1
|
Ren L, Zha H, Zhang Q, Xie Y, Li J, Hu Z, Tao X, Xu D, Li F, Zhang B. Altered sterol composition mediates multiple tolerance of Kluyveromyces marxianus for xylitol production. Microb Cell Fact 2024; 23:271. [PMID: 39385269 PMCID: PMC11465571 DOI: 10.1186/s12934-024-02546-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Currently, the synthesis of compounds based on microbial cell factories is rapidly advancing, yet it encounters several challenges. During the production process, engineered strains frequently encounter disturbances in the cultivation environment or the impact of their metabolites, such as high temperature, acid-base imbalances, hypertonicity, organic solvents, toxic byproducts, and mechanical damage. These stress factors can constrain the efficiency of microbial fermentation, resulting in slow cell growth, decreased production, significantly increased energy consumption, and other issues that severely limit the application of microbial cell factories. RESULTS This study demonstrated that sterol engineering in Kluyveromyces marxianus, achieved by overexpressing or deleting the coding genes for the last five steps of ergosterol synthase (Erg2-Erg6), altered the composition and ratio of sterols in its cell membrane, and affected its multiple tolerance. The results suggest that the knockout of the Erg5 can enhance the thermotolerance of K. marxianus, while the overexpression of the Erg4 can improve its acid tolerance. Additionally, engineering strain overexpressed Erg6 improved its tolerance to elevated temperature, hypertonic, and acid. YZB453, obtained by overexpressing Erg6 in an engineering strain with high efficiency in synthesizing xylitol, produced 101.22 g/L xylitol at 45oC and 75.11 g/L xylitol at 46oC. Using corncob hydrolysate for simultaneous saccharification and fermentation (SSF) at 46oC that xylose released from corncob hydrolysate by saccharification with hemicellulase, YZB453 can produce 45.98 g/L of xylitol, saving 53.72% of the cost of hemicellulase compared to 42oC. CONCLUSIONS This study elucidates the mechanism by which K. marxianus acquires resistance to various antifungal drugs, high temperatures, high osmolarity, acidity, and other stressors, through alterations in the composition and ratio of membrane sterols. By employing sterol engineering, the fermentation temperature of this unconventional thermotolerant K. marxianus was further elevated, ultimately providing an efficient platform for synthesizing high-value-added xylitol from biomass via the SSF process at temperatures exceeding 45 °C.
Collapse
Affiliation(s)
- Lili Ren
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China
| | - Hao Zha
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China
| | - Qi Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China
| | - Yujie Xie
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China
| | - Jiacheng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China
| | - Zhongmei Hu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China
| | - Xiurong Tao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China.
| | - Biao Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China.
| |
Collapse
|
2
|
Liang P, Cao M, Li J, Wang Q, Dai Z. Expanding sugar alcohol industry: Microbial production of sugar alcohols and associated chemocatalytic derivatives. Biotechnol Adv 2023; 64:108105. [PMID: 36736865 DOI: 10.1016/j.biotechadv.2023.108105] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Sugar alcohols are polyols that are widely employed in the production of chemicals, pharmaceuticals, and food products. Chemical synthesis of polyols, however, is complex and necessitates the use of hazardous compounds. Therefore, the use of microbes to produce polyols has been proposed as an alternative to traditional synthesis strategies. Many biotechnological approaches have been described to enhancing sugar alcohols production and microbe-mediated sugar alcohol production has the potential to benefit from the availability of inexpensive substrate inputs. Among of them, microbe-mediated erythritol production has been implemented in an industrial scale, but microbial growth and substrate conversion rates are often limited by harsh environmental conditions. In this review, we focused on xylitol, mannitol, sorbitol, and erythritol, the four representative sugar alcohols. The main metabolic engineering strategies, such as regulation of key genes and cofactor balancing, for improving the production of these sugar alcohols were reviewed. The feasible strategies to enhance the stress tolerance of chassis cells, especially thermotolerance, were also summarized. Different low-cost substrates like glycerol, molasses, cellulose hydrolysate, and CO2 employed for producing these sugar alcohols were presented. Given the value of polyols as precursor platform chemicals that can be leveraged to produce a diverse array of chemical products, we not only discuss the challenges encountered in the above parts, but also envisioned the development of their derivatives for broadening the application of sugar alcohols.
Collapse
Affiliation(s)
- Peixin Liang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| | - Zongjie Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| |
Collapse
|
3
|
Yuan X, Cao J, Wang R, Han Y, Zhu J, Lin J, Yang L, Wu M. Genetically Engineering Escherichia coli to Produce Xylitol from Corncob Hydrolysate without Lime Detoxification. Molecules 2023; 28:1550. [PMID: 36838538 PMCID: PMC9967598 DOI: 10.3390/molecules28041550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Before fermentation with hemicellulosic hydrolysate as a substrate, it is generally necessary to detoxify the toxic substances that are harmful to microorganism growth. Cyclic AMP receptor protein (CRP) is a global regulator, and mutation of its key sites may have an important impact on E. coli virulence tolerance. Using corncob hydrolysate without ion-exchange or lime detoxification as the substrate, shake flask fermentation experiments showed that CRP mutant IS5-dG (I112L, T127G, A144T) produced 18.4 g/L of xylitol within 34 h, and the OD600 was 9.7 at 24 h; these values were 41.5% and 21.3% higher than those of the starting strain, IS5-d, respectively. This mutant produced 82 g/L of xylitol from corncob hydrolysate without ion-exchange or lime detoxification during fed-batch fermentation in a 15-L bioreactor, with a productivity of 1.04 g/L/h; these values were 173% and 174% higher than the starting strain, respectively. To our knowledge, this is the highest xylitol concentration and productivity produced by microbial fermentation using completely non-detoxified hemicellulosic hydrolysate as the substrate to date. This study also showed that alkali neutralization, high temperature sterilization, and fermentation of the hydrolysate had important effects on the xylose loss rate and xylitol production.
Collapse
Affiliation(s)
- Xinsong Yuan
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiyun Cao
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Rui Wang
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Yu Han
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Jinmiao Zhu
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Jianping Lin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Lirong Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mianbin Wu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
4
|
Ren L, Liu Y, Xia Y, Huang Y, Liu Y, Wang Y, Li P, Chang K, Xu D, Li F, Zhang B. Improving glycerol utilization during high-temperature xylitol production with Kluyveromyces marxianus using a transient clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system. BIORESOURCE TECHNOLOGY 2022; 365:128179. [PMID: 36283669 DOI: 10.1016/j.biortech.2022.128179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Glycerol is an ideal co-substrate for xylitol production with Kluyveromyces marxianus. This study demonstrated that K. marxianus catabolizes glycerol through the Gut1-Gut2 pathway instead of the previously speculated NADPH-dependent Gcy1-Dak1 pathway using the transient clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein 9 (CRISPR/Cas9) system. Additionally, Utr1p was demonstrated to mediate NADPH generation through NADH phosphorylation. YZB392, which was constructed by integrating Utr1 into the Ypr1 site in the strain overexpressing NcXyl1 and CiGxf1 and harboring disrupted Xyl2, exhibited enhanced glycerol utilization for xylitol production (from 2.50- to 3.30- g/L after consuming 1 g/L glycerol). Fed-batch fermentation at 42 °C with YZB392 yielded 322.07 g/L xylitol, which is the highest known xylitol titer obtained via biological method. Feeding crude glycerol, xylose mother liquor, and corn steep liquor powder into a bioreactor resulted in the production of 235.69 g/L xylitol. This study developed a platform for xylitol production from industrial by-products.
