1
|
Chen Y, Liu S, Ren Z, Wang Q, Zhang Y, Zuo Y, Zhou J, Jia H, Wang T. Potential of non-thermal discharge plasmas for activated sludge settling: effects and underlying mechanisms. RSC Adv 2023; 13:19869-19880. [PMID: 37409031 PMCID: PMC10318417 DOI: 10.1039/d3ra02921b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
With increase in the construction of urban sewage treatment plants, the output of sludge also surges. Therefore, it is highly important to explore effective ways to reduce the production of sludge. In this study, non-thermal discharge plasmas were proposed to crack the excess sludge. High sludge settling performance was obtained, and the settling velocity (SV30) dramatically decreased from the initial value of 96% to 36% after 60 min of treatment at 20 kV, accompanied by 28.6%, 47.5%, and 76.7% decreases in mixed liquor suspended solids (MLSS), sludge volume index (SVI), and sludge viscosity, respectively. Acidic conditions improved the sludge settling performance. The presence of Cl- and NO3- slightly promoted the SV30, but CO32- has adverse effects. ·OH and O2˙- in the non-thermal discharge plasma system contributed to the sludge cracking, especially for ·OH. These reactive oxygen species destroyed the sludge floc structure; as a result, the total organic carbon and dissolved chemical oxygen demand obviously increased, the average particle size of the sludge decreased, and the number of coliform bacteria was also reduced. Furthermore, the microbial community abundance and diversity both decreased in the sludge after the plasma treatment.
Collapse
Affiliation(s)
- Yun Chen
- Ningxia Houde Environmental Protection Technology Co., Ltd Yinchuan 750000 China
| | - Siqi Liu
- Ningxia Houde Environmental Protection Technology Co., Ltd Yinchuan 750000 China
| | - Zhiyin Ren
- College of Natural Resources and Environment, Northwest A&F University Yangling Shaanxi Province 712100 PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture Yangling Shaanxi 712100 PR China
| | - Qi Wang
- College of Natural Resources and Environment, Northwest A&F University Yangling Shaanxi Province 712100 PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture Yangling Shaanxi 712100 PR China
| | - Ying Zhang
- College of Information Science and Technology, Nanjing Forestry University Nanjing 210037 China
| | - Yajie Zuo
- College of Natural Resources and Environment, Northwest A&F University Yangling Shaanxi Province 712100 PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture Yangling Shaanxi 712100 PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University Yangling Shaanxi Province 712100 PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture Yangling Shaanxi 712100 PR China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University Urumqi 830052 China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University Yangling Shaanxi Province 712100 PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture Yangling Shaanxi 712100 PR China
| |
Collapse
|
2
|
Zhang T, Chen Z, Zhang Z, Zhou S, Meng J, Chen Z, Zhang J, Cui J, Chai B. Spatial and temporal dynamic response of abundant and rare aerobic denitrifying bacteria to dissolved organic matter in natural water: A case study of Lake Baiyangdian, China. ENVIRONMENTAL RESEARCH 2023; 224:115524. [PMID: 36813068 DOI: 10.1016/j.envres.2023.115524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Revealing the responses of abundant and rare aerobic denitrifying bacteria to dissolved organic matter (DOM) composition is essential for understanding the aquatic N cycle ecosystems. In this study, fluorescence region integration and high-throughput sequencing techniques were used to investigate the spatiotemporal characteristics and dynamic response of DOM and aerobic denitrifying bacteria. The DOM compositions were significantly different among the four seasons (P < 0.001) without spatial differences. Tryptophan-like substances (P2, 27.89-42.67%) and microbial metabolites (P4, 14.62-42.03%) were the dominant components, and DOM exhibited strong autogenous characteristics. Abundant (AT), moderate (MT), and rare taxa (RT) of aerobic denitrifying bacteria showed significant and spatiotemporal differences (P < 0.05). The responses of α-diversity and niche breadth of AT and RT to DOM differed. The DOM explanation proportion for aerobic denitrifying bacteria exhibited spatiotemporal differences based on redundancy analysis. Foliate-like substances (P3) had the highest interpretation rate of AT in spring and summer, while humic-like substances (P5) had the highest interpretation rate of RT in spring and winter. Network analysis showed that RT networks were more complex than AT networks. Pseudomonas was the main genus associated with DOM in AT on a temporal scale, and was more strongly correlated with tyrosine-like substances (P1), P2, and P5. Aeromonas was the main genus associated with DOM in AT on a spatial scale and was more strongly correlated with P1 and P5. Magnetospirillum was the main genus associated with DOM in RT on a spatiotemporal scale, which was more sensitive to P3 and P4. Special operational taxonomic units were transformed between AT and RT with seasonal changes, but not between the two regions. To summarize, our results revealed that bacteria with different abundances utilized DOM components differently, and provides new insight on the spatiotemporal response of DOM and aerobic denitrifying bacteria in aquatic ecosystems of biogeochemical significance.
