitrogen removal performance of the system was investigated. FeS x was prepared by calcining iron (Fe) and S0 powder, which was used as an electron donor for denitrification. In the phase using simulating aquaculture wastewater, the concentrations of NO2 --N and NH4 +-N in the RAS were lower than 0.20 and 0.50 mg/L, respectively, and NO3 --N gradually accumulated without the operation of the FeS x -packed denitrification bioreactor. After introducing cultured fish and operating the denitrification bioreactor, NO2 --N and NH4 +-N in the fish tank were lower than 0.01 mg/L and lower detection limit, respectively, and the NO3 --N removal efficiency was 79.04%. After 24 days of operation, the SO4 2- concentration was lower than 200 mg/L, and the pH was stable at around 7. The survival rate of fish was 95%, and they grew 6 to 7 cm at the end of the experiment. The average weight gain of fish was 5.31 g, and the culture density increased from the initial 10 to 26.54 kg/m3. Microbial community structure analysis showed that the diversity in the denitrification bioreactor operated in the RAS (RAS_Sludge) was higher than that in the reactor operated using synthetic wastewater (Synthetic_Sludge) due to the introduction of organic matter. Thermomonas, Longilina, Arenimonas, and Thiobacillus were dominant in RAS_Sludge, while unclassified genera were dominant in Synthetic_Sludge. Functional genes in RAS_Sludge and Synthetic_Sludge were predicted based on Functional Annotation of Prokaryotic Taxa, revealing differences in genes related to denitrification as well as sulfur and iron oxidation. This study provides a theoretical basis for the application of FeS x -based autotrophic denitrification technology in RASs, promoting it from theoretical research to engineering practice.
Collapse
Affiliation(s)
- Tian Ma
- Water
Environment and Health Henan Engineering Technology Research Center, Zhengzhou 451100, Henan, China
- School
of Pharmacy and Chemical Engineering, Zhengzhou
University of Industrial Technology, Zhengzhou 451100, China
| | - Qiaochong He
- College
of Environmental Engineering, Henan University
of Technology, Zhengzhou 450001, China
| | - Gaigai Cao
- College
of Environmental Engineering, Henan University
of Technology, Zhengzhou 450001, China
| | - Xiaoli Li
- College
of Environmental Engineering, Henan University
of Technology, Zhengzhou 450001, China
| |
Collapse
|
4
|
Jiao F, Zhang X, Zhang T, Hu Y, Lu R, Ma G, Chen T, Guo H, Li D, Pan Y, Li YY, Kong Z. Insights into carbon-neutral treatment of rural wastewater by constructed wetlands: A review of current development and future direction. ENVIRONMENTAL RESEARCH 2024; 262:119796. [PMID: 39147183 DOI: 10.1016/j.envres.2024.119796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
In recent years, with the global rise in awareness regarding carbon neutrality, the treatment of wastewater in rural areas is increasingly oriented towards energy conservation, emission reduction, low-carbon output, and resource utilization. This paper provides an analysis of the advantages and disadvantages of the current low-carbon treatment process of low-carbon treatment for rural wastewater. Constructed wetlands (CWs) are increasingly being considered as a viable option for treating wastewater in rural regions. In pursuit of carbon neutrality, advanced carbon-neutral bioprocesses are regarded as the prospective trajectory for achieving carbon-neutral treatment of rural wastewater. The incorporation of CWs with emerging biotechnologies such as sulfur-based autotrophic denitrification (SAD), pyrite-based autotrophic denitrification (PAD), and anaerobic ammonia oxidation (anammox) enables efficient removal of nitrogen and phosphorus from rural wastewater. The advancement of CWs towards improved removal of organic and inorganic pollutants, sustainability, minimal energy consumption, and low carbon emissions is widely recognized as a viable low-carbon approach for achieving carbon-neutral treatment of rural wastewater. This study offers novel perspectives on the sustainable development of wastewater treatment in rural areas within the framework of achieving carbon neutrality in the future.
Collapse
Affiliation(s)
- Feifei Jiao
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xinzheng Zhang
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tao Zhang
- College of Design and Innovation, Shanghai International College of Design & Innovation, Tongji University, Shanghai, 200092, China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Rui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guangyi Ma
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tao Chen
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hongbo Guo
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dapeng Li
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Pan
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Zhe Kong
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
5
|
Fu K, Kang J, Zhao J, Bian Y, Li X, Yang W, Li Z. Efficient nitrite accumulation in partial sulfide autotrophic denitrification (PSAD) system: insights of S/N ratio, pH and temperature. ENVIRONMENTAL TECHNOLOGY 2024; 45:5419-5436. [PMID: 38118135 DOI: 10.1080/09593330.2023.2293678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/03/2023] [Indexed: 12/22/2023]
Abstract
To provide the necessary nitrite for the Anaerobic Ammonium Oxidation (ANAMMOX) process, the effect of nitrite accumulation in the partial sulfide autotrophic denitrification (PSAD) process was investigated using an SBR reactor. The results revealed that the effectiveness of nitrate removal was unsatisfactory when the S/N ratio (mol/mol) fell below 0.6. The optimal conditions for nitrate removal and nitrite accumulation were achieved within the S/N ratio range of 0.7-0.8, resulting in an average Nitrate Removal Efficiency (NRE) of 95.84%±4.89% and a Nitrite Accumulation Rate (NAR) of 75.31%±6.61%, respectively. It was observed that the nitrate reduction rate was three times faster than that of nitrite reduction during a typical cycle test. Furthermore, batch tests were conducted to assess the influence of pH and temperature conditions. In the pH tests, it became evident that the PSAD process performed more effectively in alkaline environment. The highest levels of nitrate removal and nitrite accumulation were achieved at an initial pH of 8.5, resulting in a NRE of 98.30%±1.93% and a NAR of 85.83%±0.47%, respectively. In the temperature tests, the most favourable outcomes for nitrate removal and nitrite accumulation were observed at 22±1 ℃, with a NRE of 100.00% and a NAR of 81.03%±1.64%, respectively. Moreover, a comparative analysis of 16S rRNA sequencing results between the raw sludge and the sulfide-enriched culture sludge sample showed that Proteobacteria (49.51%) remained the dominant phylum, with Thiobacillus (24.72%), Prosthecobacter (2.55%), Brevundimonas (2.31%) and Ignavibacterium (2.04%) emerging as the dominant genera, assuming the good nitrogen performance of the system.
Collapse
Affiliation(s)
- Kunming Fu
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Jia Kang
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Jing Zhao
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Yihao Bian
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Xiaodan Li
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Wenbing Yang
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Zirui Li
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| |
Collapse
|
6
|
Ding Y, Li Y, You T, Liu S, Wang S, Zeng X, Jia Y. Effects of denitrification on speciation and redistribution of arsenic in estuarine sediments. WATER RESEARCH 2024; 258:121766. [PMID: 38759285 DOI: 10.1016/j.watres.2024.121766] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Microbially-mediated redox processes involving arsenic (As) and its host minerals significantly contribute to the mobilization of As in estuarine sediments. Despite its significance, the coupling between As dynamics and denitrification processes in these sediments is not well understood. This study employed sequential sediment extractions and simultaneous monitoring of dissolved iron (Fe), nitrogen (N), and sulfur (S) to investigate the impact of nitrate (NO3-) on the speciation and redistribution of As, alongside changes in microbial community composition. Our results indicated that NO3- additions significantly enhance anaerobic arsenite (As(III)) oxidation, facilitating its immobilization by increased adsorption onto sediment matrices in As-contaminated estuarine settings. Furthermore, NO3- promoted the conversion of As bound to troilite (FeS) and pyrite (FeS2) into forms associated with Fe oxides, challenging the previously assumed stability of FeS/FeS2-bound As in such environments. Continuous NO3- additions ensured As and Fe oxidation, thereby preventing their reductive dissolution and stabilizing the process that reduces As mobility. Changes in the abundance of bacterial communities and correlation analyses revealed that uncultured Anaerolineaceae and Thioalkalispira may be the main genus involved in these transformations. This study underscores the critical role of NO3- availability in modulating the biogeochemical cycle of As in estuarine sediments, offering profound insights for enhancing As immobilization techniques and informing environmental management and remediation strategies in As-contaminated coastal regions.
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yongbin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Tingting You
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shichao Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
7
|
Yuan S, Zhong Q, Zhang H, Zhu W, Wang W, Zhang S. Deciphering the influencing mechanism of hydraulic retention time on purification performance of a mixotrophic system from the perspective of reaction kinetics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12933-12947. [PMID: 38236564 DOI: 10.1007/s11356-023-31305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024]
Abstract
At present, eutrophication is increasingly serious, so it is necessary to effectively reduce nitrogen and phosphorus in water bodies. In this study, a pyrite/polycaprolactone-based mixotrophic denitrification (PPMD) system using pyrite and polycaprolactone (PCL) as electron donors was developed and compared with pyrite-based autotrophic denitrification (PAD) system and PCL-based heterotrophic denitrification (PHD) system through continuous flow experiment. The removal efficiency of NO3--N (NRE) and PO43--P (PRE) and the contribution proportion of PAD in the PPMD system were significantly increased by prolonging hydraulic retention time (HRT, from 1 to 48 h). When HRT was equal to 24 h, the PPMD system conformed to the zero-order kinetic model, so NRE and PRE were mainly limited by the PAD process. When HRT was equal to 48 h, the PPMD system met the first-order kinetic model with NRE and PRE reaching 98.9 ± 1.1% and 91.8 ± 4.5%, respectively. When HRT = 48 h, the NRE and PRE by PAD system were 82.7 ± 9.1% and 88.5 ± 4.7%, respectively, but the effluent SO42- concentration was as high as 152.1 ± 13.7 mg/L (the influent SO42- concentration was 49.2 ± 3.3 mg/L); the NRE by PHD system was 98.5 ± 1.7%, but the PO43--P could not be removed ideally. The concentrations of NO3--N, total nitrogen, PO43--P, and SO42- in the PPMD system also showed distinct changes along the reactor column. In addition, the microbial diversity analysis showed that prolonging HRT (from 24 to 48 h) increased the abundance of autotrophic denitrifying microorganisms in the PPMD system, ultimately increasing the contribution proportion of PAD.
Collapse
Affiliation(s)
- Sicheng Yuan
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Qingbo Zhong
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Hongjun Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Wentao Zhu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Weibo Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
8
|
Xu Y, Liu L, Sun E, Oksuz ST, Zhang Z, Zhang C, Wang W, Liu P. Electron transport bifurcation in bioanode with the metabolic shift to nitrate reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168115. [PMID: 37884146 DOI: 10.1016/j.scitotenv.2023.168115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Electron transport bifurcation in bioanode determines the performance of microbial electrochemical technologies with the presence of an alternative electron acceptor. Here, the bioanode responses including electron transfer efficiency, microbial community, and microbial structure are investigated with the metabolic shift from current production to denitrification. Electrochemical measurements including cyclic voltammetry and electrochemical impedance spectra are performed to identify the change of electron transfer pathways in bioanode. Electron transfer efficiency for electrode reduction decreases ∼17 % with nitrate reduction. Biofilm resistance and charge transfer resistance increase from 23.3 Ω and 22.5 Ω to 36.6 Ω and 61.4 Ω with the metabolic shift, respectively. These results are mainly due to the loss of exoelectrogens inhabited in bioanode. Confocal imaging results indicate the elevated proportion of inactive cells in bioanode as the denitrification. Our results propose a possible mechanism for electron transfer bifurcation in bioanode with the metabolic shift from electrode reduction to soluble electron acceptor reduction.