Collapse
Affiliation(s)
- Lili Ren
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yanyan Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yitong Xia
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yi Huang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yu Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Youming Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Pengfei Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Kechao Chang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Biao Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China.
| |
Collapse
|
5
|
Zhang J, Xu T, Wang X, Jing X, Zhang J, Hong J, Xu J, Wang J. Lignocellulosic xylitol production from corncob using engineered Kluyveromycesmarxianus. Front Bioeng Biotechnol 2022; 10:1029203. [PMID: 36338133 PMCID: PMC9633946 DOI: 10.3389/fbioe.2022.1029203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022] Open
Abstract
Xylitol production from lignocellulose hydrolysate is a sustainable and environment-friendly process. In this study, a systematic process of converting corncob waste into xylitol is described. First, the corncobs are hydrolyzed with acid to a hydrolysate. Second, Kluyveromyces marxianus YZJQ016 derived from K. marxianus YZJ074, constructed by overexpressing ScGAL2-N376F from Saccharomyces cerevisiae, CtXYL1 from Candida tropicalis, and KmZWF1 from K. marxianus, produces xylitol from the hydrolysate. A total of ten xylose reductase genes were evaluated, and CtXYL1 proved best by showing the highest catalytic activity under the control of the KmGAPDH promoter. A 5 L fermenter at 42°C produced 105.22 g/L xylitol using K. marxianus YZJQ016—the highest production reported to date from corncob hydrolysate. Finally, for crystallization of the xylitol, the best conditions were 50% (v/v) methanol as an antisolvent, at 25°C, with purity and yield of 99%–100% and 74%, respectively—the highest yield reported to date.
Collapse
Affiliation(s)
- Jia Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohang Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jichao Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Jichao Wang,
| |
Collapse
|
6
|
Liu Y, Ren L, Zhao J, Xia Y, Zhang Z, Guan X, Huang S, Wang Q, Wu J, Yu Z, Xu D, Li F, Zhang B. Ergosterol production at elevated temperatures by Upc2-overexpressing Kluyveromyces marxianus using Jerusalem artichoke tubers as feedstock. BIORESOURCE TECHNOLOGY 2022; 362:127878. [PMID: 36055542 DOI: 10.1016/j.biortech.2022.127878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Ergosterol is an important precursor in the pharmaceutical industry for the production of numerous drugs. In this study, Kluyveromyces marxianus that showed more potential for ergosterol production than some other yeasts was reported. The effects of transcription factors UPC2, MOT3, and ROX1 of K. marxianus on ergosterol synthesis were explored, and a Upc2-overexpressing strain produced 1.78 times more ergosterol (167.33 mg/L) than the wild-type strain (60.04 mg/L). A total of 239.98 mg/L ergosterol was produced when glucose was replaced with fructose to limit ethanol production. Enhanced aeration increased ergosterol titer from 63.09 mg/L to 128.46 mg/L at 42 °C. The ergosterol titer reached 304.37 mg/L in a shake flask at 37 °C, or 1124.38 and 948.32 mg/L at 37 °C and 42 °C, respectively, in a 5 L bioreactor, using Jerusalem artichoke tubers as the sole carbon source. This study establishes a platform for ergosterol biosynthesis using inexpensive materials.
Collapse
Affiliation(s)
- Yanyan Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Lili Ren
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Junyi Zhao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yitong Xia
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Zhiyang Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Xuyang Guan
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Sirui Huang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Qiong Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Jing Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Zijun Yu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Biao Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China.
| |
Collapse
|
7
|
Integrated bioinformatics, modelling, and gene expression analysis of the putative pentose transporter from Candida tropicalis during xylose fermentation with and without glucose addition. Appl Microbiol Biotechnol 2022; 106:4587-4606. [PMID: 35708749 DOI: 10.1007/s00253-022-12005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
The transport of substrates across the cell membrane plays an essential role in nutrient assimilation by yeasts. The establishment of an efficient microbial cell factory, based on the maximum use of available carbon sources, can generate new technologies that allow the full use of lignocellulosic constituents. These technologies are of interest because they could promote the formation of added-value products with economic feasibility. In silico analyses were performed to investigate gene sequences capable of encoding xylose transporter proteins in the Candida tropicalis genome. The current study identified 11 putative transport proteins that have not yet been functionally characterized. A phylogenetic tree highlighted the potential C. tropicalis xylose-transporter proteins CtXUT1, CtXUT4, CtSTL1, CtSTL2, and CtGXT2, which were homologous to previously characterized and reported xylose transporters. Their expression was quantified through real-time qPCR at defined times, determined through a kinetic analysis of the microbial growth curve in the absence/presence of glucose supplemented with xylose as the main carbon source. The results indicated different mRNA expression levels for each gene. CtXUT1 mRNA expression was only found in the absence of glucose in the medium. Maximum CtXUT1 expression was observed in intervals of the highest xylose consumption (21 to 36 h) that corresponded to consumption rates of 1.02 and 0.82 g/L/h in the formulated media, with xylose as the only carbon source and with glucose addition. These observations indicate that CtXUT1 is an important xylose transporter in C. tropicalis. KEY POINTS: • Putative xylose transporter proteins were identified in Candida tropicalis; • The glucose concentration in the cultivation medium plays a key role in xylose transporter regulation; • The transporter gene CtXUT1 has an important role in xylose consumption by Candida tropicalis.
