1
|
Wang R, Liu Y, Hu J, Li C, Yuan H, Zhu N. Fate of dissolved organic matter in thermal hydrolysis pretreatment aided autothermal thermophilic aerobic digestion of high solid sludge. BIORESOURCE TECHNOLOGY 2025; 423:132246. [PMID: 39965712 DOI: 10.1016/j.biortech.2025.132246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Thermal hydrolysis pretreatment (THP) combined with autothermal thermophilic aerobic digestion (ATAD) process is a novel technology to achieve rapid stabilization of high solid sludge. In this study, the molecular transformation pathway of dissolved organic matter (DOM) during THP-ATAD process was analyzed by Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR-MS). The findings indicated that the removal of volatile solids from sludge containing 15% total solids achieved a rate of 40.3% following 6 d of ATAD treatment, facilitated by the conducive biodegradation environment established during the THP stage. Specifically, THP removed 24.22% of the O/C compounds and produced 45.66% of reduced organic matter. ATAD process effectively harnessed these reduced compounds from the THP stage, leading to the mineralization of organic matter through deamination and oxidation reactions, which was reflected by a 59.84-fold increase in the humification index. This work provides in-depth mechanistic insights into the transformation of organic matter during high solid sludge stabilization.
Collapse
Affiliation(s)
- Ruming Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yangyang Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinwen Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Haiping Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
2
|
Chun J, Kim SM, Ko G, Shin HJ, Kim M, Cho HU. Thermophilic aerobic digestion using aquaculture sludge from rainbow trout aquaculture facilities: effect of salinity. Front Microbiol 2024; 15:1488041. [PMID: 39569003 PMCID: PMC11576446 DOI: 10.3389/fmicb.2024.1488041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
The objectives of this study were to evaluate the potential of using thermophilic aerobic digestion (TAD) to hydrolyze aquaculture sludge, and to investigate the hydrolysis efficiency and changes in microbial community structure during TAD at 0, 15, and 30 practical salinity units (psu). As digestion progressed, soluble organic matter concentrations in all reactors increased to their maximum values at 6 h. The hydrolysis efficiency at 6 h decreased as salinity increased: 2.42% at 0 psu, 1.78% at 15 psu, and 1.04% at 30 psu. The microbial community compositions at the genus level prominently differed in the relative abundances of dominant bacteria between 0 psu and 30 psu. The relative abundance of genera Iodidimonas and Tepidiphilus increased significantly as salinity increased. Increase in the salinity at which thermophilic aerobic digestion of aquaculture sludge was conducted altered the microbial community structure, which in turn decreased the efficiency of organic matter hydrolysis.
Collapse
Affiliation(s)
- Jihyun Chun
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Gyeongnam, Republic of Korea
| | - Su Min Kim
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Gyeongnam, Republic of Korea
| | - Gwangil Ko
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Gyeongnam, Republic of Korea
| | - Hyo Jeong Shin
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Minjae Kim
- Civil Engineering, University of Kentucky, Lexington, KY, United States
| | - Hyun Uk Cho
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Gyeongnam, Republic of Korea
| |
Collapse
|
3
|
Liu Y, Yuan H, Zhu N. Accelerated stabilization of high solid sludge by thermal hydrolysis pretreatment in autothermal thermophilic aerobic digestion (ATAD) process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115615. [PMID: 35772274 DOI: 10.1016/j.jenvman.2022.115615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Autothermal thermophilic aerobic digestion (ATAD) is a rapid biological treatment technology for sludge stabilization. To improve digestion efficiency and shorten stabilization time, thermal hydrolysis pretreatment was employed before ATAD of high solid sludge. The results showed that accelerated stabilization of high solid sludge (total solid = 10.1%) was achieved by thermal hydrolysis pretreatment with volatile solid removal efficiency of 40.3% after 8 days of ATAD, 11 days earlier than unpretreated sludge. The enhanced release and hydrolysis of intracellular organics resulted in a solubilization degree of 45.3%. The reduced sludge viscosity and improved fluidity after thermal hydrolysis facilitated mixing, aeration and organics degradation during ATAD. Excitation emission matrix analysis indicated that the fluorescence intensity of soluble microbial byproduct and tyrosine-like protein increased markedly after thermal hydrolysis and decreased after ATAD. The proportion of high molecular weight (MW > 10 kDa) substances in the supernatant increased significantly after thermal hydrolysis, while the low MW (MW < 1 kDa) substances decreased after ATAD. The significant difference in microbial composition between the pretreatment and control groups elucidated the accelerated sludge stabilization under thermal hydrolysis. This work provides an efficient and practical strategy to achieve rapid stabilization of high solid sludge.