Collapse
Affiliation(s)
- Yinchi Xu
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lanhua Liu
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Erhuan Sun
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Secil Tutar Oksuz
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey
| | - Zhi Zhang
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Changsen Zhang
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wenlong Wang
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Panpan Liu
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
9
|
Yuan Q, Gao J, Liu P, Huang Z, Li L. Autotrophic denitrification based on sulfur-iron minerals: advanced wastewater treatment technology with simultaneous nitrogen and phosphorus removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6766-6781. [PMID: 38159185 DOI: 10.1007/s11356-023-31467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Autotrophic denitrification technology has many advantages, including no external carbon source addition, low sludge production, high operating cost efficiency, prevention of secondary sewage pollution, and stable treatment efficiency. At present, the main research on autotrophic denitrification electron donors mainly includes sulfur, iron, and hydrogen. In these autotrophic denitrification systems, pyrite has received attention due to its advantages of easy availability of raw materials, low cost, and pH stability. When pyrite is used as a substrate for autotropic denitrification, sulfide (S2-) and ferrous ion (Fe2+) in the substrate will provide electrons to convert nitrate (NO3-) in sewage first to nitrite (NO2-), then to nitrogen (N2), and finally to discharge the system. At the same time, sulfide (S2-) loses electrons to sulfate (SO42-) and ferrous ion (Fe2+) loses electrons to ferric iron (Fe3+). Phosphates (PO43-) in wastewater are chemically combined with ferric iron (Fe3+) to form ferric phosphate (FePO4) precipitate. This paper aims to provide a detailed and comprehensive overview of the dynamic changes of nitrogen (N), phosphorus (P), and other substances in the process of sulfur autotrophic denitrification using iron sulfide, and to summarize the factors that affect wastewater treatment in the system. This work will provide a relevant research direction and theoretical basis for the field of sulfur autotrophic denitrification, especially for the related experiments of the reaction conversion of various substances in the system.
Collapse
Affiliation(s)
- Quan Yuan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingqing Gao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhen Huang
- Faculty of Environmental and Municipal Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Luyang Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
10
|
Bai Y, Hu H, Lee PH, Zhussupbekova A, Shvets IV, Du B, Terada A, Zhan X. Nitrate removal in iron sulfide-driven autotrophic denitrification biofilter: Biochemical and chemical transformation pathways and its underlying microbial mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165908. [PMID: 37543327 DOI: 10.1016/j.scitotenv.2023.165908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Iron sulfides-based autotrophic denitrification (IAD) is effective for treating nitrate-contaminated wastewater. However, the complex nitrate transformation pathways coupled with sulfur and iron cycles in IADs are still unclear. In this study, two columns (abiotic vs biotic) with iron sulfides (FeS) as the packing materials were constructed and operated continuously. In the abiotic column, FeS chemically reduced nitrate to ammonium under the ambient condition; this chemical reduction reaction pathway was spontaneous and has been overlooked in IAD reactors. In the biotic column (IAD biofilter), the complex nitrogen-transformation network was composed of chemical reduction, autotrophic denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and sulfate reducing ammonium oxidation (Sulfammox). Metagenomic analysis and XPS characterization of the IAD biofilter further validated the roles of functional microbial communities (e.g., Acidovorax, Diaphorobacter, Desulfuromonas) in nitrate reduction process coupled with iron and sulfur cycles. This study gives an in-depth insight into the nitrogen transformations in IAD system and provides fundamental evidence about the underlying microbial mechanism for its further application in biological nitrogen removal.
Collapse
Affiliation(s)
- Yang Bai
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Huanhuan Hu
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Po-Heng Lee
- Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Igor V Shvets
- CRANN, School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Bang Du
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Xinmin Zhan
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
11
|
Shao L, Wang D, Chen G, Zhao X, Fan L. Advance in the sulfur-based electron donor autotrophic denitrification for nitrate nitrogen removal from wastewater. World J Microbiol Biotechnol 2023; 40:7. [PMID: 37938419 DOI: 10.1007/s11274-023-03802-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
In the field of wastewater treatment, nitrate nitrogen (NO3--N) is one of the significant contaminants of concern. Sulfur autotrophic denitrification technology, which uses a variety of sulfur-based electron donors to reduce NO3--N to nitrogen (N2) through sulfur autotrophic denitrification bacteria, has emerged as a novel nitrogen removal technology to replace heterotrophic denitrification in the field of wastewater treatment due to its low cost, environmental friendliness, and high nitrogen removal efficiency. This paper reviews the advance of reduced sulfur compounds (such as elemental sulfur, sulfide, and thiosulfate) and iron sulfides (such as ferrous sulfide, pyrrhotite, and pyrite) electron donors for treating NO3--N in wastewater by sulfur autotrophic denitrification technology, including the dominant bacteria types and the sulfur autotrophic denitrification process based on various electron donors are introduced in detail, and their operating costs, nitrogen removal performance and impacts on the ecological environment are analyzed and compared. Moreover, the engineering applications of sulfur-based electron donor autotrophic denitrification technology were comprehensively summarized. According to the literature review, the focus of future industry research were discussed from several aspects as well, which would provide ideas for the application and optimization of the sulfur autotrophic denitrification process for deep and efficient removal of NO3--N in wastewater.
Collapse
Affiliation(s)
- Lixin Shao
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Dexi Wang
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Gong Chen
- School of Chemical Equipment, Shenyang University of Technology, Liaoyang, 111000, China
| | - Xibo Zhao
- Weihai Baike Environmental Protection Engineering Co., Ltd., Weihai, 264200, China
| | - Lihua Fan
- School of Chemical Equipment, Shenyang University of Technology, Liaoyang, 111000, China.
| |
Collapse
|
12
|
Yuan S, Zhong Q, Zhang H, Zhu W, Wang W, Li M, Tang X, Zhang S. The enrichment of more functional microbes induced by the increasing hydraulic retention time accounts for the increment of autotrophic denitrification performance. ENVIRONMENTAL RESEARCH 2023; 236:116848. [PMID: 37558114 DOI: 10.1016/j.envres.2023.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
With pyrite (FeS2) and polycaprolactone (PCL) as electron donors, three denitrification systems, namely FeS2-based autotrophic denitrification (PAD) system, PCL-supported heterotrophic denitrification (PHD) system and split-mixotrophic denitrification (PPMD) system, were constructed and operated under varying hydraulic retention times (HRT, 1-48 h). Compared with PAD or PHD, the PPMD system could achieve higher removals of NO3--N and PO43--P, and the effluent SO42- concentration was greatly reduced to 7.28 mg/L. Similarly, the abundance of the dominant genera involved in the PAD (Thiobacillus, Sulfurimonas, and Ferritrophicum, etc.) or PHD (Syntrophomonas, Desulfomicrobium, and Desulfovibrio, etc.) process all increased in the PPMD system. Gene prediction completed by PICRUSt2 showed that the abundance of the functional genes involved in denitrification and sulfur oxidation all increased with the increase of HRT. This also accounted for the increased contribution of autotrophic denitrification to total nitrogen removal in the PPMD system. In addition, the analysis of metabolic pathways disclosed the specific conversion mechanisms of nitrogen and sulfur inside the reactor.
Collapse
Affiliation(s)
- Sicheng Yuan
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Qingbo Zhong
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Hongjun Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Wentao Zhu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Weibo Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, PR China
| | - Meng Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Xinhua Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
13
|
Heinze BM, Küsel K, Jehmlich N, von Bergen M, Taubert M. Metabolic versatility enables sulfur-oxidizers to dominate primary production in groundwater. WATER RESEARCH 2023; 244:120426. [PMID: 37597444 DOI: 10.1016/j.watres.2023.120426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/21/2023]
Abstract
High rates of CO2 fixation and the genetic potential of various groundwater microbes for autotrophic activity have shown that primary production is an important source of organic C in groundwater ecosystems. However, the contribution of specific chemolithoautotrophic groups such as S-oxidizing bacteria (SOB) to groundwater primary production and their adaptation strategies remain largely unknown. Here, we stimulated anoxic groundwater microcosms with reduced S and sampled the microbial community after 1, 3 and 6 weeks. Genome-resolved metaproteomics was combined with 50at-% 13CO2 stable isotope probing to follow the C flux through the microbial food web and infer traits expressed by active SOB in the groundwater microcosms. Already after 7 days, 90% of the total microbial biomass C in the microcosms was replaced by CO2-derived C, increasing to 97% at the end of incubation. Stable Isotope Cluster Analysis revealed active autotrophs, characterized by a uniform 13C-incorporation of 45% in their peptides, to dominate the microbial community throughout incubation. Mixo- and heterotrophs, characterized by 10 to 40% 13C-incorporation, utilized the primarily produced organic C. Interestingly, obligate autotrophs affiliated with Sulfuricella and Sulfuritalea contained traits enabling the storage of elemental S in globules to maintain primary production under energy limitation. Others related to Sulfurimonas seemed to rapidly utilize substrates for fast proliferation, and most autotrophs further maximized their energy yield via efficient denitrification and the potential for H2 oxidation. Mixotrophic SOB, belonging to Curvibacter or Polaromonas, enhanced metabolic flexibility by using organic compounds to satisfy their C requirements. Time series data spanning eight years further revealed that key taxa of our microcosms composed up to 15% of the microbial groundwater community, demonstrating their in-situ importance. This showed that SOB, by using different metabolic strategies, are able to account for high rates of primary production in groundwater, especially at sites limited to geogenic nutrient sources. The widespread presence of SOB with traits such as S storage, H2 oxidation, and organic C utilization in many aquatic habitats further suggested that metabolic versatility governs S-fueled primary production in the environment.
Collapse
Affiliation(s)
- Beatrix M Heinze
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, Jena 07743, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, Jena 07743, Germany; The German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Martin von Bergen
- The German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany; Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, UFZ, Permoserstr. 15, Leipzig 04318, Germany; Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, University of Leipzig, Brüderstr. 32, Leipzig 04103, Germany
| | - Martin Taubert
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, Jena 07743, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
14
|
Ntagia E, Lens P. Pyrite-based denitrification combined with electrochemical disinfection to remove nitrate and microbial contamination from groundwater. NPJ CLEAN WATER 2023; 6:59. [PMID: 38665805 PMCID: PMC11041687 DOI: 10.1038/s41545-023-00269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/30/2023] [Indexed: 04/28/2024]
Abstract
Nitrate and microbial contamination of groundwater can occur in countries that face intense urbanization and inadequate sanitation. When groundwater is the main drinking water source, as is often the case in such countries, the need to remove these contaminants becomes acute. The combination of two technologies is proposed here, a biological step to denitrify and an electrochemical step to disinfect the groundwater, thereby aiming to reduce the chemical input and the footprint of groundwater treatment. As such, a pyrite-based fluidized bed reactor (P-FBR) was constructed to autotrophically denitrify polluted groundwater. The P-FBR effluent was disinfected in an electrochemical cell with electrogenerated Cl2. Nitrate was removed with 79% efficiency from an initial 178 mg NO3- L-1 at an average denitrification rate of 171 mg NO3- L-1 d-1, with 18 h hydraulic retention time (HRT). The electrochemical unit achieved a 3.8-log reduction in total coliforms with a 41.7 A h m-3 charge density.