Collapse
|
8
|
Zhang N, Shang Y, Wang F, Wang D, Hong J. Influence of prefoldin subunit 4 on the tolerance of Kluyveromyces marxianus to lignocellulosic biomass-derived inhibitors. Microb Cell Fact 2021; 20:224. [PMID: 34906148 PMCID: PMC8672639 DOI: 10.1186/s12934-021-01715-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Kluyveromyces marxianus is a potentially excellent host for microbial cell factories using lignocellulosic biomass, due to its thermotolerance, high growth rate, and wide substrate spectrum. However, its tolerance to inhibitors derived from lignocellulosic biomass pretreatment needs to be improved. The prefoldin complex assists the folding of cytoskeleton which relates to the stress tolerance, moreover, several subunits of prefoldin have been verified to be involved in gene expression regulation. With the presence of inhibitors, the expression of a gene coding the subunit 4 of prefoldin (KmPFD4), a possible transcription factor, was significantly changed. Therefore, KmPFD4 was selected to evaluate its functions in inhibitors tolerance. RESULTS In this study, the disruption of the prefoldin subunit 4 gene (KmPFD4) led to increased concentration of intracellular reactive oxygen species (ROS) and disturbed the assembly of actin and tubulin in the presence of inhibitors, resulting in reduced inhibitor tolerance. Nuclear localization of KmPFD4 indicated that it could regulate gene expression. Transcriptomic analysis showed that upregulated gene expression related to ROS elimination, ATP production, and NAD+ synthesis, which is a response to the presence of inhibitors, disappeared in KmPFD4-disrupted cells. Thus, KmPFD4 impacts inhibitor tolerance by maintaining integration of the cytoskeleton and directly or indirectly affecting the expression of genes in response to inhibitors. Finally, overexpression of KmPFD4 enhanced ethanol fermentation with a 46.27% improvement in productivity in presence of the inhibitors. CONCLUSION This study demonstrated that KmPFD4 plays a positive role in the inhibitor tolerance and can be applied for the development of inhibitor-tolerant platform strains.
Collapse
Affiliation(s)
- Nini Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Yingying Shang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Feier Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Dongmei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China.
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China.
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui, 230026, People's Republic of China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China.
| |
Collapse
|
9
|
Transporter engineering promotes the co-utilization of glucose and xylose by Candida glycerinogenes for d-xylonate production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Yuan X, Mao Y, Tu S, Lin J, Shen H, Yang L, Wu M. Increasing NADPH Availability for Xylitol Production via Pentose-Phosphate-Pathway Gene Overexpression and Embden-Meyerhof-Parnas-Pathway Gene Deletion in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9625-9631. [PMID: 34382797 DOI: 10.1021/acs.jafc.1c03283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cofactor availability is often a rate-limiting factor in the bioconversion of xylose to xylitol. The overexpression of pentose phosphate pathway genes and the deletion of Embden-Meyerhof-Parnas pathway genes can modulate the glucose metabolic flux and increase the intracellular NADPH supply, enabling Escherichia coli cells to produce xylitol from corncob hydrolysates. The effects of zwf and/or gnd overexpression and pfkA, pfkB, and/or pgi deletion on the intracellular redox environment and xylitol production were examined. The NADPH-enhanced strain 2bpgi produced 162 g/L xylitol from corncob hydrolysates after a 76 h fed-batch fermentation in a 15 L bioreactor, which was 13.3% greater than the 143 g/L xylitol produced by the IS5-d control strain. Additionally, the xylitol productivity and xylitol yield per glucose for 2bpgi were 2.13 g/L/h and 2.50 g/g, respectively. Thus, the genetic modifications in 2bpgi significantly enhanced NADPH regeneration, making 2bpgi a potentially useful strain for the industrial-scale production of xylitol from detoxified corncob hydrolysates.
Collapse
Affiliation(s)
- Xinsong Yuan
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, PR China
| | - Yudi Mao
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shuai Tu
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, PR China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jianping Lin
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Mianbin Wu
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, PR China
| |
Collapse
|
11
|
Zhang B, Ren L, Zhao Z, Zhang S, Xu D, Zeng X, Li F. High temperature xylitol production through simultaneous co-utilization of glucose and xylose by engineered Kluyveromyces marxianus. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
13
|
Zhang B, Ren L, Wang H, Xu D, Zeng X, Li F. Glycerol uptake and synthesis systems contribute to the osmotic tolerance of Kluyveromyces marxianus. Enzyme Microb Technol 2020; 140:109641. [PMID: 32912693 DOI: 10.1016/j.enzmictec.2020.109641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/16/2022]
Abstract
The accumulation of glycerol is essential for yeast viability upon hyperosmotic stress. In this study, the STL1 homolog KmSTL1, encoding a putative glycerol transporter contributing to cell osmo-tolerance, was identified in Kluyveromyces marxianus NBRC1777. We constructed the KmSTL1, KmGPD1, and KmFPS1 single-deletion mutants and the KmSTL1/KmGPD1 and KmSTL1/KmFPS1 double-deletion mutants of K. marxianus. Deletion of KmSTL1 or KmGPD1 resulted in K. marxianus cell sensitization to hyperosmotic stress, whereas deletion of KmFPS1 improved stress tolerance. The expression of KmSTL1 was osmotically induced, whereas that of KmFPS1 was osmotically inhibited. The expression of KmGPD1 was constitutive and continuous in the ΔKmSTL1 mutant strain but inhibited in the ΔKmFPS1 mutant strain due to feedback suppression by glycerol. In summary, our findings indicated that K. marxianus would increase glycerol synthesis by increasing GPD1 expression, increase glycerol import from the extracellular environment by increasing STL1 expression, and reduce glycerol efflux by reducing FPS1 expression under hyperosmotic stress.
Collapse
Affiliation(s)
- Biao Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Lili Ren
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Haonan Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Xin Zeng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| |
Collapse
|
14
|
Zhang B, Ren L, Wang Y, Xu D, Zhang S, Wang H, Wang H, Zeng X, Xin B, Li F. Glycerol production through TPI1 defective Kluyveromyces marxianus at high temperature with glucose, fructose, and xylose as feedstock. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Functional analysis of PGI1 and ZWF1 in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 2020; 104:7991-8006. [PMID: 32776206 DOI: 10.1007/s00253-020-10808-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 08/02/2020] [Indexed: 02/08/2023]
Abstract
Glycolysis and the pentose phosphate pathway (PPP) are two basic metabolic pathways that are simultaneously present in yeasts. As the main pathway in most species, the glycolysis provides ATP and NADH for cell metabolism while PPP, as a complementary pathway, supplies NADPH. In this study, the performance of Kluyveromyces marxianus using glycolysis or PPP were studied through the disruption of PGI1 or ZWF1 gene, respectively. K. marxianus using glycolysis as the only pathway showed higher ethanol production ability than that of the Kluyveromyces lactis zwf1Δ mutant; K. marxianus using only PPP showed more robustness than that of Saccharomyces cerevisiae pgi1Δ mutant. Additionally, K. marxianus pgi1Δ strain accumulated much more intracellular NADPH than the wild type strain and co-utilized glucose and xylose more effectively. These findings suggest that phosphoglucose isomerase participates in the regulation of the repression of glucose on xylose utilization in K. marxianus. The NADPH/NADP+ ratio, dependent on the activity of the PPP, regulated the expression of multiple genes related to NADPH metabolism in K. marxianus (including NDE1, NDE2, GLR1, and GDP1). Since K. marxianus is considered a promising host in industrial biotechnology to produce renewable chemicals from plant biomass feedstocks, our research showed the potential of the thermotolerant K. marxianus to produce NADP(H)-dependent chemical synthesis from multiple feedstocks. KEY POINTS: • The function of PGI1 and ZWF1 in K. marxianus has been analyzed in this study. • K. marxianus zwf1Δ strain produced ethanol but with decreased productivity. • K. marxianus pgi1Δ strain grew with glucose and accumulated NADPH. • K. marxianus pgi1Δ strain released glucose repression on xylose utilization.