Collapse
Affiliation(s)
- Yangyang Liu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Zhang M, Tashiro Y, Ishida N, Sakai K. Application of autothermal thermophilic aerobic digestion as a sustainable recycling process of organic liquid waste: Recent advances and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154187. [PMID: 35240167 DOI: 10.1016/j.scitotenv.2022.154187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Autothermal thermophilic aerobic digestion (ATAD) has been used to stabilize organic waste since the 1960s and is considered sustainable technology. ATAD has several advantages, including high biodegradation efficiency, pathogen inactivation, and ease of operation. Although ATAD research has a long history, the number of studies on ATAD is much lower than those on similar aerobic processes, particularly composting. Previous review articles addressed the origin, design, operational experiences, metabolism, and the microorganisms at the thermophilic stage of ATAD. This article reviews the digestion systems, applications, and characteristics of ATAD; compares system performance and microbial community structure of ATAD with those of other biological processes such as composting, activated sludge, and anaerobic digestion; and discusses the physicochemical properties and factors of ATAD. The challenges, opportunities, and prospects for the application of ATAD are also discussed. This review suggests that ATAD is feasible for treating organic liquid waste (1-6% total solid content) in small-sized towns and can help establish a sustainable society.
Collapse
Affiliation(s)
- Min Zhang
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| | - Natsumi Ishida
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Lab-scale autothermal thermophilic aerobic digestion can maintain and remove nitrogen by controlling shear stress and oxygen supply system. J Biosci Bioeng 2021; 132:293-301. [PMID: 34167861 DOI: 10.1016/j.jbiosc.2021.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 01/12/2023]
Abstract
Autothermal thermophilic aerobic digestion (ATAD) is used to treat human excreta hygienically. We previously reported a unique full-scale ATAD, showing distinctive bacterial community transitions and producing high-nitrogen-content liquid fertilizer; nevertheless, the mechanism remains unclear. One hypothesis involves using a gas-inducing (GI) agitator. We designed a lab-scale GI system and compared it with a disk-turbine (DT) agitator system by mimicking the temperature shift of full-scale ATAD. The agitation system and its agitation speed greatly affected physicochemical properties and bacterial community structure. GI system at 1000 rpm (GI1000; high total carbon removal efficiency, 88.3%), with few nitrifying and denitrifying bacteria, maintained a high ammoniacal nitrogen concentration and had more shared operational taxonomic units related to Acinetobacter sp., Arcobacter sp., and Longimicrobium sp. with the full-scale ATAD compared with the GI system at 490 rpm and DT system at 1000 rpm (DT1000). Furthermore, DT1000, with a high abundance of nitrifying and denitrifying bacteria such as Alcaligenes aquatilis and Pseudomonas caeni, removed 94.7% total nitrogen with 71.9% total carbon removal efficiency. These results suggested that shear stress and oxygen supply system would change the bacterial community structure, thus affected ATAD performances. Consequently, it is possible that ATAD can be applied for not only production of highly nitrogen-containing liquid fertilizer but also extremely nitrogen removal of wastewater.