Collapse
Affiliation(s)
- Eleftheria Ntagia
- National University of Ireland, Galway, University Road, H91 TK33 Galway, Ireland
| | - Piet Lens
- National University of Ireland, Galway, University Road, H91 TK33 Galway, Ireland
| |
Collapse
|
15
|
Severe E, Errigo IM, Proteau M, Sayedi SS, Kolbe T, Marçais J, Thomas Z, Petton C, Rouault F, Vautier C, de Dreuzy JR, Moatar F, Aquilina L, Wood RL, LaBasque T, Lécuyer C, Pinay G, Abbott BW. Deep denitrification: Stream and groundwater biogeochemistry reveal contrasted but connected worlds above and below. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163178. [PMID: 37023812 DOI: 10.1016/j.scitotenv.2023.163178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 05/27/2023]
Abstract
Excess nutrients from agricultural and urban development have created a cascade of ecological crises around the globe. Nutrient pollution has triggered eutrophication in most freshwater and coastal ecosystems, contributing to a loss in biodiversity, harm to human health, and trillions in economic damage every year. Much of the research conducted on nutrient transport and retention has focused on surface environments, which are both easy to access and biologically active. However, surface characteristics of watersheds, such as land use and network configuration, often do not explain the variation in nutrient retention observed in rivers, lakes, and estuaries. Recent research suggests subsurface processes and characteristics may be more important than previously thought in determining watershed-level nutrient fluxes and removal. In a small watershed in western France, we used a multi-tracer approach to compare surface and subsurface nitrate dynamics at commensurate spatiotemporal scales. We combined 3-D hydrological modeling with a rich biogeochemical dataset from 20 wells and 15 stream locations. Water chemistry in the surface and subsurface showed high temporal variability, but groundwater was substantially more spatially variable, attributable to long transport times (10-60 years) and patchy distribution of the iron and sulfur electron donors fueling autotrophic denitrification. Isotopes of nitrate and sulfate revealed fundamentally different processes dominating the surface (heterotrophic denitrification and sulfate reduction) and subsurface (autotrophic denitrification and sulfate production). Agricultural land use was associated with elevated nitrate in surface water, but subsurface nitrate concentration was decoupled from land use. Dissolved silica and sulfate are affordable tracers of residence time and nitrogen removal that are relatively stable in surface and subsurface environments. Together, these findings reveal distinct but adjacent and connected biogeochemical worlds in the surface and subsurface. Characterizing how these worlds are linked and decoupled is critical to meeting water quality targets and addressing water issues in the Anthropocene.
Collapse
Affiliation(s)
- Emilee Severe
- Lancaster Environmental Centre, Lancaster University, Lancaster, UK; Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Isabella M Errigo
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA; Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Facultad de Ingenierías y Ciencas Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - Mary Proteau
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Sayedeh Sara Sayedi
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Tamara Kolbe
- Section of Hydrogeology and Hydrochemistry, Institute of Geology, Faculty of Geoscience, Geoengineering and Mining, TU Bergakademie Freiberg, Freiberg, Germany
| | - Jean Marçais
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAe), RiverLy, Centre de Lyon-Villeurbanne, 69625 Villeurbanne, France
| | - Zahra Thomas
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAe), Sol Agro et Hydrosystème Spatialisation, UMR 1069, Agrocampus Ouest, 35042 Rennes, France
| | - Christophe Petton
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - François Rouault
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAe), Sol Agro et Hydrosystème Spatialisation, UMR 1069, Agrocampus Ouest, 35042 Rennes, France
| | - Camille Vautier
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - Jean-Raynald de Dreuzy
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France; Univ Rennes, CNRS, OSUR (Observatoire des sciences de l'univers de Rennes), UMS 3343, 35000 Rennes, France
| | - Florentina Moatar
- RiverLy, INRAE, Centre de Lyon-Grenoble Auvergne-Rhône-Alpes, Lyon, France
| | - Luc Aquilina
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - Rachel L Wood
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Thierry LaBasque
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | | | - Gilles Pinay
- Environnement, Ville & Société (EVS UMR5600), Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Benjamin W Abbott
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
16
|
Liu X, Zhao C, Xu T, Liu W, Chen Q, Li L, Tan Y, Wang X, Dong Y. Pyrite and sulfur-coupled autotrophic denitrification system for efficient nitrate and phosphate removal. BIORESOURCE TECHNOLOGY 2023; 384:129363. [PMID: 37336446 DOI: 10.1016/j.biortech.2023.129363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
The inefficiency of nitrogen removal in pyrite autotrophic denitrification (PAD) and the low efficiency of PO43--P removal in sulfur autotrophic denitrification (SAD) limit their potential for engineering applications. This study examined the use of pyrite and sulfur coupled autotrophic denitrification (PSAD) in batch and column experiments to remove NO3--N and PO43--P from sewage. The effluent concentration of NO3--N was 0.32 ± 0.11 mg/L, with an average Total nitrogen (TN) removal efficiency of 99.14%. The highest PO43--P removal efficiency was 100% on day 18. There was a significant correlation between pH and the efficiency of PO43--P removal. Thiobacillus, Thiomonas and Thermomonas were found to be dominant at the bacterial genus level in PSAD. Additionally, the abundance of Thermomonas in the PSAD was greater than that observed in the SAD reactor. This result indirectly indicates that the PSAD system has more advantages in reducing N2O.
Collapse
Affiliation(s)
- Xuzhen Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| | - Changsheng Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China.
| | - Tongtong Xu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| | - Wei Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Luzhen Li
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| | - Yu Tan
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| | - Xiaokai Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| | - Yanan Dong
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, PR China
| |
Collapse
|
17
|
Dasi EA, Cunningham JA, Talla E, Ergas SJ. Autotrophic denitrification supported by sphalerite and oyster shells: Chemical and microbiome analysis. BIORESOURCE TECHNOLOGY 2023; 375:128820. [PMID: 36871699 DOI: 10.1016/j.biortech.2023.128820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
This research evaluated the metal-sulfide mineral, sphalerite, as an electron donor for autotrophic denitrification, with and without oyster shells (OS). Batch reactors containing sphalerite simultaneously removed NO3- and PO43- from groundwater. OS addition minimized NO2- accumulation and removed 100% PO43- in approximately half the time compared with sphalerite alone. Further investigation using domestic wastewater revealed that sphalerite and OS removed NO3- at a rate of 0.76 ± 0.36 mg NO3--N/(L · d), while maintaining consistent PO43- removal (∼97%) over 140 days. Increasing the sphalerite and OS dose did not improve the denitrification rate. 16S rRNA amplicon sequencing indicated that sulfur-oxidizing species of Chromatiales, Burkholderiales, and Thiobacillus played a role in N removal during sphalerite autotrophic denitrification. This study provides a comprehensive understanding of N removal during sphalerite autotrophic denitrification, which was previously unknown. Knowledge from this work could be used to develop novel technologies for addressing nutrient pollution.
Collapse
Affiliation(s)
- Erica A Dasi
- Department of Civil & Environmental Engineering, University of South Florida (USF), 4202 E. Fowler Ave, ENG 030, Tampa, FL 33620, USA
| | - Jeffrey A Cunningham
- Department of Civil & Environmental Engineering, University of South Florida (USF), 4202 E. Fowler Ave, ENG 030, Tampa, FL 33620, USA
| | - Emmanuel Talla
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne (LCB), F-13009, Marseille, France
| | - Sarina J Ergas
- Department of Civil & Environmental Engineering, University of South Florida (USF), 4202 E. Fowler Ave, ENG 030, Tampa, FL 33620, USA.
| |
Collapse
|
18
|
Zhang H, Sun M, Tian J, Zhu X, Cheng Y. Synergetic effects of pyrrhotite and biochar on simultaneous removal of nitrate and phosphate in autotrophic denitrification system. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10855. [PMID: 36949606 DOI: 10.1002/wer.10855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/28/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
In the trend of upgrading wastewater treatment plants, developing advanced treatment technologies for more efficient nutrient removal is crucial. This study prepared a pyrrhotite-biochar composite (Fex Sy @BC) to investigate its potential for simultaneous removal of nitrate and phosphate under autotrophic denitrification conditions. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were used to characterize the novel composite of Fex Sy @BC, which exhibited 9.2 mg N/(L·d) NO3 - -N reduction rate, 97.3% N2 production, and 81.8 mmol N/(kg·d) NO3 - -N material load with small solid/liquid ratio (0.008). The NO3 - -N removal with Fex Sy @BC was 1.2-2.2 times higher than that with pure iron sulfides or biochar or their mixtures, whereas the Δn(S)/Δn(N) of Fex Sy @BC was the lowest (1.80). Moreover, the PO4 3- -P reduction rate of Fex Sy @BC reached 3.23 mg P/(L·d), as high as that of pure pyrite or pyrrhotite. Thiobacillus was the most dominant denitrifying bacterium. Fex Sy @BC exhibited great promise for enhancing nutrient removal from secondary effluent without additional carbon source. PRACTITIONER POINTS: FexSy@BC enhanced nitrate and phosphate removal simultaneously. First-order kinetics and Monod model were fitted for denitrification with FexSy@BC. FexSy@BC had smaller molar ratio of sulfate release to nitrate removal. Thiobacillus was the dominant bacterium in FexSy@BC autotrophic denitrification. Synergistic effects on nutrients removal existed between biochar and pyrrhotite.
Collapse
Affiliation(s)
- Hao Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Min Sun
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Jing Tian
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
- Key Laboratory of Special Wastewater Treatment, Sichuan Province Higher Education System, Chengdu, China
- Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Chengdu, China
| | - Xiaoqing Zhu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Yunan Cheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
19
|
Zhu W, Chen J, Zhang H, Yuan S, Guo W, Zhang Q, Zhang S. Start-up phase optimization of pyrite-intensified hybrid sequencing batch biofilm reactor (PIHSBBR): Mixotrophic denitrification performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117232. [PMID: 36610197 DOI: 10.1016/j.jenvman.2023.117232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Pyrite-based autotrophic denitrification (PAD) is an emerging biological process to diminish nitrate pollution, but the relatively low NO3--N removal rate limits its practical application. In this research, a pyrite-intensified hybrid sequencing batch biofilm reactor (PIHSBBR) was designed to treat low C/N ratio domestic wastewater. The results showed that PIHSBBR could achieve optimal removal of COD, NH4+-N, and TN under the aeration rate of 1.0 L/L∙min and the hydraulic retention time (HRT) of 8 h, with removal rates of 69.67 ± 4.37%, 77.04 ± 4.84%, and 63.92 ± 6.66%, respectively. The PAD efficiency in PIHSBBR during the stable operation was not high (13.05-31.01%), and the main nitrogen removal pathway in PIHSBBR, especially in the aerobic zone, was simultaneous nitrification and denitrification (SND). High-throughput sequencing analysis unraveled that Planctomycetota (3.65%) had a high abundance in the anoxic zone of PIHSBBR, implying that anaerobic ammonium oxidation (anammox) might have occurred in the anoxic zone. In addition, the nitrogen cycle function gene with the highest abundance was nirBD, indicating the possible presence of dissimilatory nitrate reduction to ammonium (DNRA) within the system (aerobic and anoxic zones). Our research can provide useful information for the improvement and future application of PIHSBBR.