Collapse
Affiliation(s)
- Tianna Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Zhaoying Chen
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Ziwei Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Shilei Zhou
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China.
| | - Jiajing Meng
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Zhe Chen
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Jiafeng Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Jiansheng Cui
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Beibei Chai
- Hebei Collaborative Innovation Center for the Regulation and Comprehensive Management of Water Resources and Water Environment, Hebei University of Engineering, Handan, 056038, PR China
| |
Collapse
|
3
|
Wang W, Li L, Wang Y, Wang Y, Han Y, Ma J, Chai F. Escape and functional alterations of microbial aerosol particles containing Pseudomonas sp. during wastewater treatment. ENVIRONMENTAL RESEARCH 2023; 219:115129. [PMID: 36549495 DOI: 10.1016/j.envres.2022.115129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Wastewater treatment plants (WWTP) are considered sources of bioaerosols emission that negatively affects the surrounding atmosphere. This study focused on Pseudomonas sp. Emissions in bioaerosols from a WWTP that adopts the A2O treatment process, and their inactivation through ultraviolet (UV) radiation. High-throughput sequencing was used to assay the microbial population, and functional composition profiles were predicted using 16 S rRNA sequencing data with PICRUSt2. Recorded emission levels of airborne bacteria and Pseudomonas sp. In WWTP were 130 ± 83-6113 ± 3015 CFU/m3 and 0-6431 ± 1945 CFU/m3, respectively. Bioaerosol emissions presented site-related and temporal variation. Over 80% of Pseudomonas sp. Were attached to coarse particles with sizes over 2.1 μm. Bioaerosol concentration and particle-size distribution in the air were closely related to ambient temperature, relative humidity, light intensity, and wind speed. Exposure to 45.67 μW/cm3 UV radiation led to a significant decline in bioaerosol concentrations in the air, and reduction rate reached 89.16% and 95.77% for airborne bacteria and Pseudomonas sp., respectively. The results suggested that UV radiation can be an effective method in reducing bioaerosols. Compared with other bacteria, Pseudomonas stutzeri and Bacillus sp. Are more resistant to UV radiation. The abundance of antibiotic resistance genes noticeably receded when exposed to UV irradiation. The relative abundance of cationic antimicrobial peptide resistance, categorized under human diseases in KEGG (level 3), significantly decreased in Pseudomonas sp. After 120 min of UV irradiation. This study provides a novel insight into the control of bioaerosol emissions carrying pathogenic bacteria.
