1
|
Elucidating interactive effects of sulfidated nanoscale zero-valent iron and ammonia on anaerobic digestion of food waste. J Biosci Bioeng 2023; 135:63-70. [PMID: 36336573 DOI: 10.1016/j.jbiosc.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
In our previous study, anaerobic digestion of food waste could be effectively enhanced by adding sulfidated nanoscale zero-valent iron (S-nZVI) under high-strength ammonia concentrations. In this study, in order to further elucidate the specific interactive effects of S-nZVI and ammonia on anaerobic digestion of nitrogen-rich food waste, the methanogenic performance of anaerobic digestion systems respectively added with nanoscale zero-valent iron (nZVI) and S-nZVI were compared and monitored under different ammonia stress conditions. Both nZVI and S-nZVI could effectively stimulate the methanogenesis process among ammonia concentrations ranging from 0 to 3500 mg/L. However, the enhancing effects of S-nZVI and nZVI on anaerobic digestion of food waste were different, in which anaerobic digestion systems added with S-nZVI and nZVI performed best under 2500 mg/L of ammonia and 1500 mg/L of ammonia, respectively. Furthermore, the analysis of microbial communities suggested that ammonia stress enriched acetoclastic methanogens, while adding nZVI and S-nZVI into anaerobic digestions stimulated the process of hydrogenotrophic methanogenesis. Moreover, S-nZVI performed better in promoting the evolution of DIET-related microorganisms than nZVI, resulting in enhanced methane production under high ammonia-stressed conditions. This work provided fundamental knowledge about the interactive effects of S-nZVI and ammonia on the anaerobic digestion of food waste.
Collapse
|
2
|
Effect of Zeolite on the Methane Production from Chicken Manure Leachate. SUSTAINABILITY 2022. [DOI: 10.3390/su14042207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study demonstrates the leachate characteristics derived from bench-scale leach-bed reactors (LBRs) filled with chicken manure (CM) and zeolite. Zeolite was used to maintain the necessary porosity for the leaching process and to adsorb ammonia. Fresh water was added for leachate production and removed daily, in order to estimate the readily leachable organic and nitrogen matter of the CM. Tests were conducted at two ratios of zeolite to bed (10% and 3.5% v/v CMbed). Other operating parameters studied were the amount of water added in the LBRs, the leachate recirculation rate, and the hydraulic retention time (HRT). A control LBR with river pebbles at a similar size and ratio (10% v/v) with zeolite was also studied. Some experiments were repeated with CM, which had different characteristics. Compared to the control test, the LBR with zeolite at 10% v/v yielded leachate with less NH3 and a higher biochemical methane potential (BMP). However, free ΝH3 in the control experiment was below the inhibition threshold, proving that zeolite contributes to the higher BMP of leachate, and that this effect is not only due to NH3 adsorption.
Collapse
|
3
|
Kong X, Niu J, Zhang W, Liu J, Yuan J, Li H, Yue X. Mini art review for zero valent iron application in anaerobic digestion and technical bottlenecks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148415. [PMID: 34412392 DOI: 10.1016/j.scitotenv.2021.148415] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Zero valent iron (ZVI) has been used extensively to control environmental pollution owing to its strong reducibility and low cost. Herein, we evaluate the impact of ZVI (iron scrap and ZVI powder with different scales) on anaerobic digestion (AD) reactor performance improvement and syntrophic relationship stimulation among various microbial groups in the methanogenesis process. In recent studies, ZVI addition significantly enhanced methane and volatile fatty acid (VFA) yields and alleviated excessive acidification, ammonia accumulation, and odorous gas production. Further, we reviewed the changes in enzyme activity and microbial metabolism after the addition of ZVI throughout the reaction process. Certain innovative technologies, such as bioelectrochemical system assistance and combined usage of conductive materials, may improve AD performance compared to the use of ZVI alone, the mechanism of which has been discussed from various viewpoints. Furthermore, the primary technical bottlenecks, such as poor mass transfer efficiency in dry AD and high ZVI dosage, have been illustrated, and syntrophic methanogenesis regulated by ZVI addition can be further studied by conducting theoretical research.