Collapse
Affiliation(s)
- Wentao Zhu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Jing Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Hongjun Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Sicheng Yuan
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Weijie Guo
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Changjiang River Scientific Research Institute, Wuhan, 430010, China
| | - Qian Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
20
|
Bai Y, Wang S, Zhussupbekova A, Shvets IV, Lee PH, Zhan X. High-rate iron sulfide and sulfur-coupled autotrophic denitrification system: Nutrients removal performance and microbial characterization. WATER RESEARCH 2023; 231:119619. [PMID: 36689879 DOI: 10.1016/j.watres.2023.119619] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/06/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Iron sulfides-based autotrophic denitrification (IAD) is a promising technology for nitrate and phosphate removal from low C:N ratio wastewater due to its cost-effectiveness and low sludge production. However, the slow kinetics of IAD, compared to other sulfur-based autotrophic denitrification (SAD) processes, limits its engineering application. This study constructed a co-electron-donor (FeS and S0 with a volume ratio of 2:1) iron sulfur autotrophic denitrification (ISAD) biofilter and operated at as short as 1 hr hydraulic retention time (HRT). Long-term operation results showed that the superior total nitrogen and phosphate removals of the ISAD biofilter were 90-100% at 1-12 h HRT, with the highest denitrification rate up to 960 mg/L/d. Considering low sulfate production, HRT of 3 h could be the optimal condition. Such superior performance in the ISAD biofilter was achieved due to the interactions between FeS and S0, which accelerated the denitrification process and maintained the acidity-alkalinity balance. Metagenomic analysis found that the enriched nitrate-dependent iron-oxidizing (NDFO) bacteria (Acinetobacter and Acidovorax), sulfur-oxidizing bacteria (SOB), and dissimilatory nitrate reduction to ammonia (DNRA) bacteria likely supported stable nitrate reduction. The metabolic pathway analysis showed that completely denitrification and DNRA, coupled with sulfur oxidation, disproportionation, iron oxidation and phosphate precipitation with FeS and S0 as co-electron donors, were responsible for the high-rate nitrate and phosphate removal. This study provides the potential of ISAD as a highly efficient post-denitrification technology and sheds light on the balanced microbial S-N-Fe transformation.
Collapse
Affiliation(s)
- Yang Bai
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Shun Wang
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | | | - Igor V Shvets
- CRANN, School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Po-Heng Lee
- Imperial College London, London SW7 2AZ, United Kingdom
| | - Xinmin Zhan
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
21
|
Zha Y, Wan R, Wu M, Ye P, Ye L, Li X, Yang H, Luo J. A hormesis-like effect of FeS on heterotrophic denitrification and its mechanisms. CHEMOSPHERE 2023; 311:136855. [PMID: 36243086 DOI: 10.1016/j.chemosphere.2022.136855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
To alleviate the insufficiency of carbon source in sewage, many sulfur-containing inorganic electron donors were added into traditional heterotrophic denitrification process. However, the effects of extraneous inorganic electron donors on heterotrophic denitrification were still largely unknown. In this study, a hormesis-like effect of ferrous sulfide (FeS, a representative inorganic electron donors) on Paracoccus denitrificans was observed. Total nitrogen (TN) removal efficiency of P. denitrificans rose by 15% with the increase of FeS dosage from 0 to 0.3 g L-1 (low level), whereas the TN removal significantly decreased to 53% as the dosage of FeS mounted up to 5.0 g L-1 (high level). Furthermore, the impacts of FeS on glucose utilization and bacterial growth exhibited hormesis-like effects. A subsequent mechanistic study revealed that above influences were caused by its released ions (Fe2+, Fe3+, and S2-) rather than particle size. Further study illustrated that low dosage of FeS released a small amount of Fe2+ and Fe3+, which provided sufficient electrons via promoting glucose utilization, then improved denitrification. Conversely, FeS with high dosage inhibited denitrification via its released S2-, which suppressed the activity of key denitrifying enzymes rather than influenced glucose metabolism and electron provision. Our results provide an insight into improving denitrification efficiency of the mixotrophic process coexisting with autotrophic and heterotrophic denitrifiers.
Collapse
Affiliation(s)
- Yunyi Zha
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Rui Wan
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China.
| | - Mengqi Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Ping Ye
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Liangtao Ye
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Xiaoxiao Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Haifeng Yang
- Anhui Phoneya Environmental Technology Co. Ltd., Donghu Innovation Center, Hefei, Anhui, 230601, China
| | - Jingyang Luo
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
22
|
Chen S, Zhou B, Chen H, Yuan R. Iron mediated autotrophic denitrification for low C/N ratio wastewater: A review. ENVIRONMENTAL RESEARCH 2023; 216:114687. [PMID: 36356669 DOI: 10.1016/j.envres.2022.114687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In recent years, iron mediated autotrophic denitrification has been a concern because it overcomes the absence of organic carbon and has been successfully used in denitrification for low C/N ratio wastewater. However, there is currently a lack of a more systematic summary of iron-based materials that can be used for denitrification, and no detailed overview about the mechanism of iron mediated autotrophic denitrification has been reported. In this study, the iron materials with different valence states that can be used for denitrification were summarized, and emphasized, as well as the mechanism in different interaction systems were emphasize. In addition, the contribution of various microorganisms in nitrate reduction were analyzed and the effects of operating conditions and water quality were evaluated. Finally, the challenges and shortcomings of the denitrification process were discussed aiming to find better practical engineering applications of iron-based denitrification.
Collapse
Affiliation(s)
- Shaoting Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
23
|
Zhang K, Zhu Z, Peng M, Tian L, Chen Y, Zhu J, Gan M. Enhancement of Cr(VI) reduction by indigenous bacterial consortia using natural pyrite: A detailed study to elucidate the mechanisms involved in the highly efficient and possible sustainable system. CHEMOSPHERE 2022; 308:136228. [PMID: 36041522 DOI: 10.1016/j.chemosphere.2022.136228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Pyrite was applied to Cr(VI) bioremediation as an inorganic electron donor due to the ability to provide electrons, while the role of pyrite in Cr(VI) bioremediation where organics as electron donors remains unknown. Herein a pyrite-based Cr(VI) bioreduction process in the sediment system containing lactate was demonstrated to be effective to detoxify Cr(VI): over 2200 mg L-1 Cr(VI) was continuously removed within 210 h with high reactivity (10.5 mg/(L·h)) all along. High-throughput 16S rDNA gene sequencing indicated that the pyrite could shape a functioning community that electrochemically active bacteria dominated (such as Fusibacter sp. and Rhodobacteraceae) instead of iron-oxidizing bacteria and sulfur-oxidizing bacteria. Mineralogy analysis results indicated that Fe(III), S22- and S0 formed on the pyrite surface after the oxidation of Cr(VI) might serve as the electron acceptor of microflora, then the S2- and Fe(II) with strong Cr(VI) reduction ability were formed by microbial reduction to enhance the removal of Cr(VI). This study provides new insights into thoroughly understanding the role of pyrite in the practical application of Cr(VI) bioreduction.
Collapse
Affiliation(s)
- Ke Zhang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Zhenyu Zhu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Mingxian Peng
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Luyan Tian
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yaozong Chen
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
24
|
Zhu Y, Di Capua F, Li D, Li H. Enhancement and mechanisms of micron-pyrite driven autotrophic denitrification with different pretreatments for treating organic-limited waters. CHEMOSPHERE 2022; 308:136306. [PMID: 36067811 DOI: 10.1016/j.chemosphere.2022.136306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Pyrite-driven autotrophic denitrification (PAD) represents a cheap and promising way for nitrogen removal from organic-limited wastewater, which has obtained increasing attention in recent years. However, the limited denitrification rate and unclear mechanism underlying the process have hindered the engineered application of PAD. This study aims to shed light on the impacts of different pretreatments (i.e., ultrasonication, acid-washing and calcination) on micron-pyrite surface characteristics, denitrification performance and biofilm formation during PAD in batch reactors. A series of solid-phase analyses revealed that all pretreatments could significantly promote biofilm attachment on pyrite granules, but impacted the proportion, distribution and chemical oxidation state of sulfur (S) and iron (Fe) at varying degrees. Batch tests showed that ultrasonication and acid-washing could enhance the total nitrogen reduction rate by 14% and 99%, and decrease the sulfate production rate by 51% and 42%, respectively, when compared with untreated pyrite. Microbial community analysis indicated that Thiobacillus and Rhodanobacter dominated in PAD systems. Two types of indirect mechanisms (i.e., contact and non-contact) for pyrite leaching may co-occur in PAD system, resulting in ferrous iron (Fe2+), thiosulfate (S2O32-) and sulfide (S2-) as the main electron donors for denitrification. A PAD mechanism model was proposed to describe the PAD electron transfer pathway with the aim to optimize the engineered application of PAD for nitrogen removal.
Collapse
Affiliation(s)
- Yingjie Zhu
- College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Francesco Di Capua
- Department of Civil Environmental Land Construction and Chemistry (DICATECh), Polytechnic University of Bari, 70125, Bari, Italy
| | - Duanxin Li
- College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Huaizheng Li
- College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
25
|
Kosgey K, Zungu PV, Bux F, Kumari S. Biological nitrogen removal from low carbon wastewater. Front Microbiol 2022; 13:968812. [PMID: 36466689 PMCID: PMC9709150 DOI: 10.3389/fmicb.2022.968812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/28/2022] [Indexed: 08/13/2023] Open
Abstract
Nitrogen has traditionally been removed from wastewater by nitrification and denitrification processes, in which organic carbon has been used as an electron donor during denitrification. However, some wastewaters contain low concentrations of organic carbon, which may require external organic carbon supply, increasing treatment costs. As a result, processes such as partial nitrification/anammox (anaerobic ammonium oxidation) (PN/A), autotrophic denitrification, nitritation-denitritation and bioelectrochemical processes have been studied as possible alternatives, and are thus evaluated in this study based on process kinetics, applicability at large-scale and process configuration. Oxygen demand for nitritation-denitritation and PN/A is 25% and 60% lower than for nitrification/denitrification, respectively. In addition, PN/A process does not require organic carbon supply, while its supply for nitritation-denitritation is 40% less than for nitrification/denitrification. Both PN/A and nitritation-denitritation produce less sludge compared to nitrification/denitrification, which saves on sludge handling costs. Similarly, autotrophic denitrification generates less sludge compared to heterotrophic denitrification and could save on sludge handling costs. However, autotrophic denitrification driven by metallic ions, elemental sulfur (S) and its compounds could generate harmful chemicals. On the other hand, hydrogenotrophic denitrification can remove nitrogen completely without generation of harmful chemicals, but requires specialized equipment for generation and handling of hydrogen gas (H2), which complicates process configuration. Bioelectrochemical processes are limited by low kinetics and complicated process configuration. In sum, anammox-mediated processes represent the best alternative to nitrification/denitrification for nitrogen removal in low- and high-strength wastewaters.