Collapse
|
6
|
Iron-assisted biological wastewater treatment: Synergistic effect between iron and microbes. Biotechnol Adv 2020; 44:107610. [DOI: 10.1016/j.biotechadv.2020.107610] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
|
7
|
Liang J, Shen Y, Shou Z, Yuan H, Dai X, Zhu N. Nitrogen loss reduction by adding KH 2PO 4-K 2HPO 4 buffer solution during composting of sewage sludge. BIORESOURCE TECHNOLOGY 2018; 264:116-122. [PMID: 29800771 DOI: 10.1016/j.biortech.2018.05.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/12/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Nitrogen loss through gaseous emission, mainly ammonia emission, was an inevitable problem during sewage sludge composting. In this study, MgSO4 + K3PO4 (Run A), K2SO4 + KH2PO4-K2HPO4 (Run B) and MgSO4 + KH2PO4-K2HPO4 (Run C) were mixed with mixtures before composting, aiming at researching the effects of buffer solution on reducing nitrogen loss during composting. Ammonia loss of Run C was reduced by 53.8% and 45.5%, and nitrogen loss of Run C was decreased by 61.2% and 67.1%, compared to that of Run A and Run B, respectively. Besides, organic matter degradation of Run C was 36.8%. Among the three amended treatments, nitrogen loss in Run C was effectively reduced and organic matter degradation was slightly improved. The addition of MgSO4 and KH2PO4-K2HPO4 was confirmed to be effective to maintain a desired pH range for struvite precipitation as well as to reserve more ammonia in the compost to promote the formation of struvite.
Collapse
Affiliation(s)
- Jiayun Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanwen Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zongqi Shou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haiping Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaohu Dai
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200091, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
8
|
Jin N. The effect of phosphate buffer on improving the performance of autothermal thermophilic aerobic digestion for sewage sludge. RSC Adv 2018; 8:9175-9180. [PMID: 35541838 PMCID: PMC9078640 DOI: 10.1039/c8ra00793d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/27/2018] [Indexed: 11/21/2022] Open
Abstract
The influence of phosphate buffer on the stabilization of sewage sludge was investigated in autothermal thermophilic aerobic digestion (ATAD). A concentration series of 0.005, 0.01, 0.02 and 0.03 mol phosphate buffer for each liter of sludge was adopted. The phosphate buffer significantly enhanced the performance of the ATAD for sewage sludge. The highest VS removal was achieved by the group with 0.01 mol L-1 phosphate buffer, and the stabilization time of the sludge was shortened by 9 days compared with that of the control. The group with the optimal dosage obtained the deepest stabilization level of sludge, which was reflected by the distribution of the particle size, and achieved 6.08% VS removal higher than that of the control in the end. Lower concentrations of carbon, nitrogen and phosphate in the supernatant were also achieved by proper dosing compared with those of the control.
Collapse
Affiliation(s)
- Ningben Jin
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd Shanghai 200232 China +86 21 54085205 +86 21 54085205
| |
Collapse
|
9
|
Shokoohi R, Rahmani A, Asgari G, Dargahi A, Vaziri Y, Abbasi MA. Evaluation of Autothermal Thermophilic Aerobic Digester Performance for the Stabilization of Municipal Wastewater Sludge. Pak J Biol Sci 2017; 20:260-266. [PMID: 29023038 DOI: 10.3923/pjbs.2017.260.266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Sludge stabilization process in terms of operational, environmental and economic indexes is the most important stage of treatment and its disposal. This study was aimed to determine the performance of Autothermal Thermophilic Aerobic Digestion (ATAD) system as one of the low-cost and biocompatible methods of sludge treatment. MATERIALS AND METHODS This study has been done using a laboratory scale Autothermal Thermophilic Aerobic Digestion (ATAD). The reactor was consisted of two polyethylene tanks with a final capacity of 100 L for each tank. Both tanks with all fittings were installed on a metal frame. The variables of study were temperature, dissolved oxygen, pH, volatile organic compounds, total solids, COD and the number of Ascaris eggs and fecal coliforms per gram of dry matter of the sludge. The temperature was measured hourly and the pH and dissolved oxygen were measured and controlled twice per day. One-way ANNOVA was applied to analyze reasults. RESULTS According to the results, the temperature of sludge increased from 11.7-61.2°C by biological reactions. Pathogen organisms were reduced from 80×106 to 503 in number during 72 h. After 6 days pathogen organisms and Ascaris eggs were removed completely. Volatile organic compounds and COD were reduced 42 and 38.3% respectively during the 6 days. CONCLUSION It is concluded that the performance of ATAD in removing organic compounds from wastewater sludge were desirable. Resulted sludge from stabilization process were appropriate for use in agriculture as a soil supplement and met the indexes of class A sludge according to EPA's standards (CFR 40 Part 503).