Collapse
|
16
|
Combination of the CRP mutation and ptsG deletion in Escherichia coli to efficiently synthesize xylitol from corncob hydrolysates. Appl Microbiol Biotechnol 2020; 104:2039-2050. [PMID: 31950219 DOI: 10.1007/s00253-019-10324-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/05/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022]
Abstract
The biotechnology-based production of xylitol has received widespread attention because it can use cheap and renewable lignocellulose as a raw material, thereby decreasing costs and pollution. The simultaneous use of various sugars in lignocellulose hydrolysates is a primary prerequisite for efficient xylitol production. In this study, a ΔptsG and crp* combinatorial strategy was used to generate Escherichia coli W3110 strain IS5-dI, which completely eliminated glucose repression and simultaneously used glucose and xylose. This strain produced 164 g/L xylitol from detoxified corncob hydrolysates during a fed-batch fermentation in a 15-L bioreactor, which was 14.7% higher than the xylitol produced by the starting strain, IS5-d (143 g/L), and the xylitol productivity was 3.04 g/L/h. These results represent the highest xylitol concentration and productivity reported to date for bacteria and hemicellulosic sugars. Additionally, strain IS5-dG, which differs from IS5-dI at CRP amino acid residue 127 (I127G), was tolerant to the toxins in corncob hydrolysates. In a fed-batch fermentation experiment involving a 15-L bioreactor, IS5-dG produced 137 g/L xylitol from non-detoxified corncob hydrolysates, with a productivity of 1.76 g/L/h. On the basis of these results, we believe that IS5-dI and IS5-dG may be useful host strains for the industrial-scale production of xylitol from detoxified or non-detoxified corncob hydrolysates.
Collapse
|
17
|
Nurcholis M, Lertwattanasakul N, Rodrussamee N, Kosaka T, Murata M, Yamada M. Integration of comprehensive data and biotechnological tools for industrial applications of Kluyveromyces marxianus. Appl Microbiol Biotechnol 2019; 104:475-488. [PMID: 31781815 DOI: 10.1007/s00253-019-10224-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 12/17/2022]
Abstract
Among the so-called non-conventional yeasts, Kluyveromyces marxianus has extremely potent traits that are suitable for industrial applications. Indeed, it has been used for the production of various enzymes, chemicals, and macromolecules in addition to utilization of cell biomass as nutritional materials, feed and probiotics. The yeast is expected to be an efficient ethanol producer with advantages over Saccharomyces cerevisiae in terms of high growth rate, thermotolerance and a wide sugar assimilation spectrum. Results of comprehensive analyses of its genome and transcriptome may accelerate studies for applications of the yeast and may further increase its potential by combination with recent biotechnological tools including the CRISPR/Cas9 system. We thus review published studies by merging with information obtained from comprehensive data including genomic and transcriptomic data, which would be useful for future applications of K. marxianus.
Collapse
Affiliation(s)
- Mochamad Nurcholis
- Graduate School of Medicine, Yamaguchi University, Ube, 755-8505, Japan.,Department of Food Science and Technology, Faculty of Agricultural Technology, Brawijaya University, Malang, 65145, Indonesia
| | - Noppon Lertwattanasakul
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Nadchanok Rodrussamee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Tomoyuki Kosaka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.,Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Masayuki Murata
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.,Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Mamoru Yamada
- Graduate School of Medicine, Yamaguchi University, Ube, 755-8505, Japan. .,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan. .,Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan. .,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
18
|
Xu Y, Chi P, Bilal M, Cheng H. Biosynthetic strategies to produce xylitol: an economical venture. Appl Microbiol Biotechnol 2019; 103:5143-5160. [PMID: 31101942 DOI: 10.1007/s00253-019-09881-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 01/04/2023]
Abstract
Xylitol is a natural five-carbon sugar alcohol with potential for use in food and pharmaceutical industries owing to its insulin-independent metabolic regulation, tooth rehardening, anti-carcinogenic, and anti-inflammatory, as well as osteoporosis and ear infections preventing activities. Chemical and biosynthetic routes using D-xylose, glucose, or biomass hydrolysate as raw materials can produce xylitol. Among these methods, microbial production of xylitol has received significant attention due to its wide substrate availability, easy to operate, and eco-friendly nature, in contrast with high-energy consuming and environmental-polluting chemical method. Though great advances have been made in recent years for the biosynthesis of xylitol from xylose, glucose, and biomass hydrolysate, and the yield and productivity of xylitol are substantially improved by metabolic engineering and optimizing key metabolic pathway parameters, it is still far away from industrial-scale biosynthesis of xylitol. In contrary, the chemical synthesis of xylitol from xylose remains the dominant route. Economic and highly efficient xylitol biosynthetic strategies from an abundantly available raw material (i.e., glucose) by engineered microorganisms are on the hard way to forwarding. However, synthetic biology appears as a novel and promising approach to develop a super yeast strain for industrial production of xylitol from glucose. After a brief overview of chemical-based xylitol production, we critically analyzed and comprehensively summarized the major metabolic strategies used for the enhanced biosynthesis of xylitol in this review. Towards the end, the study is wrapped up with current challenges, concluding remarks, and future prospects for designing an industrial yeast strain for xylitol biosynthesis from glucose.
Collapse
Affiliation(s)
- Yirong Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Chi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
19
|
Park JB, Kim JS, Kweon DH, Kweon DH, Seo JH, Ha SJ. Overexpression of Endogenous Xylose Reductase Enhanced Xylitol Productivity at 40 °C by Thermotolerant Yeast Kluyveromyces marxianus. Appl Biochem Biotechnol 2019; 189:459-470. [DOI: 10.1007/s12010-019-03019-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
|
20
|
Yuan X, Wang J, Lin J, Yang L, Wu M. Efficient production of xylitol by the integration of multiple copies of xylose reductase gene and the deletion of Embden-Meyerhof-Parnas pathway-associated genes to enhance NADPH regeneration in Escherichia coli. J Ind Microbiol Biotechnol 2019; 46:1061-1069. [PMID: 31025135 DOI: 10.1007/s10295-019-02169-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/23/2019] [Indexed: 01/24/2023]
Abstract
Cofactor supply is a rate-limiting step in the bioconversion of xylose to xylitol. Strain WZ04 was first constructed by a novel simultaneous deletion-insertion strategy, replacing ptsG, xylAB and ptsF in wild-type Escherichia coli W3110 with three mutated xylose reductase genes (xr) from Neurospora crassa. Then, the pfkA, pfkB, pgi and/or sthA genes were deleted and replaced by xr to investigate the influence of carbon flux toward the pentose phosphate pathway and/or transhydrogenase activity on NADPH generation. The deletion of pfkA/pfkB significantly improved NADPH supply, but minimally influenced cell growth. The effects of insertion position and copy number of xr were examined by a quantitative real-time PCR and a shake-flask fermentation experiment. In a fed-batch fermentation experiment with a 15-L bioreactor, strain WZ51 produced 131.6 g L-1 xylitol from hemicellulosic hydrolysate (xylitol productivity: 2.09 g L-1 h-1). This study provided a potential approach for industrial-scale production of xylitol from hemicellulosic hydrolysate.