Collapse
Affiliation(s)
- Wenwen Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, PR China
| | - Yanjie Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jiawei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fengguang Chai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Chen Z, Zhang T, Meng J, Zhou S, Zhang Z, Chen Z, Liu Y, Zhang J, Cui J. Efficient nitrate removal of immobilized mixed aerobic denitrifying bacteria and community dynamics response to temperature and low carbon/nitrogen polluted water. BIORESOURCE TECHNOLOGY 2022; 362:127873. [PMID: 36049711 DOI: 10.1016/j.biortech.2022.127873] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The denitrification performance of immobilized mixed aerobic denitrifying bacteria (IMADB) was investigated. IMADB displayed strong temperature adaptability under low Carbon/Nitrogen conditions. At 5, 15, and 25 °C, the nitrate removal efficiencies of volcanic rock and polyester fiber sponge immobilized system reached 83.95%-98.25% and 89.71%-98.14%, respectively. The nitrate content removed by the carrier accounted for 41.18%-82.47% of the nitrate content removed by the immobilized system at different temperature, and played a major role in nitrate removal. The lower the temperature, the greater the role of the carrier. At the same temperature, carrier had a relatively higher richness, diversity, and evenness. Network analysis revealed that carrier species, which were positively correlated with nitrate removal efficiency, had the largest OTUs and abundance. Meanwhile, carrier had the widest niche. The total nitrogen removal efficiency of IMADB reached 56.10%-62.31% in the natural water system, highlighting a promising application prospect.
Collapse
Affiliation(s)
- Zhaoying Chen
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Tianna Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Jiajing Meng
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Shilei Zhou
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China.
| | - Ziwei Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Zhe Chen
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Yilin Liu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Jiafeng Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Jiansheng Cui
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| |
Collapse
|
5
|
Yan C, Zhan M, Xv K, Zhang S, Liang T, Yu R. Sludge dewaterability enhancement under low temperature condition with cold-tolerant Bdellovibrio sp. CLL13. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153269. [PMID: 35074377 DOI: 10.1016/j.scitotenv.2022.153269] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/04/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
The dewatering performance of waste activated sludge (WAS) is generally deteriorated under low temperature due to the increase of viscosity, which would exacerbate the difficulties in sludge treatment and disposal. In this study, the cold-tolerant Bdellovibrio sp. CLL13 was successfully screened for efficient sludge biolysis, and it dramatically improved the sludge dewaterability while no significant biolysis effects were observed for the mesophilic BALO strain at 12 °C. The reduction rates of the sludge capillary suction time (CST), the specific resistance of filtration (SRF), the sludge dry weight, and the fecal coliform bacteria concentration at the optimal reaction time of 14 h were 40.1 ± 0.2%, 69.6 ± 0.7%, 7.7 ± 0.4%, and 78.5 ± 0.4%, respectively, when the mixed liquid suspended solids (MLSS) content was between 10.8 and 29.6 g/L, the input dosage of CLL13 was 8.8 × 106 PFU/mL sludge, and the DO level was 1.2 mg/L. Meanwhile, the viscosity reduction rate, the relative hydrophobicity increasement rate, and the bound water reduction rate were 20.3 ± 1.2%, 6.9 ± 0.7%, and 29.4 ± 1.0%, respectively. The ratios of protein content to polysaccharides content in the extracellular polymeric substances (EPS) decreased significantly. In addition, the degradation of the macromolecular substances in EPS and the increase of the soluble chemical oxygen demand, the total nitrogen, the total phosphorus, and the lactate dehydrogenase levels were observed. Therefore, the cold-tolerant CLL13 induced the sludge biolysis and compromised the negative effects of low temperature on the sludge dewatering performance, which should be beneficial for the efficient WAS biolysis treatment application in the near future under low temperature.