Collapse
Affiliation(s)
- Xin Kong
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China; School of Environment, Tsinghua University, Beijing 10084, PR China.
| | - Jianan Niu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Wenjing Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Jin Yuan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| |
Collapse
|
4
|
Liu Z, Zhang Y, Yan P, Luo J, Kong L, Chang J, Liu B, Xu D, He F, Wu Z. Synergistic control of internal phosphorus loading from eutrophic lake sediment using MMF coupled with submerged macrophytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138697. [PMID: 32438085 DOI: 10.1016/j.scitotenv.2020.138697] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/16/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Sediment phosphorus (P) is the main source of endogenous P for lake eutrophication. An in-situ combined technology for determination the removal effect of sediment P in all fractions was first developed using the novel modified maifanite (MMF) and submerged macrophytes in this study. MMF was synthesized using an acidification process (2.5 mol/L H2SO4) and then a calcination (400 °C) method. The morphology and structure of MMF were characterized by XRD, SEM, XPS, and BET. We tested the removal effects of sediment P by MMF and submerged macrophytes in combination and separately. The results demonstrated that the synergistic removal capacity of sediment P using MMF coupled with submerged macrophytes was higher than the sum of them applied separately. MMF could promote the submerged macrophytes growth and enhance the adsorption of extra P on MMF through root oxygenation and nutrient allocation. The microcosm experiment results showed that sediment from fMMF+V. spiralis exhibited the most microbial diversity and abundance among the sediment. The combination of MMF and submerged macrophytes increased the Firmicutes abundance and decreased the Bacteroidetes. These results indicated that adsorption-biological technology can be regarded as a novel and competitive technology to the endogenous pollution control in eutrophic shallow lakes.
Collapse
Affiliation(s)
- Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Pan Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Luo
- Center for Environmental Research and Technology, University of California-Riverside, California, USA
| | - Lingwei Kong
- Environmental Research and Design Institute of Zhejiang Province, Hangzhou 310007, China
| | - Junjun Chang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
5
|
Liu Y, Sheng Y, Feng C, Chen N, Liu T. Distinct functional microbial communities mediating the heterotrophic denitrification in response to the excessive Fe(II) stress in groundwater under wheat-rice stone and rock phosphate amendments. ENVIRONMENTAL RESEARCH 2020; 185:109391. [PMID: 32240841 DOI: 10.1016/j.envres.2020.109391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
Denitrifying microbial community can be utilized for eliminating nitrate and Fe(II) combined contamination in groundwater, while excessive amount of Fe(II) limit the process. Natural mineral can be additional substrate for the microbial growth, whereas how it influences the microbial community that mediating the denitrification coupling with Fe(II) oxidation and balancing inhibition of excessive Fe(II) on denitrification remain unclear. In the present study, we conducted a series of microcosm experiments to explore the denitrification and Fe(II) oxidation kinetic, and used RNA-based qPCR and DNA-based high-throughput sequencing to elucidate microbial diversity, co-occurrence and metabolic profiles amended by wheat-rice stone and rock phosphate. The results showed that both minerals could extensively improve and double the denitrification rates (2.0 ± 0.03 to 2.12 ± 0.13 times), decrease the nitrite accumulation and trigger the high resistance of the denitrifiers from the stress of Fe(II), whereas only wheat-rice stone with higher surface area increased the oxidation of Fe(II) (<10%). The addition of both minerals enhanced the microbial alpha-diversity, shaped the beta-diversity and co-occurrence network, and recovered the transcription of nitrate and nitrite reductase (Nar, Nap, NirS, NirK) from the Fe(II) inhibition. Accordingly, heterotroph Methyloversatilis sp., Methylotenra sp. might contribute to the denitrification under wheat-rice stone amendment, Denitratisoma sp. contribute to the denitrification for rock phosphate, and Fe oxidation was partially catalyzed by Dechloromonas sp. or abiotically by the nitrite/nitrous oxide. These findings would be helpful for better understanding the bioremediation of nitrate and Fe contaminated groundwater.
Collapse
Affiliation(s)
- Ying Liu
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China; The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Yizhi Sheng
- School of Environment, Tsinghua University, Beijing, 100084, China; Department of Geology and Environmental Earth Science, Miami University, OH, 45056, USA
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China.