Collapse
Affiliation(s)
- Xinsong Yuan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jiping Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jianping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Mianbin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
21
|
Sakihama Y, Hidese R, Hasunuma T, Kondo A. Increased flux in acetyl-CoA synthetic pathway and TCA cycle of Kluyveromyces marxianus under respiratory conditions. Sci Rep 2019; 9:5319. [PMID: 30926897 PMCID: PMC6440987 DOI: 10.1038/s41598-019-41863-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/14/2019] [Indexed: 11/10/2022] Open
Abstract
Yeasts are extremely useful, not only for fermentation but also for a wide spectrum of fuel and chemical productions. We analyzed the overall metabolic turnover and transcript dynamics in glycolysis and the TCA cycle, revealing the difference in adaptive pyruvate metabolic response between a Crabtree-negative species, Kluyveromyces marxianus, and a Crabtree-positive species, Saccharomyces cerevisiae, during aerobic growth. Pyruvate metabolism was inclined toward ethanol production under aerobic conditions in S. cerevisiae, while increased transcript abundances of the genes involved in ethanol metabolism and those encoding pyruvate dehydrogenase were seen in K. marxianus, indicating the augmentation of acetyl-CoA synthesis. Furthermore, different metabolic turnover in the TCA cycle was observed in the two species: malate and fumarate production in S. cerevisiae was higher than in K. marxianus, irrespective of aeration; however, fluxes of both the reductive and oxidative TCA cycles were enhanced in K. marxianus by aeration, implying both the cycles contribute to efficient electron flux without producing ethanol. Additionally, decreased hexokinase activity under aerobic conditions is expected to be important for maintenance of suitable carbon flux. These findings demonstrate differences in the key metabolic trait of yeasts employing respiration or fermentation, and provide important insight into the metabolic engineering of yeasts.
Collapse
Affiliation(s)
- Yuri Sakihama
- Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Ryota Hidese
- Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
22
|
Hua Y, Wang J, Zhu Y, Zhang B, Kong X, Li W, Wang D, Hong J. Release of glucose repression on xylose utilization in Kluyveromyces marxianus to enhance glucose-xylose co-utilization and xylitol production from corncob hydrolysate. Microb Cell Fact 2019; 18:24. [PMID: 30709398 PMCID: PMC6359873 DOI: 10.1186/s12934-019-1068-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/20/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Lignocellulosic biomass is one of the most abundant materials for biochemicals production. However, efficient co-utilization of glucose and xylose from the lignocellulosic biomass is a challenge due to the glucose repression in microorganisms. Kluyveromyces marxianus is a thermotolerant and efficient xylose-utilizing yeast. To realize the glucose-xylose co-utilization, analyzing the glucose repression of xylose utilization in K. marxianus is necessary. In addition, a glucose-xylose co-utilization platform strain will facilitate the construction of lignocellulosic biomass-utilizing strains. RESULTS Through gene disruption, hexokinase 1 (KmHXK1) and sucrose non-fermenting 1 (KmSNF1) were proved to be involved in the glucose repression of xylose utilization while disruption of the downstream genes of cyclic AMP-protein kinase A (cAMP-PKA) signaling pathway or sucrose non-fermenting 3 (SNF3) glucose-sensing pathway did not alleviate the repression. Furthermore, disruption of the gene of multicopy inhibitor of GAL gene expression (KmMIG1) alleviated the glucose repression on some nonglucose sugars (galactose, sucrose, and raffinose) but still kept glucose repression of xylose utilization. Real-time PCR analysis of the xylose utilization related genes transcription confirmed these results, and besides, revealed that xylitol dehydrogenase gene (KmXYL2) was the critical gene for xylose utilization and stringently regulated by glucose repression. Many other genes of candidate targets interacting with SNF1 were also evaluated by disruption, but none proved to be the key regulator in the pathway of the glucose repression on xylose utilization. Therefore, there may exist other signaling pathway(s) for glucose repression on xylose consumption. Based on these results, a thermotolerant xylose-glucose co-consumption platform strain of K. marxianus was constructed. Then, exogenous xylose reductase and xylose-specific transporter genes were overexpressed in the platform strain to obtain YHY013. The YHY013 could efficiently co-utilized the glucose and xylose from corncob hydrolysate or xylose mother liquor for xylitol production (> 100 g/L) even with inexpensive organic nitrogen sources. CONCLUSIONS The analysis of the glucose repression in K. marxianus laid the foundation for construction of the glucose-xylose co-utilizing platform strain. The efficient xylitol production strain further verified the potential of the platform strain in exploitation of lignocellulosic biomass.
Collapse
Affiliation(s)
- Yan Hua
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, 230026, Anhui, People's Republic of China
| | - Jichao Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yelin Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Biao Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Xin Kong
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, 230026, Anhui, People's Republic of China
| | - Wenjie Li
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Dongmei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, 230026, Anhui, People's Republic of China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China.
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, 230026, Anhui, People's Republic of China.
| |
Collapse
|
23
|
Kong X, Zhang B, Hua Y, Zhu Y, Li W, Wang D, Hong J. Efficient l-lactic acid production from corncob residue using metabolically engineered thermo-tolerant yeast. BIORESOURCE TECHNOLOGY 2019; 273:220-230. [PMID: 30447623 DOI: 10.1016/j.biortech.2018.11.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 05/26/2023]
Abstract
Lactic acid is an important industrial product and the production from inexpensive and renewable lignocellulose can reduce the cost and environmental pollution. In this study, a Kluyveromyces marxianus strain which produced lactic acid efficiently from corncob was constructed. Firstly, two of six different lactate dehydrogenases, which from Plasmodium falciparum and Bacillus subtilis, respectively, were proved to be effective for l-lactic acid production. Then, five single genetic modifications were conducted. The overexpression of Saccharomyces cerevisiae proton-coupled monocarboxylate transporter, K. marxianus 6-phosphofructokinase, or disruption of K. marxianus putative d-lactate dehydrogenase enhanced the l-lactic acid accumulation. Finally, the strain YKX071, obtained via combination of above effective genetic engineering, produced 103.00 g/L l-lactic acid at 42 °C with optical purity of 99.5% from corncob residue via simultaneous saccharification and co-fermentation. This study first developed an effective platform for high optical purity l-lactic acid production from lignocellulose using yeast with inexpensive nitrogen sources.