Collapse
Affiliation(s)
- Kiprotich Kosgey
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | | | | | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| |
Collapse
|
26
|
Bi Z, Zhang Q, Xu X, Yuan Y, Ren N, Lee DJ, Chen C. Perspective on inorganic electron donor-mediated biological denitrification process for low C/N wastewaters. BIORESOURCE TECHNOLOGY 2022; 363:127890. [PMID: 36075347 DOI: 10.1016/j.biortech.2022.127890] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Nitrate is the most common water environmental pollutant in the world. Inorganic electron donor-mediated denitrification is a typical process with significant advantages in treating low carbon-nitrogen ratio water and wastewater and has attracted extensive research attention. This review summarizes the denitrification processes using inorganic substances, including hydrogen, reductive sulfur compounds, zero-valent iron, and iron oxides, ammonium nitrogen, and other reductive heavy metal ions as electron donors. Aspects on the functional microorganisms, critical metabolic pathways, limiting factors and mathematical modeling are outlined. Also, the typical inorganic electron donor-mediated denitrification processes and their mechanism, the available microorganisms, process enhancing approaches and the engineering potentials, are compared and discussed. Finally, the prospects of developing the next generation inorganic electron donor-mediated denitrification process is put forward.
Collapse
Affiliation(s)
- Zhihao Bi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing 10076, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
27
|
Yang X, Tang Z, Xiao L, Zhang S, Jin J, Zhang S. Effect of electric current intensity on performance of polycaprolactone/FeS 2-based mixotrophic biofilm-electrode reactor. BIORESOURCE TECHNOLOGY 2022; 361:127757. [PMID: 35952860 DOI: 10.1016/j.biortech.2022.127757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
In this study, a bioelectrochemical system consisting of pyrite-based autotrophic denitrification (PAD) and heterotrophic denitrification (HD) was established to polish nitrate wastewater. The loading of electric current (EC) could stimulate the dissolution of pyrite. Appropriate EC (I ≤ 30 mA) was conducive to nitrate removal, too high EC (I = 40 mA) would inhibit nitrate removal and lead to an obvious accumulation of NO2--N and NH4+-N. Microbial analysis revealed that the increase of EC could inhibit the diversity of heterotrophic microbes, but appropriate EC (I = 10 mA) could increase the diversity of autotrophic microbes. The EC loading was conducive to the enrichment of iron autotrophic denitrifiers (Ferritrophicum), pyrite-oxidizing bacteria (Thiobacillus, Sulfurimonas), and sulfur autotrophic denitrifiers (Dechloromonas, Thiobacillus, and Arenimonas). The EC loading enlarged the contribution of PAD, making PAD a dominant pathway in denitrification.
Collapse
Affiliation(s)
- Xin Yang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Zhiwei Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Longqu Xiao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Jin
- Yunnan Ningmao Environmental Technology Co., Ltd., Kunming 650000, China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
28
|
Xu B, Yang X, Li Y, Yang K, Xiong Y, Yuan N. Pyrite-Based Autotrophic Denitrifying Microorganisms Derived from Paddy Soils: Effects of Organic Co-Substrate Addition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11763. [PMID: 36142037 PMCID: PMC9517464 DOI: 10.3390/ijerph191811763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The presence of organic co-substrate in groundwater and soils is inevitable, and much remains to be learned about the roles of organic co-substrates during pyrite-based denitrification. Herein, an organic co-substrate (acetate) was added to a pyrite-based denitrification system, and the impact of the organic co-substrate on the performance and bacterial community of pyrite-based denitrification processes was evaluated. The addition of organic co-substrate at concentrations higher than 48 mg L-1 inhibited pyrite-based autotrophic denitrification, as no sulfate was produced in treatments with high organic co-substrate addition. In contrast, both competition and promotion effects on pyrite-based autotrophic denitrification occurred with organic co-substrate addition at concentrations of 24 and 48 mg L-1. The subsequent validation experiments suggested that competition had a greater influence than promotion when organic co-substrate was added, even at a low concentration. Thiobacillus, a common chemolithoautotrophic sulfur-oxidizing denitrifier, dominated the system with a relative abundance of 13.04% when pyrite served as the sole electron donor. With the addition of organic co-substrate, Pseudomonas became the dominant genus, with 60.82%, 61.34%, 70.37%, 73.44%, and 35.46% abundance at organic matter concentrations of 24, 48, 120, 240, and 480 mg L-1, respectively. These findings provide an important theoretical basis for the cultivation of pyrite-based autotrophic denitrifying microorganisms for nitrate removal in soils and groundwater.
Collapse
Affiliation(s)
- Baokun Xu
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
- Key Laboratory of River Regulation and Flood Control of Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Xiaoxia Yang
- Chongqing Water Resources Bureau, Chongqing 401147, China
| | - Yalong Li
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Kejun Yang
- School of Law, Zhongnan University of Economics and Law, Wuhan 430073, China
- Agricultural and Rural Department of Hubei Province, Wuhan 430070, China
| | - Yujiang Xiong
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Niannian Yuan
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
| |
Collapse
|
29
|
Li R, Zhang Y, Guan M. Investigation into pyrite autotrophic denitrification with different mineral properties. WATER RESEARCH 2022; 221:118763. [PMID: 35759850 DOI: 10.1016/j.watres.2022.118763] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Pyrite autotrophic denitrification (PAD) is considered a promising method for nitrate removal from wastewater and groundwater. However, the results of PAD studies have been contradictory for two decades, and the mechanism is unclear. Here, we investigated mineral properties of two kinds of natural pyrite (YP and TP), their PAD performances, and microbial community shift in their column reactors in parallel. Both pyrite are highly pure crystalline pyrite, but their other mineral properties are quite different. Both batch and column experiments found that PAD of YP occurred but that of TP did not. Thus, the contradictory results of PAD were presented for the first time at the same study. The dominant bacteria in YP and TP columns finally were Thiobacillus (24.55±8.67%) and Flavobacterium (21.11±10.59%), respectively, though their initial microbial communities cultured were similar. Reduced sulfur species and oxide impurities on the surface of pyrite, and small DO in water did not change autotrophic denitrification characteristic of the pyrite itself. This research indicates that mineral property of pyrite caused the contradictory result of PAD. Among pyrite properties, the main crystal plane exposed and chemical state of surficial sulfur and iron were considered the decisive parameters for PAD. The study provides guidelines for selection of pyrite minerals for PAD applications.
Collapse
Affiliation(s)
- Ruihua Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Ave., Nanjing, Jiangsu 210023, China.
| | - Yongwei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Ave., Nanjing, Jiangsu 210023, China; Jiangsu Province Nuclear Radiation Science and Technology Co Ltd. No. 75 Yunlongshan Road, Jianye District, Nanjing City, Jiangsu 210019, China
| | - Mengsha Guan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Ave., Nanjing, Jiangsu 210023, China
| |
Collapse
|
30
|
Jiang S, Xu J, Wang H, Wang X. Study of the effect of pyrite and alkali-modified rice husk substrates on enhancing nitrogen and phosphorus removals in constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54234-54249. [PMID: 35298804 DOI: 10.1007/s11356-022-19537-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The combined effects and respective advantages of using pyrite and alkali-modified rice husk (RH) were studied as substrates for nitrogen and phosphorus removal from constructed wetlands, and the effects of the carbon to nitrogen (C/N) ratio and the tidal flow mode on system performance were explored. The results showed that alkali-modified RH, which enhances heterotrophic denitrification, had far more advantages than pyrite, which enhances autotrophic denitrification, and alkali-modified RH can be used for the treatment of sewage containing low C/N ratios. At a C/N ratio of 1.5, the total nitrogen (TN) removal rates exceeded 95%. However, the removal efficiency of the system with only pyrite only reached 76.90% when the influent C/N ratio was 6. Pyrite achieved a total phosphorus (TP) removal 10-20% higher than that of the control group. The tidal flow CWs showed enhanced nitrification, and the NH4+-N removal rates increased by approximately 10%, but the increase in dissolved oxygen (DO) was still insufficient to meet the needs of the systems, leading to limited TP removal. The combination of pyrite and alkali-modified RH was optimal for improving the ability of constructed wetlands to treat wastewaters, simultaneously removing nitrogen and phosphorus from sewage containing low C/N ratios. Combined with the tidal flow mode strategy, the use of pyrite and alkali-modified RH as substrates showed substantial advantages for improving water quality.
Collapse
Affiliation(s)
- Sijia Jiang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.
- Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Northeast Normal University, Renmin Street 5268, Changchun, 130024 Jilin, China.
| | - Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Xinyu Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| |
Collapse
|
31
|
Zhou Q, Sun H, Jia L, Wu W, Wang J. Simultaneous biological removal of nitrogen and phosphorus from secondary effluent of wastewater treatment plants by advanced treatment: A review. CHEMOSPHERE 2022; 296:134054. [PMID: 35202664 DOI: 10.1016/j.chemosphere.2022.134054] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
With the advancement of water ecological protection and water control standard, it is the general trend to upgrade the wastewater treatment plants (WWTPs). The simultaneous removal of nitrogen and phosphorus is the key to improve the water quality of secondary effluent of WWTPs to prevent the eutrophication. Therefore, it is urgent to develop the applicable technologies for simultaneous biological removal of nitrogen and phosphorus from secondary effluent. In this review, the composition of secondary effluent from municipal WWTPs were briefly introduced firstly, then the three main treatment processes for simultaneous nitrogen and phosphorus removal, i.e., the enhanced denitrifying phosphorus removal filter, the pyrite-based autotrophic denitrification and the microalgae biological treatment system were summarized, their performances and mechanisms were analyzed. The influencing factors and microbial community structure were discussed. The advanced removal of nitrogen and phosphorus by different technologies were also compared and summarized in terms of performance, operational characteristics, disadvantage and cost. Finally, the challenges and future prospects of simultaneous removal of nitrogen and phosphorus technologies for secondary effluent were proposed. This review will deepen to understand the principles and applications of the advanced removal of nitrogen and phosphorus and provide some valuable information for upgrading the treatment process of WWTPs.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| | - Haimeng Sun
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| | - Lixia Jia
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
32
|
Di Capua F, Esposito G. Pyrite-assisted denitrification in recirculated biofilter tolerates pH lower than 5. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10721. [PMID: 35491722 PMCID: PMC9321591 DOI: 10.1002/wer.10721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
This study demonstrates the feasibility of pyrite-assisted denitrification to treat mildly acidic wastewaters and proposes a convenient solution for nitrogen removal from acidic mining waters. Pyrite is a highly available and low-cost electron donor for autotrophic denitrification, whereas mining waters represent a source of nitrogen (N) contamination due to the use of N-containing explosives during mining operations and cyanide (CN)-based compounds for ore processing. In this study, the denitrification performance of a recirculated pyrite-packed biofilter (RPPB) treating simulated N-contaminated acidic mining waters is evaluated under decreasing pH conditions. The effect of feed organic carbon on the autotrophic process has been also investigated. N removal efficiencies (NRE) > 60% could be achieved at feed pH ≥ 4.5 and HRT ≥ 5 h. Decrease of influent pH to 3.0 reduced the NRE to 20%. The addition of 10 and 20 mg/L of ethanol to the influent did not significantly impact NRE of the RPPB. PRACTITIONER POINTS: Pyrite-assisted denitrification is proposed for treating acidic wastewaters. Nitrogen removal >60% was maintained at feed pH as low as 4.7. Decrease of feed pH to 3 strongly inhibited denitrification. The presence of organic carbon in the feed did not affect the autotrophic process.