| | - Nan Chen
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China
| | - Tong Liu
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
6
|
Liu Y, Chen N, Tong S, Liang J, Yang C, Feng C. Performance enhancement of H 2S-based autotrophic denitrification with bio-gaseous CO 2 as sole carbon source through new pH adjustment materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110157. [PMID: 31999611 DOI: 10.1016/j.jenvman.2020.110157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/29/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
H2S-based denitrification could achieve synchronous removal of nitrate and H2S and had been regarded as an efficient way for biogas desulfurization and wastewater denitrification. Using CO2 in biogas as carbon source had a potential of saving cost further, but the performance deteriorated due to the drop in pH. Two kinds of nature ore, medical stone and phosphate ore, were added as new pH adjustment materials in this study, and feasibility of using CO2 as sole carbon source for H2S-based denitrification was investigated. As a result, both materials could increase the pH from 4.5 to above 6.0. Compared with medical stone, higher level of pH (up to 6.39) and nitrate removal efficiency (99.1%) were obtained with phosphate ore. In addition, ATP increased more rapidly than the control, reflecting improvement on microbial activities. Therefore, phosphate ore as the pH adjustment material could improve H2S-based denitrification performance obviously.
Collapse
Affiliation(s)
- Yongjie Liu
- Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences, Beijing), Ministry of Education, No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Nan Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Shuang Tong
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing, 100068, China
| | - Jing Liang
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chen Yang
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chuanping Feng
- Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences, Beijing), Ministry of Education, No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
7
|
Huang W, Yang F, Huang W, Wang D, Lei Z, Zhang Z. Weak magnetic field significantly enhances methane production from a digester supplemented with zero valent iron. BIORESOURCE TECHNOLOGY 2019; 282:202-210. [PMID: 30861450 DOI: 10.1016/j.biortech.2019.03.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Weak magnetic field (WMF) provided by a magnet was proposed to enhance CH4 production from a swine manure-fed digester supplemented with micron-sized zero valent iron (ZVI). Compared to the control without ZVI addition and WMF application (RControl), treatments that included ZVI only (RZVI) and coupled WMF with ZVI (RZVI/WMF) increased the CH4 production by 77.0% and 124.5%, respectively. As evidenced by the elevated levels of total soluble iron, WMF apparently promoted the corrosion of ZVI, providing extra H2 for hydrogenotrophic methanogenesis and creating a more reductive environment to reduce propionic-type fermentation. Microbial analysis results revealed that the relative abundance of Methanothrix (capable of accepting electrons) in RZVI/WMF were 75.1% higher than that in RZVI. Essentially, WMF application promoted the direct interspecies electron transfer-based methanogenesis by (1) providing more electrons as the direct substrate, and (2) inducing Lorentz force to facilitate the mass transfer between the released electrons and the methanogens.
Collapse
Affiliation(s)
- Weiwei Huang
- College of Environmental Science and Engineering, Institute of Tropical Agriculture and Forestry, Hainan University, Renmin Road, Haikou 570228, China
| | - Fei Yang
- College of Environmental Science and Engineering, Institute of Tropical Agriculture and Forestry, Hainan University, Renmin Road, Haikou 570228, China.
| | - Wenli Huang
- MOE Key Laboratory of Pollution Process and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Dexin Wang
- College of Environmental Science and Engineering, Institute of Tropical Agriculture and Forestry, Hainan University, Renmin Road, Haikou 570228, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
8
|
Zhang M, Li J, Wang Y. Impact of biochar-supported zerovalent iron nanocomposite on the anaerobic digestion of sewage sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10292-10305. [PMID: 30758797 PMCID: PMC6469613 DOI: 10.1007/s11356-019-04479-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/04/2019] [Indexed: 05/26/2023]
Abstract
Anaerobic digestion (AD) is an attractive technology for sludge treatment as it stabilizes sludge and produce renewable energy. However, problems such as low organic matter content and high heavy metals level are often encountered which severely limits the effectiveness of AD. In this study, the biochar-supported nanoscale zerovalent iron (nZVI-BC) was synthesized and used as additives during AD of sewage sludge to investigate the enhancement effects for methane production and its impacts on microbial structure at mesophilic temperature. nZVI-BC addition enhanced process stability by improving the generation and degradation of intermediate organic acids, but inhibitory effects were observed at high dosage. The methane content and cumulative methane yields were increased by 29.56% and 115.39%, respectively. Compared with AD without nZVI-BC, the application of nZVI-BC showed positive effect on improvement of metals (Cu, Cd, Ni, Cr, and Zn) stabilization in the digestate. Microbial community analysis illustrated that nZVI-BC addition could significantly increase the Shannon diversity index and Chao1 richness index of archaea, and meanwhile archaea were more diverse in nZVI-BC amended digesters than in control. It was notable that Methanosaeta dominated in all the digesters at genera level, while the relative abundance of hydrogenotrophic methanogens (Methanobacterium and methanospirillum) increased 35.39% in nZVI-BC amended digesters compared to the control, resulting in higher methane production. The results will guide development of microbial management methods to enhance the stability of AD process.