Collapse
Affiliation(s)
- Xin Kong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Biao Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Yan Hua
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Yelin Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Wenjie Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Dongmei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China.
| |
Collapse
|
24
|
Microbial conversion of xylose into useful bioproducts. Appl Microbiol Biotechnol 2018; 102:9015-9036. [PMID: 30141085 DOI: 10.1007/s00253-018-9294-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Microorganisms can produce a number of different bioproducts from the sugars in plant biomass. One challenge is devising processes that utilize all of the sugars in lignocellulosic hydrolysates. D-xylose is the second most abundant sugar in these hydrolysates. The microbial conversion of D-xylose to ethanol has been studied extensively; only recently, however, has conversion to bioproducts other than ethanol been explored. Moreover, in the case of yeast, D-xylose may provide a better feedstock for the production of bioproducts other than ethanol, because the relevant pathways are not subject to glucose-dependent repression. In this review, we discuss how different microorganisms are being used to produce novel bioproducts from D-xylose. We also discuss how D-xylose could be potentially used instead of glucose for the production of value-added bioproducts.
Collapse
|
25
|
Kallscheuer N. Engineered Microorganisms for the Production of Food Additives Approved by the European Union-A Systematic Analysis. Front Microbiol 2018; 9:1746. [PMID: 30123195 PMCID: PMC6085563 DOI: 10.3389/fmicb.2018.01746] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/12/2018] [Indexed: 01/16/2023] Open
Abstract
In the 1950s, the idea of a single harmonized list of food additives for the European Union arose. Already in 1962, the E-classification system, a robust food safety system intended to protect consumers from possible food-related risks, was introduced. Initially, it was restricted to colorants, but at later stages also preservatives, antioxidants, emulsifiers, stabilizers, thickeners, gelling agents, sweeteners, and flavorings were included. Currently, the list of substances authorized by the European Food Safety Authority (EFSA) (referred to as "E numbers") comprises 316 natural or artificial substances including small organic molecules, metals, salts, but also more complex compounds such as plant extracts and polymers. Low overall concentrations of such compounds in natural producers due to inherent regulation mechanisms or production processes based on non-regenerative carbon sources led to an increasing interest in establishing more reliable and sustainable production platforms. In this context, microorganisms have received significant attention as alternative sources providing access to these compounds. Scientific advancements in the fields of molecular biology and genetic engineering opened the door toward using engineered microorganisms for overproduction of metabolites of their carbon metabolism such as carboxylic acids and amino acids. In addition, entire pathways, e.g., of plant origin, were functionally introduced into microorganisms, which holds the promise to get access to an even broader range of accessible products. The aim of this review article is to give a systematic overview on current efforts during construction and application of microbial cell factories for the production of food additives listed in the EU "E numbers" catalog. The review is focused on metabolic engineering strategies of industrially relevant production hosts also discussing current bottlenecks in the underlying metabolic pathways and how they can be addressed in the future.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
26
|
de Gouvêa PF, Bernardi AV, Gerolamo LE, de Souza Santos E, Riaño-Pachón DM, Uyemura SA, Dinamarco TM. Transcriptome and secretome analysis of Aspergillus fumigatus in the presence of sugarcane bagasse. BMC Genomics 2018; 19:232. [PMID: 29614953 PMCID: PMC5883313 DOI: 10.1186/s12864-018-4627-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sugarcane bagasse has been proposed as a lignocellulosic residue for second-generation ethanol (2G) produced by breaking down biomass into fermentable sugars. The enzymatic cocktails for biomass degradation are mostly produced by fungi, but low cost and high efficiency can consolidate 2G technologies. A. fumigatus plays an important role in plant biomass degradation capabilities and recycling. To gain more insight into the divergence in gene expression during steam-exploded bagasse (SEB) breakdown, this study profiled the transcriptome of A. fumigatus by RNA sequencing to compare transcriptional profiles of A. fumigatus grown on media containing SEB or fructose as the sole carbon source. Secretome analysis was also performed using SDS-PAGE and LC-MS/MS. RESULTS The maximum activities of cellulases (0.032 U mL-1), endo-1,4-β--xylanase (10.82 U mL-1) and endo-1,3-β glucanases (0.77 U mL-1) showed that functional CAZymes (carbohydrate-active enzymes) were secreted in the SEB culture conditions. Correlations between transcriptome and secretome data identified several CAZymes in A. fumigatus. Particular attention was given to CAZymes related to lignocellulose degradation and sugar transporters. Genes encoding glycoside hydrolase classes commonly expressed during the breakdown of cellulose, such as GH-5, 6, 7, 43, 45, and hemicellulose, such as GH-2, 10, 11, 30, 43, were found to be highly expressed in SEB conditions. Lytic polysaccharide monooxygenases (LPMO) classified as auxiliary activity families AA9 (GH61), CE (1, 4, 8, 15, 16), PL (1, 3, 4, 20) and GT (1, 2, 4, 8, 20, 35, 48) were also differentially expressed in this condition. Similarly, the most important enzymes related to biomass degradation, including endoxylanases, xyloglucanases, β-xylosidases, LPMOs, α-arabinofuranosidases, cellobiohydrolases, endoglucanases and β-glucosidases, were also identified in the secretome. CONCLUSIONS This is the first report of a transcriptome and secretome experiment of Aspergillus fumigatus in the degradation of pretreated sugarcane bagasse. The results suggest that this strain employs important strategies for this complex degradation process. It was possible to identify a set of genes and proteins that might be applied in several biotechnology fields. This knowledge can be exploited for the improvement of 2G ethanol production by the rational design of enzymatic cocktails.
Collapse
Affiliation(s)
- Paula Fagundes de Gouvêa
- Faculty of Philosophy, Sciences and Literature of Ribeirão Preto, Chemistry Department, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Aline Vianna Bernardi
- Faculty of Philosophy, Sciences and Literature of Ribeirão Preto, Chemistry Department, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luis Eduardo Gerolamo
- Faculty of Philosophy, Sciences and Literature of Ribeirão Preto, Chemistry Department, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Emerson de Souza Santos
- Faculty of Pharmaceutical Science, Department of Clinical, Toxicological and Bromatological Analysis, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Diego Mauricio Riaño-Pachón
- Brazilian Bioethanol Science and Technology Laboratory, Campinas, São Paulo, Brazil
- Current address: Laboratory of Regulatory Systems Biology, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Sergio Akira Uyemura
- Faculty of Pharmaceutical Science, Department of Clinical, Toxicological and Bromatological Analysis, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Taisa Magnani Dinamarco
- Faculty of Philosophy, Sciences and Literature of Ribeirão Preto, Chemistry Department, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
27
|
Xylose transport in yeast for lignocellulosic ethanol production: Current status. J Biosci Bioeng 2017; 125:259-267. [PMID: 29196106 DOI: 10.1016/j.jbiosc.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/07/2017] [Accepted: 10/10/2017] [Indexed: 01/07/2023]
Abstract
Lignocellulosic ethanol has been considered as an alternative transportation fuel. Utilization of hemicellulosic fraction in lignocelluloses is crucial in economical production of lignocellulosic ethanol. However, this fraction has not efficiently been utilized by traditional yeast Saccharomyces cerevisiae. Genetically modified S. cerevisiae, which can utilize xylose, has several limitations including low ethanol yield, redox imbalance, and undesired metabolite formation similar to native xylose utilizing yeasts. Besides, xylose uptake is a major issue, where sugar transport system plays an important role. These genetically modified and wild-type yeast strains have further been engineered for improved xylose uptake. Various techniques have been employed to facilitate the xylose transportation in these strains. The present review is focused on the sugar transport machineries, mechanisms of xylose transport, limitations and how to deal with xylose transport for xylose assimilation in yeast cells. The recent advances in different techniques to facilitate the xylose transportation have also been discussed.