Collapse
Affiliation(s)
- Chunhui Yan
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Manjun Zhan
- Nanjing Research Institute of Environmental Protection, Nanjing Environmental Protection Bureau, Nanjing 210013, Jiangsu, China
| | - Kewei Xv
- Wuxi Xishan Water Group Co., Ltd., Wuxi 214101, Jiangsu, China
| | - Siyuan Zhang
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Ting Liang
- Wuxi Xishan Water Group Co., Ltd., Wuxi 214101, Jiangsu, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing 210096, China.
| |
Collapse
|
6
|
Zou X, He J, Zhang P, Pan X, Zhong Y, Zhang J, Wu X, Li B, Tang X, Xiao X, Pang H. Insights into carbon recovery from excess sludge through enzyme-catalyzing hydrolysis strategy: Environmental benefits and carbon-emission reduction. BIORESOURCE TECHNOLOGY 2022; 351:127006. [PMID: 35304256 DOI: 10.1016/j.biortech.2022.127006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
This study introduced the excellent improvement of enzyme cocktail (lysozyme and protease) on hydrolysis efficiency and the role of reducing carbon emission as an alternative carbon source. The best dosing method after optimization was to add four parts of lysozyme at 0 h and one part of protease at 1 h. The extracellular proteins and polysaccharides increased by 118% and 64% respectively under the optimal dosing mode. Enzyme cocktails reduced more organic matters and extended the distribution of sludge particles in the small particle size part. The enzymatic-treated sludge could reduce 21.09 kg CO2/t VSS if utilized to replace methanol for denitrification carbon source. Enzyme cocktails did better in enhancing both solubilization and hydrolysis than single enzymes under the optimal method. This study will provide a more integrated and comprehensive system for enzymatic pretreatment and new insight into the enzymatic pretreatment enhancing hydrolysis and reducing carbon emission.
Collapse
Affiliation(s)
- Xiang Zou
- State key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, People's Republic of China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, Guangdong, People's Republic of China
| | - Pengfei Zhang
- State key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, People's Republic of China
| | - Xinlei Pan
- State key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, People's Republic of China
| | - Yijie Zhong
- State key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, People's Republic of China
| | - Jie Zhang
- State key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, People's Republic of China
| | - Xuewei Wu
- Guangzhou Sewage Purification Co.,LTD, Guangzhou 510655, Guangdong, People's Republic of China
| | - Biqing Li
- Guangzhou Sewage Purification Co.,LTD, Guangzhou 510655, Guangdong, People's Republic of China
| | - Xia Tang
- Guangzhou Sewage Purification Co.,LTD, Guangzhou 510655, Guangdong, People's Republic of China
| | - Xiannian Xiao
- Guangzhou Sewage Purification Co.,LTD, Guangzhou 510655, Guangdong, People's Republic of China
| | - Heliang Pang
- State key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| |
Collapse
|
7
|
Pilot-Scale Airlift Bioreactor with Function-Enhanced Microbes for the Reduction of Refinery Excess Sludge. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136742. [PMID: 34201573 PMCID: PMC8268774 DOI: 10.3390/ijerph18136742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022]
Abstract
A pilot-scale airlift bioreactor (ALBR) system was built and operated continuously for refinery excess sludge (RES) reduction. Combined ALBR and function-enhanced microbes (composed of photosynthetic bacteria and yeast) were integrated into the system. The pilot-scale ALBR was operated for 62 days, and the start-up time was 7 d. Continuous operation showed that the sludge reduction efficiency was more than 56.22%, and the water quality of the effluent was satisfactory. This study focused on investigating the effects of hydraulic retention time (HRT) on the stability of the system and the effect of sludge reduction. Under different HRT conditions of 40, 26.7, 20, and 16 h, the sludge reduction rates reached 56.22%, 73.24%, 74.09%, and 69.64%, respectively. The removal rates of chemical oxygen demand (COD) and total nitrogen (TN) decreased with decreasing HRT, whereas the removal rate of NH4+-N increased. The removal rate of total phosphorus (TP) was approximately 30%. Results indicate that the ALBR and function-enhanced microbe system can reduce sludge and treat sewage simultaneously, and the effluent is up to the national emission standard. Addition of function-enhanced microbes can promote the degradation of petroleum hydrocarbon substances in the sludge, especially alkanes with low carbon numbers. This study suggests that the optimal HRT for the system is 16 h. The total operation cost of the ALBR combined with the function-enhanced microbe system can be reduced by 50% compared with the cost of direct treatment of the RES system.