Collapse
Affiliation(s)
- Reza Shokoohi
- Department of Environmental Health Engineering, Faculty of Health, Hamadan University of Medical Science, Hamadan, Iran
| | - Alireza Rahmani
- Department of Environmental Health Engineering, Faculty of Health, Hamadan University of Medical Science, Hamadan, Iran
| | - Ghorban Asgari
- Department of Environmental Health Engineering, Faculty of Health, Hamadan University of Medical Science, Hamadan, Iran
| | - Abdollah Dargahi
- Department of Environmental Health Engineering, Faculty of Health, Hamadan University of Medical Science, Hamadan, Iran
| | - Yaser Vaziri
- Department of Environmental Health Engineering, Faculty of Health, Hamadan University of Medical Science, Hamadan, Iran
| | - Mohammad Attar Abbasi
- Department of Environmental Health Engineering, Faculty of Health, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
10
|
Liu Y, Gao M, Zhang A, Liu Z. Strengthen effects of dominant strains on aerobic digestion and stabilization of the residual sludge. BIORESOURCE TECHNOLOGY 2017; 235:202-210. [PMID: 28365348 DOI: 10.1016/j.biortech.2017.03.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/04/2017] [Accepted: 03/08/2017] [Indexed: 06/07/2023]
Abstract
In order to strengthen the aerobic digestion of residual sludge, shorten the time of sludge stabilization and further reduce operating costs, 3 dominant strains identified as Pseudomonas sp. L3, Acinetobacter sp. L16 and Bacillus sp. L19 were isolated from long-term aerobic digestion sludge. Results showed that the sludge stabilization time were reduced by 3-4days compared with the control when the dominant strains were added to the process of sludge aerobic digestion. The addition of dominant strains accelerated the accumulation of TOC, nitrate nitrogen and ammonia nitrogen in the digestive solution at different levels, and it was beneficial to the dissolution of phosphorus. Controlling DO 3-5mg/L, pH 6.5, the strains of Pseudomonas sp. L3 and Bacillus sp. L19 were combined dosing with the dosage of 2% in the process of sludge aerobic digestion, compared with the control, digestion rates of TOC and MLSS were increased about 19% and 16%, respectively.
Collapse
Affiliation(s)
- Yongjun Liu
- Key Lab of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Min Gao
- Key Lab of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Aining Zhang
- Key Lab of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Zhe Liu
- Key Lab of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
11
|
Ye C, Yuan H, Dai X, Lou Z, Zhu N. Electrochemical pretreatment of waste activated sludge: effect of process conditions on sludge disintegration degree and methane production. ENVIRONMENTAL TECHNOLOGY 2016; 37:2935-2944. [PMID: 27058022 DOI: 10.1080/09593330.2016.1170209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 03/20/2016] [Indexed: 06/05/2023]
Abstract
Waste activated sludge (WAS) requires a long digestion time because of a rate-limiting hydrolysis step - the first phase of anaerobic digestion (AD). Pretreatment can be used prior to AD to facilitate the hydrolysis step and improve the efficiency of WAS digestion. This study evaluated a novel application of electrochemical (EC) technology employed as the pretreatment method prior to AD of WAS, focusing on the effect of process conditions on sludge disintegration and subsequent AD process. A superior process condition of EC pretreatment was obtained by reaction time of 30 min, electrolysis voltage of 20 V, and electrode distance of 5 cm, under which the disintegration degree of WAS ranged between 9.02% and 9.72%. In the subsequent batch AD tests, 206 mL/g volatile solid (VS) methane production in EC pretreated sludge was obtained, which was 20.47% higher than that of unpretreated sludge. The AD time was 19 days shorter for EC pretreated sludge compared to the unpretreated sludge. Additionally, the EC + AD reactor achieved 41.84% of VS removal at the end of AD. The analysis of energy consumption showed that EC pretreatment could be effective in enhancing sludge AD with reduced energy consumption when compared to other pretreatment methods.