Collapse
|
28
|
Qi X, Zhang H, Magocha TA, An Y, Yun J, Yang M, Xue Y, Liang S, Sun W, Cao Z. Improved xylitol production by expressing a novel d-arabitol dehydrogenase from isolated Gluconobacter sp. JX-05 and co-biotransformation of whole cells. BIORESOURCE TECHNOLOGY 2017; 235:50-58. [PMID: 28364633 DOI: 10.1016/j.biortech.2017.03.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 05/24/2023]
Abstract
In the present study, a novel ardh gene encoding d-arabitol dehydrogenase (ArDH) was cloned and expressed in Escherichia coli from a new isolated strain of Gluconobacter sp. JX-05. Sequence analysis revealed that ArDH containing a NAD(P)-binding motif and a classical active site motif belongs to the short-chain dehydrogenase family. Subsequently, the optimal pH and temperature, specific activities and kinetic parameter of ArDH were determined. In the co-biotransformation by the whole cells of BL21-ardh and BL21-xdh, 26.1g/L xylitol was produced from 30g/L d-arabitol in 22h with a yield of 0.87g/g. The xylitol production was increased by more than two times as compared with that of Gluconobacter sp. alone, and was improved 10.1% than that of Gluconobacter sp. mixed with BL21-xdh.
Collapse
Affiliation(s)
- Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Huanhuan Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Tinashe Archbold Magocha
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110161, Liaoning, China
| | - Junhua Yun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Miaomiao Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yanbo Xue
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Shuhua Liang
- Nanning Bioclone Biotechnology Co., Ltd, 5 Keyuan Road, Nanning 530001, Guangxi, China
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Zheng Cao
- Department of Chemistry and Biochemistry, University of California, Los Angeles 611 Charles E. Young Dr. E, Los Angeles 90095, CA, USA
| |
Collapse
|
29
|
Pentjuss A, Stalidzans E, Liepins J, Kokina A, Martynova J, Zikmanis P, Mozga I, Scherbaka R, Hartman H, Poolman MG, Fell DA, Vigants A. Model-based biotechnological potential analysis of Kluyveromyces marxianus central metabolism. J Ind Microbiol Biotechnol 2017; 44:1177-1190. [PMID: 28444480 DOI: 10.1007/s10295-017-1946-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/16/2017] [Indexed: 12/11/2022]
Abstract
The non-conventional yeast Kluyveromyces marxianus is an emerging industrial producer for many biotechnological processes. Here, we show the application of a biomass-linked stoichiometric model of central metabolism that is experimentally validated, and mass and charge balanced for assessing the carbon conversion efficiency of wild type and modified K. marxianus. Pairs of substrates (lactose, glucose, inulin, xylose) and products (ethanol, acetate, lactate, glycerol, ethyl acetate, succinate, glutamate, phenylethanol and phenylalanine) are examined by various modelling and optimisation methods. Our model reveals the organism's potential for industrial application and metabolic engineering. Modelling results imply that the aeration regime can be used as a tool to optimise product yield and flux distribution in K. marxianus. Also rebalancing NADH and NADPH utilisation can be used to improve the efficiency of substrate conversion. Xylose is identified as a biotechnologically promising substrate for K. marxianus.
Collapse
Affiliation(s)
- A Pentjuss
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - E Stalidzans
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia.
| | - J Liepins
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - A Kokina
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - J Martynova
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - P Zikmanis
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - I Mozga
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - R Scherbaka
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - H Hartman
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, OX, OX3 0BP, UK
| | - M G Poolman
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, OX, OX3 0BP, UK
| | - D A Fell
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, OX, OX3 0BP, UK
| | - A Vigants
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| |
Collapse
|
30
|
Challenges and prospects of xylitol production with whole cell bio-catalysis: A review. Microbiol Res 2017; 197:9-21. [DOI: 10.1016/j.micres.2016.12.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/09/2016] [Accepted: 12/30/2016] [Indexed: 11/19/2022]
|
31
|
Zhang B, Zhu Y, Zhang J, Wang D, Sun L, Hong J. Engineered Kluyveromyces marxianus for pyruvate production at elevated temperature with simultaneous consumption of xylose and glucose. BIORESOURCE TECHNOLOGY 2017; 224:553-562. [PMID: 27955868 DOI: 10.1016/j.biortech.2016.11.110] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Xylose and glucose from lignocellulose are sustainable sources for production of pyruvate, which is the starting material for the synthesis of many drugs and agrochemicals. In this study, the pyruvate decarboxylase gene (KmPDC1) and glycerol-3-phosphate dehydrogenase gene (KmGPD1) of Kluyveromyces marxianus YZJ051 were disrupted to prevent ethanol and glycerol accumulation. The deficient growth of PDC disruption was rescued by overexpressing mutant KmMTH1-ΔT. Then pentose phosphate pathway and xylitol dehydrogenase SsXYL2-ARS genes were overexpressed to obtain strain YZB053 which produced pyruvate with xylose other than glucose. It produced 24.62g/L pyruvate from 80g/L xylose with productivity of 0.51g/L/h at 42°C. Then, xylose-specific transporter ScGAL2-N376F was overexpressed to obtain strain YZB058, which simultaneously consumed 40g/L glucose and 20g/L xylose and produced 29.21g/L pyruvate with productivity of 0.81g/L/h at 42°C. Therefore, a platform for pyruvate production from glucose and xylose at elevated temperature was developed.
