1
|
van Leuven N, Zinn MK, Lucassen R, Lipski A, Flemming HC, Bockmühl D. High resolution ITS amplicon melting analysis as a tool to analyse microbial communities of household biofilms in ex-situ models. J Microbiol Methods 2023; 212:106806. [PMID: 37567416 DOI: 10.1016/j.mimet.2023.106806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Biofilms are the most common growth types of microorganisms. These complex communities usually consist of different species and are embedded in an extracellular matrix containing polymers, proteins and DNA. This matrix offers protection against different (a)biotic environmental factors and generally increases resistances. Higher resistances against antibiotics are one of the main reasons why biofilms are often associated with healthcare settings. Nevertheless, they are also found in domestic settings, mostly in humid places with abundant nutrients like dishwashers or washing machines. Biofilms in these areas show individual compositions and are influenced for example by temperature, frequency of use or the age of the device. In this study, we introduce a model for the ex-situ cultivation of domestic biofilms from household appliances. Furthermore, we tested the ability of high resolution melting analysis (HRMA) as a tool for analysing these biofilms. Our goal was to maintain a high amount of complexity in the ex-situ biofilms that is characterized by the melting behavior of the contained DNA. Dishwasher and washing machine biofilms were sampled in private households and cultivated for 10 d. After DNA extraction, 16S rDNA was sequenced and melting behavior of the bacterial Internal Transcribed Spacer (ITS) region was analysed. Additionally, testing for independence of continuous new sampling, storage of cultivated biofilms in glycerol stocks and following recultivation of them was done up to three times. Our results show that a high level of complexity could be maintained in the ex-situ biofilms after 10 d of cultivation, although in general the bacterial diversity slightly decreased compared to the original biofilm in most cases. Recultivation of a similar biofilm from glycerol stocks was possible as well with some impact by various factors. Differences in the bacterial composition of biofilms could clearly made visible by HRMA although it was not possible to match peaks to a specific phylogenetic group. Still, HRMA proved to be a less costly and time consuming alternative to sequencing for the characterization of biofilms.
Collapse
Affiliation(s)
- Nicole van Leuven
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Kleve, Germany; University of Bonn, Food Microbiology and Hygiene, Bonn, Germany
| | - Marc-Kevin Zinn
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Kleve, Germany; University of Duisburg-Essen, Biofilm Centre, Essen, Germany
| | - Ralf Lucassen
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Kleve, Germany
| | - André Lipski
- University of Bonn, Food Microbiology and Hygiene, Bonn, Germany
| | | | - Dirk Bockmühl
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Kleve, Germany.
| |
Collapse
|
2
|
Genotyping and multivariate regression trees reveal ecological diversification within the Microcystis aeruginosa complex along a wide environmental gradient. Appl Environ Microbiol 2021; 88:e0147521. [PMID: 34818109 DOI: 10.1128/aem.01475-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Addressing the ecological and evolutionary processes underlying biodiversity patterns is essential to identify the mechanisms shaping community structure and function. In bacteria, the formation of new ecologically distinct populations (ecotypes) is proposed as one of the main drivers of diversification. New ecotypes arise when mutations in key functional genes or acquisition of new metabolic pathways by horizontal gene transfer allow the population to exploit new resources, permitting their coexistence with the parental population. We previously reported the presence of microcystin-producing organisms of the Microcystis aeruginosa complex (toxic MAC) through an 800 km environmental gradient ranging from freshwater to estuarine-marine waters in South America. We hypothesize that the success of toxic MAC in such a gradient is due to the existence of very closely related populations that are ecologically distinct (ecotypes), each specialized to a specific arrangement of environmental variables. Here, we analyzed toxic MAC genetic diversity through qPCR and high-resolution melting analysis (HRMA) of a functional gene (mcyJ, microcystin synthetase cluster). We explored the variability of the mcyJ gene along the environmental gradient by multivariate classification and regression trees (mCART). Six groups of mcyJ genotypes were distinguished and associated with different combinations of water temperature, conductivity and turbidity. We propose that each mcyJ variant associated to a defined environmental condition is an ecotype (or species) whose relative abundances vary according to their fitness in the local environment. This mechanism would explain the success of toxic MAC in such a wide array of environmental conditions. Importance Organisms of the Microcystis aeruginosa Complex form harmful algal blooms (HABs) in nutrient-rich water bodies worldwide. MAC HABs are difficult to manage owing to the production of potent toxins (microcystins) that resist water treatment. Besides, the role of microcystins in the ecology of MAC organisms is still elusive, meaning that the environmental conditions driving the toxicity of the bloom are not clear. Furthermore, the lack of coherence between morphology-based and genomic-based species classification makes it difficult to draw sound conclusions about when and where each member species of the MAC will dominate the bloom. Here, we propose that the diversification process and success of toxic MAC in a wide range of waterbodies involves the generation of ecotypes, each specialized in a particular niche, whose relative abundance varies according to its fitness in the local environment. This knowledge can improve the generation of accurate prediction models of MAC growth and toxicity, helping to prevent human and animal intoxication.