Collapse
|
8
|
Wang N, Chen X, Ji Y, Yan W, Chui C, Liu L, Shi J. Enhanced sludge reduction during swine wastewater treatment by the dominant sludge-degrading strains Chryseobacterium sp. B4 and Serratia sp. H1. BIORESOURCE TECHNOLOGY 2021; 330:124983. [PMID: 33761451 DOI: 10.1016/j.biortech.2021.124983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Sludge reduction is considered a main target for sludge treatment and an urgent issue for wastewater treatment. In this study, two dominant sludge-degrading strains, identified as Chryseobacterium sp. B4 and Serratia sp. H1, were used for inoculation in swine wastewater treatment to investigate the enhancement of sludge reduction. The results showed the volatile suspended solid (VSS) removal rate in experimental groups inoculated with Chryseobacterium sp. B4, Serratia sp. H1, and a combination of the two strains improved by 49.4%, 11.0%, and 30.5%, compared with the control with no inoculation. Furthermore, microbial community structure and functional prediction analyses indicated Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria could play an essential role in sludge reduction, and the dominant sludge-degrading strains B4 and H1 enhanced sludge reduction by strengthening carbohydrate, nucleotide, amino acid, and lipid metabolism and membrane transport functions. This study provides new insights into sludge reduction during wastewater treatment with dominant sludge-degrading strains.
Collapse
Affiliation(s)
- Na Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomiao Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuji Ji
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weizhi Yan
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunmeng Chui
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
9
|
Pang H, Ma W, He J, Pan X, Ma Y, Guo D, Yan Z, Nan J. Hydrolase activity and microbial community dynamic shift related to the lack in multivalent cations during cation exchange resin-enhanced anaerobic fermentation of waste activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122930. [PMID: 32464562 DOI: 10.1016/j.jhazmat.2020.122930] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The correlation of the lack in multivalent cations with hydrolase activity and microbial community in anaerobic fermentation of waste activated sludge was investigated in this study. It was demonstrated that considerable solid phase reduction of 41 % (7.87 g/L) was achievable through a cation exchange resin-enhanced anaerobic fermentation of 4 days. The protease and α-glucosidase, especially α-glucosidase, were easily influenced by a lack in multivalent cations. Furthermore, species abundance and diversity of microbial community gradually decreased. Meanwhile, the bacteria community structure presented obvious dynamic shifts. Ruminococcaceae_UCG_009, Bacteroides and Macellibacteroides responsible for organic matter biodegradation and SCFAs production became dominant bacteria in cation exchange resin-enhanced anaerobic fermentation, which was less influenced by the lack in multivalent cations, while the SCFA consumers (e.g. methanogens) were inhibited with reduced abundances due to their susceptibility to the lack in multivalent cations. Redundancy analysis revealed that the lack in multivalent cations were responsible for the microbial community evolution, which was proved by the high Grey relational coefficients (0.747-0.820) and significant negative Spearman coefficients (-0.5798 to -0.9429) between multivalent cation and microbial community. Obviously, the cation exchange resin-induced removal of multivalent cations reduced enzyme activity and modified microbial community structure, which created a beneficial environment for enhancing anaerobic fermentation.