Collapse
Affiliation(s)
- Francesco Di Capua
- Department of Civil, Environmental, Land, Building Engineering and ChemistryPolytechnic University of BariBariItaly
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental EngineeringUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
33
|
Chen X, Yang L, Chen F, Song Q, Feng C, Liu X, Li M. High efficient bio-denitrification of nitrate contaminated water with low ammonium and sulfate production by a sulfur/pyrite-based bioreactor. BIORESOURCE TECHNOLOGY 2022; 346:126669. [PMID: 34995779 DOI: 10.1016/j.biortech.2021.126669] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Sulfur-based autotrophic denitrification (SAD) and pyrite-based autotrophic denitrification (PAD) are important technologies that address nitrate pollution, but high sulfate production and low denitrification efficiency, respectively, limit their application in engineering. A bio-denitrification reactor with sulfur and pyrite as filler materials was studied to remove NO3--N from nitrate contaminated water. At an influent NO3--N concentration of 50 mg/L, NO3--N removal efficiency of the sulfur/pyrite-based bioreactor was 99.2%, producing less NH4+-N and SO42- than the sulfur-based bioreactor, even after long-term operation. Denitrification performance was significantly related to environmental variable, especially dissolved oxygen. Proteobacteria and Epsilonbacteraeota were the predominant phyla in the sulfur/pyrite-based bioreactor, and fewer dissimilatory nitrate reductions to ammonia process-related bacteria were enriched compared to those in the sulfur-based bioreactor. Sulfur-pyrite bio-denitrification provides an efficient alternative method for treatment of nitrate contaminated water.
Collapse
Affiliation(s)
- Xiaoyu Chen
- School of Environment, Tsinghua University, Beijing 100084, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Lei Yang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Fei Chen
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qinan Song
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
34
|
Hu Y, Liu T, Chen N, Feng C. Changes in microbial community diversity, composition, and functions upon nitrate and Cr(VI) contaminated groundwater. CHEMOSPHERE 2022; 288:132476. [PMID: 34634272 DOI: 10.1016/j.chemosphere.2021.132476] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/12/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
With the increasing occurrences of nitrate and Cr(VI) pollution globally, microbially driven pollutant reduction and its interaction effects were of growing interest. Despite the increasing number of experimental reports on the simultaneous reduction of nitrate and Cr(VI), a broad picture of the keystone species and metabolic differences in this process remained elusive. This study explored the changing of microorganisms with the introduction of Cr(VI)/NO3- through analyzing 242 samples from the NCBI database. The correlation between microbial abundance and environmental factors showed that, the types of energy substances and pollutants species in the environment had an impact on the diversity of microorganisms and community structure. The genus of Zoogloea, Candidatus Accumulibacter, and Candidatus Kapabacteria sp. 59-99 had the ability of denitrification, while genus of Alcaligenes, Kerstersia, Petrimonas, and Leucobacter showed effectively Cr(VI) resistance and reducing ability. Azoarcus, Pseudomonas, and Thauera were recognized as important candidates in the simultaneous reduction of nitrate and Cr(VI). Metagenomic predictions of these microorganisms using PICRUSt2 further highlighted the enrichment of Cr(VI)and nitrate reduction-related genes (such as chrA and norC). Special attention should therefore be paid to these bacteria in subsequent studies to evaluate their performance and mechanisms involved in simultaneous denitrification and chromium removal. The microbial co-occurrence network analysis conducted on this basis emphasized a strong association between community collaboration and pollution removal. Collectively, either site surveys or laboratory experiments, subsequent studies should focus on these microbial populations and the interspecific collaborations as they strongly influence the occurrence of simultaneous nitrate and Cr(VI) reduction.
Collapse
Affiliation(s)
- Yutian Hu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Tong Liu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| |
Collapse
|
35
|
Pelivano B, Bryson S, Hunt KA, Denecke M, Stahl DA, Winkler M. Application of pyritic sludge with an anaerobic granule consortium for nitrate removal in low carbon systems. WATER RESEARCH 2022; 209:117933. [PMID: 34923445 DOI: 10.1016/j.watres.2021.117933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/12/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Granules recovered from a highly reduced anaerobic digester were capable of active nitrogen removal in the absence of exogenous electron donors, averaging 0.25 mg mgNO3--N /gVSS/d over 546 days of operation. Electron mass balance indicated that about half the influent nitrate was converted to ammonia via DNRA and another half denitrified. This capacity was associated with an onion-like structure of multiple layers enriched in reduced iron and sulfur, and a complex microbial community shown by metagenomic sequencing to consist of multiple physiological groups and associated activities, including methanogenesis, denitrification, dissimilatory nitrate reduction to ammonia (DNRA), iron oxidation and reduction, and sulfur reduction and oxidation. Nitrate reduction was supported by both entrained organic material and reduced iron and sulfur species, corresponding to 2.13 mg COD/gVSS/d. Batch incubations showed that approximately 15% of denitrified nitrate was coupled to the oxidation of sulfur derived from both sulfate respiration and granular material enriched in iron-sulfide. Inhibition of sulfate reduction resulted in redirection of electron flow to methanogenesis and, in combination with other batch tests, showed that these granules supported a complex microbial community in which cryptic redox cycles linked carbon, sulfur, and iron oxidation with nitrate, sulfate, iron, and carbon dioxide reduction. This system shows promise for treatment of nitrate contaminated ground water without addition of an external organic carbon source as well as wastewater treatment in combination with (granular) sludge elimination leading in a net reduction of solid treatment costs.
Collapse
Affiliation(s)
- Bojan Pelivano
- Department of Civil and Environmental Engineering, University of Washington, 616 Northeast Northlake Place, Seattle, Washington 98105, USA; Department of Urban Water and Waste Management, University of Duisburg-Essen, Universitaetsstr. 15, Essen 45141, Germany.
| | - Samuel Bryson
- Department of Civil and Environmental Engineering, University of Washington, 616 Northeast Northlake Place, Seattle, Washington 98105, USA
| | - Kristopher A Hunt
- Department of Civil and Environmental Engineering, University of Washington, 616 Northeast Northlake Place, Seattle, Washington 98105, USA
| | - Martin Denecke
- Department of Urban Water and Waste Management, University of Duisburg-Essen, Universitaetsstr. 15, Essen 45141, Germany
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, 616 Northeast Northlake Place, Seattle, Washington 98105, USA
| | - Mari Winkler
- Department of Civil and Environmental Engineering, University of Washington, 616 Northeast Northlake Place, Seattle, Washington 98105, USA
| |
Collapse
|
36
|
Zhao B, Sun Z, Liu Y. An overview of in-situ remediation for nitrate in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149981. [PMID: 34517309 DOI: 10.1016/j.scitotenv.2021.149981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Faced with the increasing nitrate pollution in groundwater, in-situ remediation has been widely studied and applied on field-scale as an efficient, economical and less disturbing remediation technology. In this review, we discussed various in-situ remediation for nitrate in groundwater and elaborate on biostimulation, phytoremediation, electrokinetic remediation, permeable reactive barrier and combined remediation. This review described principles of each in-situ remediation, application, the latest progress, problems and challenges on field-scale. Factors affecting the efficiency of in-situ remediation for nitrate in groundwater are also summarized. Finally, this review presented the prospect of in-situ remediation for nitrate pollution in groundwater. The objective of this review is to examine the state of knowledge on in-situ remediation for nitrate in groundwater and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. This helps to better understand the control mechanisms of various in-situ remediation for nitrate pollution in groundwater and the design options available for application to the field-scale.
Collapse
Affiliation(s)
- Bei Zhao
- China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhanxue Sun
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China.
| | - Yajie Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
37
|
Yuan S, Zhu W, Guo W, Sang W, Zhang S. Effect of hydraulic retention time on performance of autotrophic, heterotrophic, and split-mixotrophic denitrification systems supported by polycaprolactone/pyrite: Difference and potential explanation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10820. [PMID: 36514302 DOI: 10.1002/wer.10820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Biological denitrification is still the most important pathway to purifying nitrate-containing wastewater. In this study, pyrite (FeS2 ) and polycaprolactone (PCL) were used as electron donors to construct sole or combined denitrification systems, that is, pyrite-based autotrophic denitrification (PAD) system, PCL-supported heterotrophic denitrification (PHD) system, and split-mixotrophic denitrification system (combined PAD + PHD), all of which were operated under five different hydraulic retention times (HRTs) for 150 days. The results showed that the removal rates (RE) of nitrate (NO3 - -N) and inorganic phosphorus (PO4 3- -P) by PAD were 91% and 94%, respectively, but the effluent sulfate (SO4 2- ) concentration was as high as 168.2 mg/L; the removal rate of NO3 - -N by PHD was higher than 99%, but the PO4 3- -P could not be removed ideally; the removal rates of NO3 - -N and PO4 3- -P by PAD + PHD were higher than 95% and 99%, respectively, and the effluent SO4 2- concentration was only 7.2 mg/L. Through the analysis of the surface scanning electron microscope (SEM) images of the two kinds of media before and after use, it was found that the coupled mode of PAD + PHD was more favorable for biofilm formation than the sole PAD or PHD process, and the microorganisms in the PAD + PHD mode made more full use of electron donors. Moreover, the biomass of the PAD + PHD mode was lower than that of the PAD or PHD process, but the denitrification efficiency of the coupled mode was more efficient, indicating that the functional microorganisms in the PAD + PHD mode might have a certain synergistic effect. PRACTITIONER POINTS: Removal rates of NO3 -, PO4 3 -, and SO4 2 - by PAD were 91%, 94%, and -233%, respectively. Removal rate of NO3 - by PHD exceeded 99%, but PO4 3 - could not be removed ideally. Removal rates of NO3 -, PO4 3 -, and SO4 2 - by PAD + PHD were 95%, 99%, and 86%, respectively. The coupled mode was more favorable for biofilm formation than the sole PAD or PHD. The coupled mode had lower biomass but got more excellent denitrification efficiency.
Collapse
Affiliation(s)
- Sicheng Yuan
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Wentao Zhu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Weijie Guo
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Changjiang River Scientific Research Institute, Wuhan, China
| | - Wenjiao Sang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
38
|
Pang Y, Wang J. Inhibition of ferrous iron (Fe 2+) to sulfur-driven autotrophic denitrification: Insight into microbial community and functional genes. BIORESOURCE TECHNOLOGY 2021; 342:125960. [PMID: 34560437 DOI: 10.1016/j.biortech.2021.125960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The effect of Fe2+ on the performance of sulfur-driven autotrophic denitrification (SDAD) using S0 as electron donor was evaluated. The experimental results showed that as initial Fe2+ concentration increased, nitrate (NO3-) removal rate significantly decreased. Fe2+ ion (0.1 mM and 1 Mm) inhibited SDAD rate (approximately 10% and 50%) and resulted in an accumulation of nitrite (NO2-) and nitrous oxide (N2O). The relative abundance of Thiobacillus was positively correlated with NO3- removal rate, whereas negatively correlated with Fe2+ concentration, suggesting that Fe2+ inhibited the sulfur-oxidizing denitrifying bacteria. Moreover, the abundance of bacterial 16S rRNA, denitrifying genes (narG, nirS, nirK and nosZ) and sulfur-oxidizing genes (soxB and dsrA) decreased with the increase of Fe2+ concentration, among them nosZ and soxB were the most sensitive genes to Fe2+, and nosZ/narG, soxB/(bacterial 16S rRNA) and soxB/nirK had influence on NO3- removal rate, while nosZ/(bacterial 16S rRNA) affected N2O accumulation rate.