Collapse
Affiliation(s)
- Biao Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Yelin Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Jia Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, PR China
| | - Dongmei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Lianhong Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China.
| |
Collapse
|
32
|
Zhang B, Zhang J, Wang D, Han R, Ding R, Gao X, Sun L, Hong J. Simultaneous fermentation of glucose and xylose at elevated temperatures co-produces ethanol and xylitol through overexpression of a xylose-specific transporter in engineered Kluyveromyces marxianus. BIORESOURCE TECHNOLOGY 2016; 216:227-37. [PMID: 27240239 DOI: 10.1016/j.biortech.2016.05.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 05/08/2023]
Abstract
Engineered Kluyveromyces marxianus strains were constructed through over-expression of various transporters for simultaneous co-fermentation of glucose and xylose. The glucose was converted into ethanol, whereas xylose was converted into xylitol which has higher value than ethanol. Over-expressing xylose-specific transporter ScGAL2-N376F mutant enabled yeast to co-ferment glucose and xylose and the co-fermentation ability was obviously improved through increasing ScGAL2-N376F expression. The production of glycerol was blocked and acetate production was reduced by disrupting gene KmGPD1. The obtained K. marxianus YZJ119 utilized 120g/L glucose and 60g/L xylose simultaneously and produced 50.10g/L ethanol and 55.88g/L xylitol at 42°C. The yield of xylitol from consumed xylose was over 98% (0.99g/g). Through simultaneous saccharification and co-fermentation at 42°C, YZJ119 produced a maximal concentration of 44.58g/L ethanol and 32.03g/L xylitol or 29.82g/L ethanol and 31.72g/L xylitol, respectively, from detoxified or non-detoxified diluted acid pretreated corncob.
Collapse
Affiliation(s)
- Biao Zhang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Jia Zhang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Dongmei Wang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Ruixiang Han
- Institutes of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Rui Ding
- Institutes of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Xiaolian Gao
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Department of Biology and Biochemistry, University of Houston, Houston, TX 77004-5001, USA
| | - Lianhong Sun
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Jiong Hong
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China.
| |
Collapse
|
33
|
|
34
|
Spohner SC, Schaum V, Quitmann H, Czermak P. Kluyveromyces lactis: An emerging tool in biotechnology. J Biotechnol 2016; 222:104-16. [DOI: 10.1016/j.jbiotec.2016.02.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 02/04/2023]
|
35
|
Pratter SM, Eixelsberger T, Nidetzky B. Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form. BIORESOURCE TECHNOLOGY 2015; 198:732-738. [PMID: 26452180 DOI: 10.1016/j.biortech.2015.09.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
A novel Saccharomyces cerevisiae whole-cell biocatalyst for xylitol production based on Candida tenuis xylose reductase (CtXR) is presented. Six recombinant strains expressing wild-type CtXR or an NADH-specific mutant were constructed and evaluated regarding effects of expression mode, promoter strength, biocatalyst concentration and medium composition. Intracellular XR activities ranged from 0.09 U mgProt(-1) to 1.05 U mgProt(-1) but did not correlate with the strains' xylitol productivities, indicating that other factors limited xylose conversion in the high-activity strains. The CtXR mutant decreased the biocatalyst's performance, suggesting use of the NADPH-preferring wild-type enzyme when (semi-)aerobic conditions are applied. In a bioreactor process, the best-performing strain converted 40 g L(-1) xylose with an initial productivity of 1.16 g L(-1)h(-1) and a xylitol yield of 100%. The obtained results underline the potential of CtXR wild-type for xylose reduction and point out parameters to improve "green" xylitol production.
Collapse
Affiliation(s)
- S M Pratter
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - T Eixelsberger
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - B Nidetzky
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria.
| |
Collapse
|
36
|
Zhang B, Zhang J, Wang D, Gao X, Sun L, Hong J. Data for rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway. Data Brief 2015; 5:179-86. [PMID: 26543879 PMCID: PMC4589838 DOI: 10.1016/j.dib.2015.08.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 01/02/2023] Open
Abstract
A thermo-tolerant NADP(H)-preferring xylose pathway was constructed in Kluyveromyces marxianus for ethanol production with xylose at elevated temperatures (Zhang et al., 2015 [25]). Ethanol production yield and efficiency was enhanced by pathway engineering in the engineered strains. The constructed strain, YZJ088, has the ability to co-ferment glucose and xylose for ethanol and xylitol production, which is a critical step toward enabling economic biofuel production from lignocellulosic biomass. This study contains the fermentation results of strains using the metabolic pathway engineering procedure. The ethanol-producing abilities of various yeast strains under various conditions were compared, and strain YZJ088 showed the highest production and fastest productivity at elevated temperatures. The YZJ088 xylose fermentation results indicate that it fermented well with xylose at either low or high inoculum size. When fermented with an initial cell concentration of OD600=15 at 37 °C, YZJ088 consumed 200 g/L xylose and produced 60.07 g/L ethanol; when the initial cell concentration was OD600=1 at 37 °C, YZJ088 consumed 98.96 g/L xylose and produced 33.55 g/L ethanol with a productivity of 0.47 g/L/h. When fermented with 100 g/L xylose at 42 °C, YZJ088 produced 30.99 g/L ethanol with a productivity of 0.65 g/L/h, which was higher than that produced at 37 °C.
Collapse
Affiliation(s)
- Biao Zhang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Jia Zhang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Dongmei Wang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Xiaolian Gao
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004-5001, USA
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Lianhong Sun
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Jiong Hong
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
- Corresponding author at: School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China. Tel.: +86 551 63600705; fax: +86 551 63601443.School of Life Science, University of Science and Technology of ChinaHefeiAnhui230027PR China
| |
Collapse
|
37
|
Zhang J, Zhang B, Wang D, Gao X, Sun L, Hong J. Rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway. Metab Eng 2015; 31:140-52. [PMID: 26253204 DOI: 10.1016/j.ymben.2015.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/22/2015] [Accepted: 07/27/2015] [Indexed: 11/17/2022]
Abstract
Conversion of xylose to ethanol by yeasts is a challenge because of the redox imbalances under oxygen-limited conditions. The thermotolerant yeast Kluyveromyces marxianus grows well with xylose as a carbon source at elevated temperatures, but its xylose fermentation ability is weak. In this study, a combination of the NADPH-preferring xylose reductase (XR) from Neurospora crassa and the NADP(+)-preferring xylitol dehydrogenase (XDH) mutant from Scheffersomyces stipitis (Pichia stipitis) was constructed. The xylose fermentation ability and redox balance of the recombinant strains were improved significantly by over-expression of several downstream genes. The intracellular concentrations of coenzymes and the reduced coenzyme/oxidized coenzyme ratio increased significantly in these metabolic strains. The byproducts, such as glycerol and acetic acid, were significantly reduced by the disruption of glycerol-3-phosphate dehydrogenase (GPD1). The resulting engineered K. marxianus YZJ088 strain produced 44.95 g/L ethanol from 118.39 g/L xylose with a productivity of 2.49 g/L/h at 42 °C. Additionally, YZJ088 realized glucose and xylose co-fermentation and produced 51.43 g/L ethanol from a mixture of 103.97 g/L xylose and 40.96 g/L glucose with a productivity of 2.14 g/L/h at 42 °C. These promising results validate the YZJ088 strain as an excellent producer of ethanol from xylose through the synthetic xylose assimilation pathway.
Collapse
Affiliation(s)
- Jia Zhang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Biao Zhang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Dongmei Wang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Xiaolian Gao
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Department of Biology and Biochemistry, University of Houston, Houston, TX 77004-5001, USA; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Lianhong Sun
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Jiong Hong
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China.
| |
Collapse
|