Collapse
Affiliation(s)
- Heliang Pang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Weiwei Ma
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Xinlei Pan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Dabin Guo
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, PR China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
10
|
Pang H, Chen Y, He J, Guo D, Pan X, Ma Y, Qu F, Nan J. Cation exchange resin-induced hydrolysis for improving biodegradability of waste activated sludge: Characterization of dissolved organic matters and microbial community. BIORESOURCE TECHNOLOGY 2020; 302:122870. [PMID: 32004809 DOI: 10.1016/j.biortech.2020.122870] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
This study reported an efficient and green approach towards facilitating hydrolysis of waste activated sludge (WAS) using cation exchange resin (CER) as a recyclable additive. Through CER-mediated removal of multivalent cations, WAS flocs were disintegrated into small particles with extracellular polymeric substance (EPS) solubilization. At CER dosage of 1.75 g/g SS, SCOD increased to 2579 mg/L (SCOD/TCOD = 15.9%) after 8-h hydrolysis. Afterwards, CER displayed further sludge hydrolysis performance lasting 2 days, i.e. SCOD/TCOD = 34.2%. Meanwhile, proteins, carbohydrates and other organics in dissolved organic matters (DOMs) were major contributors for volatile fatty acids (VFAs) accumulation, with composition percentage: VFAs (58.9%) > proteins (21.8%) > other organics (8.8%) > humic acids (5.9%) > carbohydrates (4.4%). The biodegradable tryptophan-like and tyrosine-like proteins were major proteins, while other organics included amino acids, aliphatic and metabolic intermediates. More than 85.2% of DOMs were easily biodegradable. Moreover, CER-induced hydrolysis modified microbial community structure through inhibiting VFAs-utilizing microbes, while hydrolytic-acidogenic bacteria were enriched, responsible for DOMs biodegradation.
Collapse
Affiliation(s)
- Heliang Pang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yiwen Chen
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Dabin Guo
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Xinlei Pan
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
11
|
Liu G, Wang K, Li X, Ma L, Ma X, Chen H. Enhancement of excess sludge hydrolysis and decomposition with different lysozyme dosage. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:395-401. [PMID: 30551085 DOI: 10.1016/j.jhazmat.2018.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
The performance of the lysozyme catalysis on excess sludge (ES) hydrolysis and decomposition was investigated in this study. For this purpose, the release of soluble organic matters from sludge flocs, extracellular polymeric substances (EPS) changes in composition and distribution and the quantity variations of microorganisms were monitored. Results indicated that lysozyme boosted the ES hydrolysis significantly with approximately 236.5 mg/L soluble chemical oxygen demand (SCOD), 58.6 mg/L polysaccharide and 662.7 mg/L protein release within 240 min at the lysozyme dosage of 150 mg/gSS. Arising lysozyme dosages (from 0 to 150 mg/gSS step by step) could dramatically enhance the efficiency of the enzyme on ES with the concentration of polysaccharide increased from 84.6 mg/L to 143.2 mg/L and protein increased from 325.0 mg/L to 987.7 mg/L in total EPS. The decomposition effect of lysozyme on microorganisms improved with dosage, about 15.4%, 17.5% and 20.2% bacteria and 56.3%, 57.2% and 65.0% archaea were disintegrated at the lysozyme dosages of 50, 100 and 150 mg/gSS, respectively. However, fungi were barely influenced by the enzymatic catalysis. Tryptophan-protein like substances and aromatic protein were the dominant ES lysis compositions in EPS.
Collapse
Affiliation(s)
- Gaige Liu
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiangkun Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China.
| | - Linli Ma
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaochen Ma
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongying Chen
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
12
|
Yang M, Lu D, Qin B, Liu Q, Zhao Y, Liu H, Ma J. Highly efficient nitrogen removal of a coldness-resistant and low nutrient needed bacterium, Janthinobacterium sp. M-11. BIORESOURCE TECHNOLOGY 2018; 256:366-373. [PMID: 29475144 DOI: 10.1016/j.biortech.2018.02.049] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
A novel heterotrophic nitrification-aerobic denitrification bacterium, identified as Janthinobacterium sp. M-11, was isolated from the Songhua River. When the initial ammonium concentration was 5 mg·L-1, 98% of ammonium was removed under cold condition (2 °C) with the C/N ratio of 5 at initial pH 7 and aerobic condition, which demonstrated the significant ammonium removal capacity of M-11 with low nutrient consumption at cold temperature. Denitrification processes under aerobic and anaerobic conditions were also investigated. 89% of nitrite and 89% of nitrate were removed under aerobic condition. Under anaerobic condition, 93% of nitrite and 98% of nitrate were removed. Interestingly, a high amount of nitrite accumulation was observed in the mid-stage of anaerobic denitrification for nitrate. This special phenomenon was probably because of the existence of narG gene amplified in the strain M-11, which would encode membrane-bound nitrate reductase and accelerate the nitrate conversion rate of M-11 under anaerobic condition.