Collapse
Affiliation(s)
- Min Zhang
- Department of Landscape of Architecture, Center for Ecophronetic Practice Research, College of Architecture and Urban Planning, Tongji University, Shanghai, 200092, China
| | - Jianhua Li
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Tongji University, Shanghai, 200092, China
| | - Yuncai Wang
- Department of Landscape of Architecture, Center for Ecophronetic Practice Research, College of Architecture and Urban Planning, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
9
|
Yang Y, Yang F, Huang W, Huang W, Li F, Lei Z, Zhang Z. Enhanced anaerobic digestion of ammonia-rich swine manure by zero-valent iron: With special focus on the enhancement effect on hydrogenotrophic methanogenesis activity. BIORESOURCE TECHNOLOGY 2018; 270:172-179. [PMID: 30218933 DOI: 10.1016/j.biortech.2018.09.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Zero-valent iron (ZVI) supplementation for improving anaerobic digestion (AD) of ammonia-rich swine manure (initial ammonia-N ∼5000 mg/L) was tested. The addition of 5 g/L ZVI powder apparently accelerated the acidification process to produce more volatile fatty acids (VFAs) and optimized the fermentation type by contributing to a lower system oxidation-reduction potential (ORP) level of -181.7 to -250.0 mV favorable for ethanol-type and butyric-type fermentation during day 14-30, in comparison with that of -164.3 to -216.3 mV in the control group favorable for propionic-type. Overall, ZVI significantly decreased the proportion of propionic acid from 49.8% to 30.9% while increased the proportion of n-butyric acid from 6.8% to 18.7%. Microbial analysis revealed that fast growing and ammonia-tolerant hydrogenotrophic Methanoculleus species were enriched with ZVI, helping achieve a 54.2% higher CH4 yield relative to control. Results from this study demonstrated the potential of ZVI addition to enhance AD of ammonia-rich animal manure.
Collapse
Affiliation(s)
- Yuan Yang
- Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, No. 130 Meilong Road, Xuhui District, Shanghai 200237, China
| | - Fei Yang
- College of Resources and Environment, Institute of Tropical Agriculture and Forestry, Hainan University, Renmin Road, Haikou 570228, China
| | - Weiwei Huang
- Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, No. 130 Meilong Road, Xuhui District, Shanghai 200237, China; College of Resources and Environment, Institute of Tropical Agriculture and Forestry, Hainan University, Renmin Road, Haikou 570228, China.
| | - Wenli Huang
- MOE Key Laboratory of Pollution Process and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Fei Li
- Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, No. 130 Meilong Road, Xuhui District, Shanghai 200237, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
10
|
Liu Z, Zhang Y, Han F, Yan P, Liu B, Zhou Q, Min F, He F, Wu Z. Investigation on the adsorption of phosphorus in all fractions from sediment by modified maifanite. Sci Rep 2018; 8:15619. [PMID: 30353133 PMCID: PMC6199331 DOI: 10.1038/s41598-018-34144-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022] Open
Abstract
Sediment phosphorus (P) removal is crucial for the control of eutrophication, and the in-situ adsorption is an essential technique. In this study, modified maifanite (MMF) prepared by acidification, alkalization, salinization, calcination and combined modifications, respectively, were first applied to treat sediment P. The morphology and microstructure of MMF samples were characterized by X-ray fluorescence (XRF), Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and Brunauer-Emmett-Teller (BET). Various adsorption parameters were tested, such as dosage of maifanite, time, operation pH and temperature. The adsorption mechanisms were also investigated and discussed. Results showed that CMMF-H2.5-400 (2.5 mol/L H2SO4 and calcined at 400 °C) exhibited the highest P adsorption capacity. Thus, it was selected as the in-situ adsorbent material to control the internal P loading. Under the optimal conditions of dynamic experiments, the adsorption rates of TP, IP, OP, Fe/Al-P and Ca-P by CMMF-H2.5-400 were 37.22%, 44.41%, 25.54%, 26.09% and 60.34%, respectively. The adsorption mechanisms analysis revealed that the adsorption of P onto CMMF-H2.5-400 mainly by ligand exchange. Results of this work indicated that the modification treatment could improve the adsorption capacity of maifanite, and CMMF-H2.5-400 could be further applied to eutrophication treatment.