Collapse
Affiliation(s)
- Caihong Ye
- a School of Environmental Science and Engineering , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Haiping Yuan
- a School of Environmental Science and Engineering , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Xiaohu Dai
- b National Engineering Research Center for Urban Pollution Control, School of Environmental Science and Engineering , Tongji University , Shanghai , People's Republic of China
| | - Ziyang Lou
- a School of Environmental Science and Engineering , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Nanwen Zhu
- a School of Environmental Science and Engineering , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| |
Collapse
|
12
|
Comparison of effects of ferric nitrate additions in thermophilic, mesophilic and psychrophilic aerobic digestion for sewage sludge. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.07.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Jin N, Shou Z, Yuan H, Lou Z, Zhu N. Selective simplification and reinforcement of microbial community in autothermal thermophilic aerobic digestion to enhancing stabilization process of sewage sludge by conditioning with ferric nitrate. BIORESOURCE TECHNOLOGY 2016; 204:106-113. [PMID: 26773954 DOI: 10.1016/j.biortech.2016.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 06/05/2023]
Abstract
The effect of ferric nitrate on microbial community and enhancement of stabilization process for sewage sludge was investigated in autothermal thermophilic aerobic digestion. The disinhibition of volatile fatty acids (VFA) was obtained with alteration of individual VFA concentration order. Bacterial taxonomic identification by 454 high-throughput pyrosequencing found the dominant phylum Proteobacteria in non-dosing group was converted to phylum Firmicutes in dosing group after ferric nitrate added and simplification of bacteria phylotypes was achieved. The preponderant Tepidiphilus sp. vanished, and Symbiobacterium sp. and Tepidimicrobium sp. were the most advantageous phylotypes with conditioning of ferric nitrate. Consequently, biodegradable substances in dissolved organic matters increased, which contributed to the favorable environment for microbial metabolism and resulted in acceleration of sludge stabilization. Ultimately, higher stabilization level was achieved as ratio of soluble chemical oxygen demand to total chemical oxygen demand (TCOD) decreased while TCOD reduced as well in dosing group comparing to non-dosing group.
Collapse
Affiliation(s)
- Ningben Jin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zongqi Shou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiping Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyang Lou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
14
|
Li X, Li Z, Dai X, Dong B, Tang Y. Micro-aerobic digestion of high-solid anaerobically digested sludge: further stabilization, microbial dynamics and phytotoxicity reduction. RSC Adv 2016. [DOI: 10.1039/c6ra11964f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Micro-aerobic digestion was firstly applied for further stabilization and phytotoxicity reduction of high-solid anaerobically digested sludge (ADS) in room temperature, mesophilic and thermophilic conditions.