Collapse
Affiliation(s)
- Mo Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Bida Qin
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qianliang Liu
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huiling Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
13
|
Zhang S, Huang Z, Lu S, Zheng J, Zhang X. Nutrients removal and bacterial community structure for low C/N municipal wastewater using a modified anaerobic/anoxic/oxic (mA2/O) process in North China. BIORESOURCE TECHNOLOGY 2017; 243:975-985. [PMID: 28738552 DOI: 10.1016/j.biortech.2017.07.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 06/07/2023]
Abstract
A modified anaerobic/anoxic/oxic (mA2/O) process based on utilizing the internal carbon source and adding polypropylene carriers was operated for 90d to investigate the nutrients removal performance and bacterial community. This system exhibited a stable and efficient performance, particularly, in removing the NH4+-N and total phosphorus. The results of high-throughput sequencing showed that the 13 dominant genera containing Pseudomonas, Comamonas, Arcobacter, Nitrobacteria, Nitrosospira, Nitrosomonas, Bacteroides, Flavobacterium, Rhizobium, Acinetobacter, Zoogloea, Rhodocyclus and Moraxella were shared by five zones, inferring that they were the essential players in treating low C/N (below 5.0) municipal wastewater around 10°C. The average abundance of Nitrosospira (4.21%) was higher than that of Nitrosomonas (2.93%), suggested that Nitrosospira performed well under low temperature for nitrification. Additionally, both known Rhodocyclus-related PAOs and GAOs Competibacter were not detected possibly due to low temperature. Redundancy analysis (RDA) indicated that DO played more important roles in regulating bacterial community composition than HRT.
Collapse
Affiliation(s)
- Shihua Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243002, China
| | - Zhijia Huang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243002, China.
| | - Shujian Lu
- Faculty of Graduate Studies, Anhui University of Technology, Ma'anshan 243002, China
| | - Jun Zheng
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243002, China
| | - Xinxi Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243002, China
| |
Collapse
|
14
|
Talagrand-Reboul E, Jumas-Bilak E, Lamy B. The Social Life of Aeromonas through Biofilm and Quorum Sensing Systems. Front Microbiol 2017; 8:37. [PMID: 28163702 PMCID: PMC5247445 DOI: 10.3389/fmicb.2017.00037] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/06/2017] [Indexed: 01/25/2023] Open
Abstract
Bacteria of the genus Aeromonas display multicellular behaviors herein referred to as “social life”. Since the 1990s, interest has grown in cell-to-cell communication through quorum sensing signals and biofilm formation. As they are interconnected, these two self-organizing systems deserve to be considered together for a fresh perspective on the natural history and lifestyles of aeromonads. In this review, we focus on the multicellular behaviors of Aeromonas, i.e., its social life. First, we review and discuss the available knowledge at the molecular and cellular levels for biofilm and quorum sensing. We then discuss the complex, subtle, and nested interconnections between the two systems. Finally, we focus on the aeromonad multicellular coordinated behaviors involved in heterotrophy and virulence that represent technological opportunities and applied research challenges.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France; Département d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire (CHRU) de MontpellierMontpellier, France
| | - Estelle Jumas-Bilak
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France; Département d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire (CHRU) de MontpellierMontpellier, France
| | - Brigitte Lamy
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France; Département de Bactériologie, Centre Hospitalier Universitaire (CHU) de NiceNice, France
| |
Collapse
|
15
|
Comparison of effects of ferric nitrate additions in thermophilic, mesophilic and psychrophilic aerobic digestion for sewage sludge. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.07.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|