Collapse
Affiliation(s)
- Yunmeng Pang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
39
|
Liu T, Hu Y, Chen N, He Q, Feng C. High redox potential promotes oxidation of pyrite under neutral conditions: Implications for optimizing pyrite autotrophic denitrification. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125844. [PMID: 33878651 DOI: 10.1016/j.jhazmat.2021.125844] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Pyrite autotrophic denitrification (PAD) represents an important natural attenuation process of nitrate pollution and plays a pivotal role in linking nitrogen, sulfur, and iron cycles in a variety of anoxic environments. However, there are knowledge gaps about the oxidation mechanism of pyrite under anaerobic neutral conditions. This study explored the performance of PAD in the presence of EDTA and revealed the mechanism of anaerobic pyrite oxidation and microbial mineral transformation. It was demonstrated that ~200 mV was the electrochemical threshold for converting pyrite into bioavailable forms in PAD conditions, and accelerated pyrite oxidation by Fe3+-EDTA complexes can improve the performance of PAD effectively. Furthermore, genus related to sulfur and nitrogen cycle (Sulfurimonas, Denitrobacter) were found at higher abundances in cultures containing EDTA. The analysis of metagenomic binning showed that the microbial community in PAD culture with EDTA addition exhibited higher levels of functional diversity and redundancy. These results will further the understanding of the oxidation mechanism of pyrite under anaerobic neutral conditions and the corresponding microbial activities, and provide insights into the practical application of PAD.
Collapse
Affiliation(s)
- Tong Liu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Yutian Hu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Qiaochong He
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| |
Collapse
|
40
|
Carboni MF, Florentino AP, Costa RB, Zhan X, Lens PNL. Enrichment of Autotrophic Denitrifiers From Anaerobic Sludge Using Sulfurous Electron Donors. Front Microbiol 2021; 12:678323. [PMID: 34163455 PMCID: PMC8215349 DOI: 10.3389/fmicb.2021.678323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
This study compared the rates and microbial community development in batch bioassays on autotrophic denitrification using elemental sulfur (S0), pyrite (FeS2), thiosulfate (S2O3 2-), and sulfide (S2-) as electron donor. The performance of two inocula was compared: digested sludge (DS) from a wastewater treatment plant of a dairy industry and anaerobic granular sludge (GS) from a UASB reactor treating dairy wastewater. All electron donors supported the development of a microbial community with predominance of autotrophic denitrifiers during the enrichments, except for sulfide. For the first time, pyrite revealed to be a suitable substrate for the growth of autotrophic denitrifiers developing a microbial community with predominance of the genera Thiobacillus, Thioprofundum, and Ignavibacterium. Thiosulfate gave the highest denitrification rates removing 10.94 mM NO3 - day-1 and 8.98 mM NO3 - day-1 by DS and GS, respectively. This was 1.5 and 6 times faster than elemental sulfur and pyrite, respectively. Despite the highest denitrification rates observed in thiosulfate-fed enrichments, an evaluation of the most relevant parameters for a technological application revealed elemental sulfur as the best electron donor for autotrophic denitrification with a total cost of 0.38 € per m3 of wastewater treated.
Collapse
Affiliation(s)
- M. F. Carboni
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - A. P. Florentino
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - R. B. Costa
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara, Brazil
| | - X. Zhan
- Department of Civil Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| | - P. N. L. Lens
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
41
|
Wen Q, Su J, Li G, Huang T, Xue L, Bai Y. Performance and microbial community of a novel PVA/iron-carbon (Fe–C) immobilized bioreactor for nitrate removal from groundwater. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2020-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
An efficient immobilized denitrification bioreactor functioning under anaerobic conditions was developed by combining bacterial immobilization technology with iron-carbon (Fe–C) particles. The effects of key factors on nitrate (NO3
−–N) removal efficiency were invested, such as the carbon-nitrogen ratio (C/N), pH and hydraulic retention time (HRT). Experimental results show that 100.00% NO3
−–N removal efficiency and a low level of nitrite (NO2
−–N) accumulation less than 0.05 mg L−1 were obtained under the condition of a C/N ratio of 3, pH 7.0 and HRT of 6 h. Meteorological chromatographic analysis showed that the final product of denitrification was mainly nitrogen (N2). The main component of precipitation formed in the bioreactor was characterized as Fe3O4 by X-ray diffraction. High-throughput sequencing analysis indicated that the dominant bacterial class in the Fe–C bioreactor was Gammaproteobacteria, while the dominant genera were Zoogloea and Azospira, the relative abundances of which were as high as 23.25 and 15.43%, respectively.
Collapse
Affiliation(s)
- Qiong Wen
- School of Environmental and Municipal Engineering , Xi’an University of Architecture and Technology , Xi’an 710055 , China
| | - Junfeng Su
- School of Environmental and Municipal Engineering , Xi’an University of Architecture and Technology , Xi’an 710055 , China
- Shaanxi Key Laboratory of Environmental Engineering , Xi’an University of Architecture and Technology , Xi’an 710055 , China
| | - Guoqing Li
- School of Environmental and Municipal Engineering , Xi’an University of Architecture and Technology , Xi’an 710055 , China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering , Xi’an University of Architecture and Technology , Xi’an 710055 , China
- Shaanxi Key Laboratory of Environmental Engineering , Xi’an University of Architecture and Technology , Xi’an 710055 , China
| | - Lei Xue
- School of Environmental and Municipal Engineering , Xi’an University of Architecture and Technology , Xi’an 710055 , China
| | - Yihan Bai
- School of Environmental and Municipal Engineering , Xi’an University of Architecture and Technology , Xi’an 710055 , China
| |
Collapse
|
42
|
Pang Y, Wang J. Insight into the mechanism of chemoautotrophic denitrification using pyrite (FeS 2) as electron donor. BIORESOURCE TECHNOLOGY 2020; 318:124105. [PMID: 32932113 DOI: 10.1016/j.biortech.2020.124105] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 05/14/2023]
Abstract
In this study, denitrification was performed using pyrite as sole electron donor. The nitrate reducing rate ranged from 0.61 to 0.95 mM/d. The production of nitrous oxide (N2O) was observed, accounting for 20% of the total nitrate reduction. The isotope fractionation indicated that N2O production was mainly caused by the bacterial denitrification, instead of chemical denitrification by Fe(Ⅱ). Thiobacillus was the predominant genus, of which relative abundance decreased after the incubation with pyrite. Conversely, other genera belonging to Actinobacteria, like Rhodococcus, increased by more than 10 times. These Actinobacteria-like bacteria lack nitrous oxide reductase, which might be the reason for high N2O production. Furthermore, the predicted microbial functions analysis by PICRUSt2 showed that the genes (menC/E/G) involved in the biosynthesis of electron shuttles (menaquinone-related redox-active molecule), which were remarkably enriched during the process, suggesting that the first step of pyrite oxidation might be driven by the microbial derived electron shuttles.
Collapse
Affiliation(s)
- Yunmeng Pang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
43
|
Namburath M, Papirio S, Moscariello C, Di Costanzo N, Pirozzi F, Alappat BJ, Sreekrishnan TR. Effect of nickel on the comparative performance of inverse fluidized bed and continuously stirred tank reactors for biogenic sulphur-driven autotrophic denitrification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 275:111301. [PMID: 32866922 DOI: 10.1016/j.jenvman.2020.111301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The comparative performance of an inverse fluidized bed reactor (IFBR) having high density polyethylene beads as carrier materials for biofilm formation and a continuous stirred tank reactor (CSTR), both maintaining autotrophic denitrification using biogenic sulphur (ADBIOS) in the absence and presence of nickel (Ni2+), was studied. The reactors were compared in terms of NO3--N and NO2--N removal and SO42--S production throughout the study. A simulated wastewater with an inlet NO3--N concentration of 225 mg/L and a decreasing concentration of biogenic sulphur (bio-S) from 1.5 to 0.375 g/L was used. Both reactors were operated at a hydraulic retention time (HRT) of 48 h for 140 days and at an HRT of 42 h for the following 68 days. A more efficient ADBIOS was observed in the CSTR than IFBR throughout the study due to a better mixing of the feed wastewater in the bulk liquid and a higher availability of bio-S to the suspended cells. The NO3--N removal efficiency in the IFBR decreased by approximately 41% when the feed bio-S was reduced to 0.375 g/L, while it remained unaffected in the CSTR. Conversely, the presence of Ni2+ did not significantly affect NO3--N removal in both reactors even at a feed Ni2+ concentration of 120 mg/L. The highest NO3--N removal rates achieved were 86 and 108 mg NO3--N/(L·day) in the IFBR and CSTR, respectively, in the presence of 120 mg/L of feed Ni2+ at an HRT of 42 h. Batch studies conducted with acclimatized biomass showed that the continuous-flow operation mode in both reactors played a major role in helping the autotrophic denitrifiers to tolerate Ni2+ toxicity.
Collapse
Affiliation(s)
- Maneesh Namburath
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy; Department of Civil Engineering, Indian Institute of Technology Delhi, 110016, New Delhi, India.
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| | - Carlo Moscariello
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| | - Nicola Di Costanzo
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| | - Babu J Alappat
- Department of Civil Engineering, Indian Institute of Technology Delhi, 110016, New Delhi, India
| | - T R Sreekrishnan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, 110016, New Delhi, India
| |
Collapse
|
44
|
Zhang W, Huang F, Hu W. Performance and mechanism of synchronous nitrate and phosphorus removal in constructed pyrite-based mixotrophic denitrification system from secondary effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36816-36825. [PMID: 32572742 DOI: 10.1007/s11356-020-09780-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The performance and process of the constructed pyrite-based mixotrophic denitrification (POMD) system using pyrite and residual organic matters as the co-electron donors were investigated for simultaneous removal of N and P from secondary effluent. After the batch experiments, 61.80 ± 3.26% of phosphate and 99.99 ± 0.01% of nitrate were removed, and the obtained nitrate removal rate constant can reach 2.09 days-1 in POMD system, which was significantly superior to that reported (0.95 day-1) in pyrite-based autotrophic denitrification (PAD) system. PO43--P removal was mainly achieved via chemical precipitation as FePO4 with iron, and it was irrelevant with the initial nitrate and ammonium concentrations. High-throughput 16S rRNA gene sequencing analysis showed the coexistence of heterotrophic and autotrophic denitrifiers in the mixotrophic environment. The denitrification process could be divided into two stages according to the carbon balance and calculation of sulfate accumulation: (a) nitrate was mainly reduced heterotrophically during 12-36 h and (b) nitrate was reduced autotrophically after 36 h. The calculated proportion of heterotrophic denitrification was 58.17 ± 3.78%, which was promoted by a higher ammonium concentration. These findings are likely to be useful in understanding the mixotrophic denitrification process and developing a cost-effective technology to simultaneously remove N and P from secondary effluent. Graphical abstract.