Collapse
|
3
|
Kruk C, Martínez A, Martínez de la Escalera G, Trinchin R, Manta G, Segura AM, Piccini C, Brena B, Yannicelli B, Fabiano G, Calliari D. Rapid freshwater discharge on the coastal ocean as a mean of long distance spreading of an unprecedented toxic cyanobacteria bloom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142362. [PMID: 33254935 DOI: 10.1016/j.scitotenv.2020.142362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/21/2020] [Accepted: 09/12/2020] [Indexed: 06/12/2023]
Abstract
Cyanobacterial toxic blooms are a worldwide problem. The Río de la Plata (RdlP) basin makes up about one fourth of South America areal surface, second only to the Amazonian. Intensive agro-industrial land use and the construction of dams have led to generalized eutrophication of main tributaries and increased the intensity and duration of cyanobacteria blooms. Here we analyse the evolution of an exceptional bloom at the low RdlP basin and Atlantic coast during the summer of 2019. A large array of biological, genetic, meteorological, oceanographic and satellite data is combined to discuss the driving mechanisms. The bloom covered the whole stripe of the RdlP estuary and the Uruguayan Atlantic coasts (around 500 km) for approximately 4 months. It was caused by the Microcystis aeruginosa complex (MAC), which produces hepatotoxins (microcystin). Extreme precipitation in the upstream regions of Uruguay and Negro rivers' basins caused high water flows and discharges. The evolution of meteorological and oceanographic conditions as well as the similarity of organisms' traits in the affected area suggest that the bloom originated in eutrophic reservoirs at the lower RdlP basin, Salto Grande in the Uruguay river, and Negro river reservoirs. High temperatures and weak Eastern winds prompted the rapid dispersion of the bloom over the freshwater plume along the RdlP northern and Atlantic coasts. The long-distance rapid drift allowed active MAC organisms to inoculate freshwater bodies from the Atlantic basin, impacting environments relevant for biodiversity conservation. Climate projections for the RdlP basin suggest an increase in precipitation and river water flux, which, in conjunction with agriculture intensification and dams' construction, might turn this extraordinary event into an ordinary situation.
Collapse
Affiliation(s)
- Carla Kruk
- Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, UDELAR, Iguá 4225, 11400 Montevideo, Uruguay; Ecología Funcional de Sistemas Acuáticos, Centro Universitario Regional del Este (CURE), UdelaR, Ruta nacional 9 intersección con ruta 15, 27000 Rocha, Uruguay.