Collapse
Affiliation(s)
- Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Fan Han
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Pan Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fenli Min
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
11
|
Cai W, Huang W, Li H, Sun B, Xiao H, Zhang Z, Lei Z. Acetate favors more phosphorus accumulation into aerobic granular sludge than propionate during the treatment of synthetic fermentation liquor. BIORESOURCE TECHNOLOGY 2016; 214:596-603. [PMID: 27183235 DOI: 10.1016/j.biortech.2016.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
Anaerobic digestion (AD) is an efficient biotechnology widely applied for energy and resource recovery from organic waste and wastewater treatment. The effluent from AD or fermentation liquor containing organic substances like volatile fatty acids (VFAs) and mineral nutrients (such as N and P), however, will trigger serious environmental issues if not properly dealt with. In this study two identical sequencing batch reactors (SBRs), namely Ra and Rp were used to cultivate aerobic granules for P recovery from synthetic fermentation liquor, respectively using acetate and propionate as additional carbon source. Larger and more stable granules were achieved in Ra with higher P removal capability (9.4mgP/g-VSS·d) and higher anaerobic P release (6.9mgP/g-VSS·h). In addition to much higher P content (78mgP/g-SS), bioavailable P in Ra-granules increased to 45mgP/g-SS, approximately 2-times those of seed sludge and Rp-granules. Microbial community analysis indicated that more GAOs were accumulated in Rp-granules.
Collapse
Affiliation(s)
- Wei Cai
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Wenli Huang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Huifang Li
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Beina Sun
- Shanghai Biotechnology Corporation, 151 Libing Road, Shanghai 201203, China
| | - Huasheng Xiao
- Shanghai Biotechnology Corporation, 151 Libing Road, Shanghai 201203, China
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
12
|
Huang W, Huang W, Yuan T, Zhao Z, Cai W, Zhang Z, Lei Z, Feng C. Volatile fatty acids (VFAs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate. WATER RESEARCH 2016; 90:344-353. [PMID: 26766158 DOI: 10.1016/j.watres.2015.12.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/15/2015] [Accepted: 12/24/2015] [Indexed: 06/05/2023]
Abstract
The sustainability of an agricultural system depends highly upon the recycling of all useful substances from agricultural wastes. This study explored the feasibility of comprehensive utilization of C, N and P resources in swine manure (SM) through short-term dry anaerobic digestion (AD) followed by dry ammonia stripping, aiming at achieving (1) effective total volatile fatty acids (VFAs) production and separation; (2) ammonia recovery from the digestate; and (3) preservation of high P bioavailability in the solid residue for further applications. Specifically, two ammonia stripping strategies were applied and compared in this work: (I) ammonia stripping was directly performed with the digestate from dry AD of SM (i.e. dry ammonia stripping); and (II) wet ammonia stripping was conducted by using the resultant filtrate from solid-liquid separation of the mixture of digestate and added water. Results showed that dry AD of the tested SM at 55 °C, 20% TS and unadjusted initial pH (8.6) for 8 days produced relatively high concentrations of total VFAs (94.4 mg-COD/g-VS) and ammonia-N (20.0 mg/g-VS) with high potentially bioavailable P (10.6 mg/g-TS) remained in the digestate, which was considered optimal in this study. In addition, high ammonia removal efficiencies of 96.2% and 99.7% were achieved through 3 h' dry and wet stripping (at 55 °C and initial pH 11.0), respectively, while the total VFAs concentration in the digestate/filtrate remained favorably unchanged. All experimental data from the two stripping processes well fitted to the pseudo first-order kinetic model (R(2) = 0.9916-0.9997) with comparable theoretical maximum ammonia removal efficiencies (Aeq, >90%) being obtained under the tested dry and wet stripping conditions, implying that the former was more advantageous due to its much higher volumetric total ammonia-N removal rate thus much smaller reactor volume, less energy/chemicals consumption and no foaming problems. After 8 days' dry AD and 3 h' dry ammonia stripping, the separated liquid containing VFAs and the recovered ammonia were both marketable products, and the solid residues with averagely higher C/N ratios of 25.7 than those of raw SM (18.0) meanwhile maintaining a relatively high bioavailable P content of 8.1 mg/g-TS can serve as better feedstock for methane fermentation.
Collapse
Affiliation(s)
- Weiwei Huang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Wenli Huang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tian Yuan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Ziwen Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Wei Cai
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China
| |
Collapse
|