Collapse
Affiliation(s)
- Wen Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Fuyang Huang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Weiwu Hu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
- The Journal Center, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
| |
Collapse
|
45
|
Di Capua F, Mascolo MC, Pirozzi F, Esposito G. Simultaneous denitrification, phosphorus recovery and low sulfate production in a recirculated pyrite-packed biofilter (RPPB). CHEMOSPHERE 2020; 255:126977. [PMID: 32402891 DOI: 10.1016/j.chemosphere.2020.126977] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
The simultaneous removal of nitrate (15 mg N-NO3- L-1) and phosphate (12 mg P-PO43- L-1) from nutrient-polluted synthetic water was investigated in a recirculated pyrite-packed biofilter (RPPB) under hydraulic retention time (HRT) ranging from 2 to 11 h. HRT values ≥ 8 h resulted in nitrate and phosphate average removal efficiency (RE) higher than 90% and 70%, respectively. Decrease of HRT to 2 h significantly reduced the RE of both nitrogen and phosphorus. The RPPB showed high resiliency as reactor performance recovered immediately after HRT increase to 5 h. Solid-phase characterization of pyrite granules and backwashing material collected from the RPPB at the end of the study revealed that iron-phosphate, -hydroxide and -sulfate precipitated in the bioreactor. Thermodynamic modeling predicted the formation of S0 during the study. Residence time distribution tests showed semi-complete mixing hydrodynamic flow conditions in the RPPB. The RPPB can be considered an elegant and low-cost technology coupling biological nitrogen removal to the recovery of phosphorus, iron and sulfur via chemical precipitation.
Collapse
Affiliation(s)
- Francesco Di Capua
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy.
| | - Maria Cristina Mascolo
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Gaetano di Biasio 43, 03043, Cassino, Italy
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
| |
Collapse
|
46
|
Mansor M, Xu J. Benefits at the nanoscale: a review of nanoparticle-enabled processes favouring microbial growth and functionality. Environ Microbiol 2020; 22:3633-3649. [PMID: 32705763 DOI: 10.1111/1462-2920.15174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/29/2022]
Abstract
Nanoparticles are ubiquitous and co-occur with microbial life in every environment on Earth. Interactions between microbes and nanoparticles impact the biogeochemical cycles via accelerating various reaction rates and enabling biological processes at the smallest scales. Distinct from microbe-mineral interactions at large, microbe-nanoparticle interactions may involve higher levels of active recognition and utilization of the reactive, changeable, and thereby 'moldable' nano-sized inorganic phases by microbes, which has been given minimal attention in previous reviews. Here we have compiled the various cases of microbe-nanoparticle interactions with clear and potential benefits to the microbial cells and communities. Specifically, we discussed (i) the high bioavailabilities of nanoparticles due to increased specific surface areas and size-dependent solubility, with a focus on environmentally-relevant iron(III) (oxyhydr)oxides and pyrite, (ii) microbial utilization of nanoparticles as 'nano-tools' for electron transfer, chemotaxis, and storage units, and (iii) speculated benefits of precipitating 'moldable' nanoparticles in extracellular biomineralization. We further discussed emergent questions concerning cellular level responses to nanoparticle-associated cues, and the factors that affect nanoparticles' bioavailabilities beyond size-dependent effects. We end the review by proposing a framework towards more quantitative approaches and by highlighting promising techniques to guide future research in this exciting field.
Collapse
Affiliation(s)
- Muammar Mansor
- Geomicrobiology, Center for Applied Geoscience, University of Tuebingen, Tuebingen, 72076, Germany
| | - Jie Xu
- Department of Geological Sciences, the University of Texas at El Paso, El Paso, Texas, 79968, USA
| |
Collapse
|
47
|
Hu Y, Wu G, Li R, Xiao L, Zhan X. Iron sulphides mediated autotrophic denitrification: An emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment. WATER RESEARCH 2020; 179:115914. [PMID: 32413614 DOI: 10.1016/j.watres.2020.115914] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/16/2020] [Accepted: 05/02/2020] [Indexed: 05/09/2023]
Abstract
Iron sulphides, mainly in the form of mackinawite (FeS), pyrrhotite (Fe1-xS, x = 0-0.125) and pyrite (FeS2), are the most abundant sulphide minerals and can be oxidized under anoxic and circumneutral pH conditions by chemoautotrophic denitrifying bacteria to reduce nitrate to N2. Iron sulphides mediated autotrophic denitrification (ISAD) represents an important natural attenuation process of nitrate pollution and plays a pivotal role in linking nitrogen, sulphur and iron cycles in a variety of anoxic environments. Recently, it has emerged as a promising bioprocess for nutrient removal from various organic-deficient water and wastewater, due to its specific advantages including high denitrification capacity, simultaneous nitrogen and phosphorus removal, self-buffering properties, and fewer by-products generation (sulphate, waste sludge, N2O, NH4+, etc.). This paper provides a critical overview of fundamental and engineering aspects of ISAD, including the theoretical knowledge (biochemistry, and microbial diversity), its natural occurrence and engineering applications. Its potential and limitations are elucidated by summarizing the key influencing factors including availability of iron sulphides, low denitrification rates, sulphate emission and leaching heavy metals. This review also put forward two key questions in the mechanism of anoxic iron sulphides oxidation, i.e. dissolution of iron sulphides and direct substrates for denitrifiers. Finally, its prospects for future sustainable wastewater treatment are highlighted. An iron sulphides-based biotechnology towards next-generation wastewater treatment (NEO-GREEN) is proposed, which can potentially harness bioenergy in wastewater, incorporate resources (P and Fe) recovery, achieve simultaneous nutrient and emerging contaminants removal, and minimize waste sludge production.
Collapse
Affiliation(s)
- Yuansheng Hu
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland
| | - Guangxue Wu
- Institute of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Ruihua Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Avenue, Nanjing, 210023, China
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Xinmin Zhan
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland; MaREI Centre for Marine and Renewable Energy, Ireland.
| |
Collapse
|
48
|
Liu Y, Chen N, Tong S, Liang J, Yang C, Feng C. Performance enhancement of H 2S-based autotrophic denitrification with bio-gaseous CO 2 as sole carbon source through new pH adjustment materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110157. [PMID: 31999611 DOI: 10.1016/j.jenvman.2020.110157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/29/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
H2S-based denitrification could achieve synchronous removal of nitrate and H2S and had been regarded as an efficient way for biogas desulfurization and wastewater denitrification. Using CO2 in biogas as carbon source had a potential of saving cost further, but the performance deteriorated due to the drop in pH. Two kinds of nature ore, medical stone and phosphate ore, were added as new pH adjustment materials in this study, and feasibility of using CO2 as sole carbon source for H2S-based denitrification was investigated. As a result, both materials could increase the pH from 4.5 to above 6.0. Compared with medical stone, higher level of pH (up to 6.39) and nitrate removal efficiency (99.1%) were obtained with phosphate ore. In addition, ATP increased more rapidly than the control, reflecting improvement on microbial activities. Therefore, phosphate ore as the pH adjustment material could improve H2S-based denitrification performance obviously.
Collapse
Affiliation(s)
- Yongjie Liu
- Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences, Beijing), Ministry of Education, No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Nan Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Shuang Tong
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing, 100068, China
| | - Jing Liang
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chen Yang
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chuanping Feng
- Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences, Beijing), Ministry of Education, No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
49
|
Dahiru M, Abu Bakar NK, Yus Off I, Low KH, Mohd MN. Assessment of denitrification potential for coastal and inland sites using groundwater and soil analysis: the multivariate approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:294. [PMID: 32307605 DOI: 10.1007/s10661-020-08276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
In an effort to determine the reason behind excellent nitrate remediation capacity at Kelantan region, a multivariate approach is employed to evaluate extent to which the influence of sea on soil geochemical composition affect variation pattern of groundwater quality. The results obtained from geochemical analysis of paleo-beach soil in coastal site at Bachok revealed multiple redox activity at different soil strata, involving both heterotrophic and autotrophic denitrification. In soil and water analysis, eight of the fourteen hydro-geochemical parameters (conductivity, temperature, soil texture, oxidation reduction potential, pH, total organic carbon, Fe, Cu, Mn, Cl-, SO42-, NO2-, NO3- and PO43-) measured using standard procedures were subjected to multivariate analysis. Evaluation of general variation pattern across the area reveals that the principal component analysis (PCA), hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA) are in consonance with one another on apportioning three parameters (SO42-, Cl- and conductivity) to the coastal sites and two parameters (Fe and NH4+ or NO3-) to inland sites. The step forward analysis of LDA reveals four parameters in order of decreasing significance as Cl-, Fe and SO42-, while the two-way HCA identifies three clusters on location basis, respectively. In addition to the significant data reduction obtained, the results indicate that proximity to sea and location/geological-based influence are more significant than temporal-based influence in denitrification. By extension, the research reveals that influence of labile portion of natural resources is explorable for broader application in other remediation strategies.
Collapse
Affiliation(s)
- Muntaka Dahiru
- Department of Chemistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Science Lab Tech, Kano State Polytechnic, Kano, Nigeria
| | | | - Ismail Yus Off
- Department of Geology, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Kah Hin Low
- Department of Chemistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Muhammad N Mohd
- Faculty of Plantation and Agrotechnology, UiTM Cawangan Kampus, 77300, Melaka, Malaysia
| |
Collapse
|
50
|
Hydrilla verticillata-Sulfur-Based Heterotrophic and Autotrophic Denitrification Process for Nitrate-Rich Agricultural Runoff Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051574. [PMID: 32121360 PMCID: PMC7084213 DOI: 10.3390/ijerph17051574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 11/17/2022]
Abstract
Hydrilla verticillata-sulfur-based heterotrophic and autotrophic denitrification (HSHAD) process was developed in free water surface constructed wetland mesocosms for the treatment of nitrate-rich agricultural runoff with low chemical oxygen demand/total nitrogen (C/N) ratio, whose feasibility and mechanism were extensively studied and compared with those of H. verticillata heterotrophic denitrification (HHD) mesocosms through a 273-day operation. The results showed that the heterotrophic and autotrophic denitrification can be combined successfully in HSHAD mesocosms, and achieve satisfactory nitrate removal performance. The average NO3--N removal efficiency and denitrification rate of HSHAD were 94.4% and 1.3 g NO3--N m-3·d-1 in steady phase II (7-118 d). Most nitrate was reduced by heterotrophic denitrification with sufficient organic carbon in phase I (0-6 d) and II, i.e., the C/N ratio exceeded 4.0, and no significant difference of nitrate removal capacity was observed between HSHAD and HHD mesocosms. During phase III (119-273 d), sulfur autotrophic denitrification gradually dominated the HSHAD process with the C/N ratio less than 4.0, and HSHAD mesocosms obtained higher NO3--N removal efficiency and denitrification rate (79.1% and 1.1 g NO3--N m-3·d-1) than HHD mesocosms (65.3% and 1.0 g NO3--N m-3·d-1). As a whole, HSHAD mesocosms removed 58.8 mg NO3--N more than HHD mesocosms. pH fluctuated between 6.9-9.0 without any pH buffer. In general, HSHAD mesocosms were more stable and efficient than HHD mesocosms for NO3--N removal from agricultural runoff during long-term operation. The denitrificans containing narG (1.67 × 108 ± 1.28 × 107 copies g-1 mixture-soil-1), nirS (8.25 × 107 ± 8.95 × 106 copies g-1 mixture-soil-1), and nosZ (1.56 × 106 ± 1.60 × 105 copies g-1 mixture-soil-1) of litter bags and bottoms in HSHAD were higher than those in HHD, which indicated that the combined heterotrophic and autotrophic denitrification can increase the abundance of denitrificans containing narG, nirS, and nosZ, thus leading to better denitrification performance.
Collapse
|