| | - Ana Martínez
- Dirección Nacional de Recursos Acuáticos, La Paloma, MGAP, Avenida del Puerto s/n, Puerto la Paloma, La Paloma, CP 27001, Rocha, Uruguay
| | - Gabriela Martínez de la Escalera
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av Italia 3318, 11600 Montevideo, Uruguay
| | - Romina Trinchin
- Departamento de Ciencias de la Atmósfera, Facultad de Ciencias, UDELAR, Iguá 4225, 11400 Montevideo, Uruguay; Instituto Uruguayo de meteorología, Dr Javier Barrios Amorín 1488, 11200 Montevideo, Uruguay
| | - Gastón Manta
- Departamento de Ciencias de la Atmósfera, Facultad de Ciencias, UDELAR, Iguá 4225, 11400 Montevideo, Uruguay
| | - Angel M Segura
- Modelación y Análisis de Recursos Naturales, CURE, UDELAR, Ruta nacional 9 intersección con ruta 15, 27000 Rocha, Uruguay
| | - Claudia Piccini
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av Italia 3318, 11600 Montevideo, Uruguay
| | - Beatriz Brena
- Bioquímica-DEPBIO, Facultad de Química, UDELAR, Av. Gral. Flores 2124, 11800 Montevideo, Uruguay
| | - Beatriz Yannicelli
- Ecología Funcional de Sistemas Acuáticos, Centro Universitario Regional del Este (CURE), UdelaR, Ruta nacional 9 intersección con ruta 15, 27000 Rocha, Uruguay
| | - Graciela Fabiano
- Instituto de Investigaciones Pesqueras, Facultad de Veterinaria, UDELAR, Tomás Basáñez 1160, Montevideo 11400, Uruguay
| | - Danilo Calliari
- Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, UDELAR, Iguá 4225, 11400 Montevideo, Uruguay; Ecología Funcional de Sistemas Acuáticos, Centro Universitario Regional del Este (CURE), UdelaR, Ruta nacional 9 intersección con ruta 15, 27000 Rocha, Uruguay
| |
Collapse
|
5
|
Everman S, Wang SY. Rapid differentiation of bacterial communities using high resolution melting analysis. J Microbiol Methods 2017; 140:77-81. [PMID: 28728910 DOI: 10.1016/j.mimet.2017.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 01/26/2023]
Abstract
Analysis of microbial communities is of broad interest in biology and high throughput sequencing is now the preferred method. However, some studies may not need the level of detail high throughput sequencing provides and its cost may limit the number of samples that can be sequenced. High resolution melting analysis (HRM) of 16S rRNA gene variable regions has been proposed as an efficient and low cost method to prioritize samples for sequencing but more specific primers are needed and its efficacy needs to be confirmed. We tested a more specific pair of primers and compared results concerning the structure of microbial communities in tadpole intestine and feces obtained using HRM, denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing performed in parallel. All three methods showed similar conclusions concerning the communities and revealed communities that differed among intestinal regions and feces. The improved HRM method targets a shorter amplicon in the V3 region of the 16S rRNA gene and uses non-degenerate primers, both of which increase the sensitivity of HRM. The HRM approach was shown to be as effective as DGGE for comparing microbial communities, is considerably easier to perform, and can be used to assess differences in microbial community structure among a large number of samples before committing to sequencing.
Collapse
Affiliation(s)
- Steven Everman
- Department of Biological Sciences, The University of Southern Mississippi, 730 East Beach Blvd, Long Beach, MS 39560, USA
| | - Shiao Y Wang
- Department of Biological Sciences, The University of Southern Mississippi, 730 East Beach Blvd, Long Beach, MS 39560, USA.
| |
Collapse
|
6
|
Baek G, Kim J, Lee C. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent - Enhancement in process performance and stability. BIORESOURCE TECHNOLOGY 2016; 222:344-354. [PMID: 27741472 DOI: 10.1016/j.biortech.2016.10.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
Interspecies electron transfer (IET) between microbial populations with different functions is critical to stable anaerobic digestion. This study, in an attempt to facilitate IET, investigated the effect of magnetite supplementation on the biomethanation of dairy effluent in continuous mode. The magnetite-added reactor (RM) was significantly more resistant and resilient to process imbalance than the reactor run without magnetite addition (RC). RC showed unstable performance with repeated process upsets, but its performance improved to be comparable to that of RM after applying magnetite supplementation. Magnetite was particularly effective in stabilizing a build-up of propionic acid and therefore improving the process robustness and reliability. The enhanced biomethanation in terms of productivity and stability was attributed to the facilitated direct IET (DIET) between exoelectrogens and methanogens via magnetite particles. Methanosaeta was the predominant methanogen group in the experimental reactors and likely played a key role in both DIET-mediated carbon dioxide-reducing and aceticlastic methanogenesis.
Collapse
Affiliation(s)
- Gahyun Baek
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Jaai Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Changsoo Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|