Collapse
Affiliation(s)
- Xiaowei Li
- State Key Laboratory of Pollution Control and Resources Reuse
- National Engineering Research Center for Urban Pollution Control
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
| | - Zonghan Li
- State Key Laboratory of Pollution Control and Resources Reuse
- National Engineering Research Center for Urban Pollution Control
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse
- National Engineering Research Center for Urban Pollution Control
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse
- National Engineering Research Center for Urban Pollution Control
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
| | - Yanfei Tang
- State Key Laboratory of Pollution Control and Resources Reuse
- National Engineering Research Center for Urban Pollution Control
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
| |
Collapse
|
15
|
Lin H, Wu X, Nelson C, Miller C, Zhu J. Electricity generation and nutrients removal from high-strength liquid manure by air-cathode microbial fuel cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 51:240-250. [PMID: 26654000 DOI: 10.1080/10934529.2015.1094342] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Air-cathode microbial fuel cells (MFCs) are widely tested to recover electrical energy from waste streams containing organic matter. When high-strength wastewater, such as liquid animal manure, is used as a medium, inhibition on anode and cathode catalysts potentially impairs the effectiveness of MFC performance in power generation and pollutant removal. This study evaluated possible inhibitive effects of liquid swine manure components on MFC power generation, improved liquid manure-fed MFCs performance by pretreatment (dilution and selective adsorption), and modeled the kinetics of organic matter and nutrients removal kinetics. Parameters monitored included pH, conductivity, chemical oxygen demand (COD), volatile fatty acids (VFAs), total ammoniacal nitrogen (TAN), nitrite, nitrate, and phosphate concentrations. The removals of VFA and TAN were efficient, indicated by the short half-life times of 4.99 and 7.84 d, respectively. The mechanism for phosphate decrease was principally the salt precipitation on cathode, but the removal was incomplete after 42-d operation. MFC with an external resistor of 2.2 kΩ and fed with swine wastewater generated relatively small power (28.2 μW), energy efficiency (0.37%) and Coulombic efficiency (1.5%). Dilution of swine wastewater dramatically improved the power generation as the inhibitory effect was decreased. Zeolite and granular activated carbon were effective in the selective adsorption of ammonia or organic matter in swine wastewater, and so substantially improved the power generation, energy efficiency, and Coulombic efficiency. A smaller external resistor in the circuit was also observed to promote the organic matter degradation and thus to shorten the treatment time. Overall, air-cathode MFCs are promising for generating electrical power from livestock wastewater and meanwhile reducing the level of organic matter and nutrients.
Collapse
Affiliation(s)
- Hongjian Lin
- a Department of Bioproducts & Biosystems Engineering , University of Minnesota , St. Paul , Minnesota , USA
| | - Xiao Wu
- b Southern Research & Outreach Center, University of Minnesota , Waseca , Minnesota , USA
| | - Chad Nelson
- a Department of Bioproducts & Biosystems Engineering , University of Minnesota , St. Paul , Minnesota , USA
| | - Curtis Miller
- b Southern Research & Outreach Center, University of Minnesota , Waseca , Minnesota , USA
| | - Jun Zhu
- a Department of Bioproducts & Biosystems Engineering , University of Minnesota , St. Paul , Minnesota , USA
- b Southern Research & Outreach Center, University of Minnesota , Waseca , Minnesota , USA
- c Department of Biological and Agricultural Engineering , University of Arkansas , Fayetteville , Arkansas , USA
| |
Collapse
|
16
|
Jin N, Shou Z, Yuan H, Lou Z, Zhu N. Effects of ferric nitrate additions under different pH conditions on autothermal thermophilic aerobic digestion for sewage sludge. RSC Adv 2015. [DOI: 10.1039/c5ra16761b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Effects of ferric nitrate additions under different pH conditions on disinhibition of excessive VFAs for enhancement of ATAD performance.
Collapse
Affiliation(s)
- Ningben Jin
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Zongqi Shou
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Haiping Yuan
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Ziyang Lou
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Nanwen Zhu
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
17
|
Jin N, Shao Y, Zhu J, Shou Z, Yuan H, Zhu N. Determination of the optimal dosing time of ferric nitrate on disinhibition of excessive volatile fatty acids in autothermal thermophilic aerobic digestion for sewage sludge. RSC Adv 2015. [DOI: 10.1039/c5ra05613f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Optimal timing of ferric nitrate addition on disinhibition of excessive VFAs for enhancement of ATAD performance.
Collapse
Affiliation(s)
- Ningben Jin
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Yawen Shao
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Jun Zhu
- Department of Biological and Agricultural Engineering
- University of Arkansas
- Fayetteville 72701
- USA
| | - Zongqi Shou
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Haiping Yuan
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Nanwen Zhu
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|