1
|
Qiu Y, Lei P, Wang R, Sun L, Luo Z, Li S, Xu H. Kluyveromyces as promising yeast cell factories for industrial bioproduction: From bio-functional design to applications. Biotechnol Adv 2023; 64:108125. [PMID: 36870581 DOI: 10.1016/j.biotechadv.2023.108125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
As the two most widely used Kluyveromyces yeast, Kluyveromyces marxianus and K. lactis have gained increasing attention as microbial chassis in biocatalysts, biomanufacturing and the utilization of low-cost raw materials owing to their high suitability to these applications. However, due to slow progress in the development of molecular genetic manipulation tools and synthetic biology strategies, Kluyveromyces yeast cell factories as biological manufacturing platforms have not been fully developed. In this review, we provide a comprehensive overview of the attractive characteristics and applications of Kluyveromyces cell factories, with special emphasis on the development of molecular genetic manipulation tools and systems engineering strategies for synthetic biology. In addition, future avenues in the development of Kluyveromyces cell factories for the utilization of simple carbon compounds as substrates, the dynamic regulation of metabolic pathways, and for rapid directed evolution of robust strains are proposed. We expect that more synthetic systems, synthetic biology tools and metabolic engineering strategies will adapt to and optimize for Kluyveromyces cell factories to achieve green biofabrication of multiple products with higher efficiency.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhengshan Luo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
2
|
Leonel LV, Arruda PV, Chandel AK, Felipe MGA, Sene L. Kluyveromyces marxianus: a potential biocatalyst of renewable chemicals and lignocellulosic ethanol production. Crit Rev Biotechnol 2021; 41:1131-1152. [PMID: 33938342 DOI: 10.1080/07388551.2021.1917505] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Kluyveromyces marxianus is an ascomycetous yeast which has shown promising results in cellulosic ethanol and renewable chemicals production. It can survive on a variety of carbon sources under industrially favorable conditions due to its fast growth rate, thermotolerance, and acid tolerance. K. marxianus, is generally regarded as a safe (GRAS) microorganism, is widely recognized as a powerhouse for the production of heterologous proteins and is accepted by the US Food and Drug Administration (USFDA) for its pharmaceutical and food applications. Since lignocellulosic hydrolysates are comprised of diverse monomeric sugars, oligosaccharides and potential metabolism inhibiting compounds, this microorganism can play a pivotal role as it can grow on lignocellulosic hydrolysates coping with vegetal cell wall derived inhibitors. Furthermore, advancements in synthetic biology, for example CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats with Cas9)-mediated genome editing, will enable development of an engineered yeast for the production of biochemicals and biopharmaceuticals having a myriad of industrial applications. Genetic engineering companies such as Cargill, Ginkgo Bioworks, DuPont, Global Yeast, Genomatica, and several others are actively working to develop designer yeasts. Given the important traits and properties of K. marxianus, these companies may find it to be a suitable biocatalyst for renewable chemicals and fuel production on the large scale. This paper reviews the recent progress made with K. marxianus biotechnology for sustainable production of ethanol, and other products utilizing lignocellulosic sugars.
Collapse
Affiliation(s)
- L V Leonel
- Center of Exact and Technological Sciences - CCET, State University of West Paraná, Cascavel, Brazil
| | - P V Arruda
- Department of Bioprocess Engineering and Biotechnology - COEBB/TD, Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | - A K Chandel
- Department of Biotechnology, School of Engineering of Lorena - EEL, University of São Paulo, Lorena, Brazil
| | - M G A Felipe
- Department of Biotechnology, School of Engineering of Lorena - EEL, University of São Paulo, Lorena, Brazil
| | - L Sene
- Center of Exact and Technological Sciences - CCET, State University of West Paraná, Cascavel, Brazil
| |
Collapse
|
3
|
Increased Revenue with High Value-Added Products from Cashew Apple (Anacardium occidentale L.)—Addressing Global Challenges. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02623-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
Pinheiro ÁDT, Barros EM, Rocha LA, Ponte VMDR, de Macedo AC, Rocha MVP, Gonçalves LRB. Optimization and scale-up of ethanol production by a flocculent yeast using cashew apple juice as feedstock. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1007/s43153-020-00068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Zhang J, Kong C, Yang M, Zang L. Comparison of Calcium Oxide and Calcium Peroxide Pretreatments of Wheat Straw for Improving Biohydrogen Production. ACS OMEGA 2020; 5:9151-9161. [PMID: 32363267 PMCID: PMC7191593 DOI: 10.1021/acsomega.9b04368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Wheat straw was pretreated with either CaO2 or CaO to improve biohydrogen production. Both CaO and CaO2 pretreatments improved the biodegradability of the wheat straw. CaO pretreatment raised the H2 yield by between 48.8 and 163.9% at CaO contents ranging from 2 to 4%. The highest H2 yield [144 mL/g total solid (TS)] was obtained at 121 °C and 6% CaO. In addition, the highest H2 yield from wheat straw pretreated at the same temperature and dosage of CaO2 was 71.8 mL/g TS, which was higher than that of the control group (43.2 mL/g TS), with hot water (121 °C) treatment. Considering pretreatment costs and H2 production potential, CaO was a better pretreatment agent than CaO2.
Collapse
|
6
|
de Araújo Padilha CE, da Costa Nogueira C, Oliveira Filho MA, de Santana Souza DF, de Oliveira JA, dos Santos ES. Valorization of cashew apple bagasse using acetic acid pretreatment: Production of cellulosic ethanol and lignin for their use as sunscreen ingredients. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Zhang W, Wang JJ, Gao Y, Zhang LL. Bacterial cellulose synthesized with apple pomace enhanced by ionic liquid pretreatment. Prep Biochem Biotechnol 2019; 50:330-340. [DOI: 10.1080/10826068.2019.1692222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Wen Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Jian-Jun Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Yuan Gao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Le-Le Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| |
Collapse
|
8
|
Cashew apple bagasse as new feedstock for the hydrogen production using dark fermentation process. J Biotechnol 2018; 286:71-78. [DOI: 10.1016/j.jbiotec.2018.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/22/2018] [Accepted: 09/07/2018] [Indexed: 11/19/2022]
|
9
|
Yang Y, Yang J, Cao J, Wang Z. Pretreatment with concurrent UV photocatalysis and alkaline H 2O 2 enhanced the enzymatic hydrolysis of sisal waste. BIORESOURCE TECHNOLOGY 2018; 267:517-523. [PMID: 30048927 DOI: 10.1016/j.biortech.2018.07.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
This work studied a concurrent UV photocatalysis and alkaline H2O2 pretreatment (UHP) to enhance the subsequent enzymatic hydrolysis of sisal waste in comparison with alkaline H2O2 pretreatment (AHP). An optimal condition was identified for UHP at H2O2 charge 0.1 g/g dried sisal waste, pH 10.0, and UV radiation for 6 h. Under this condition, UHP led to a delignification rate of 76.6%, a conversion to reducing sugar at 71.2%, and a conversion to glucose at 91.6%, respectively. XRD, FT-IR and SEM analysis showed an increase in crystalline degree and significant changes in the structure of sisal during UHP. The current study implicates that UHP is more efficient than AHP in pretreating sisal waste, with reduced H2O2 charge, shortened pretreatment time, and enhanced enzymatic digestibility.
Collapse
Affiliation(s)
- Yishuo Yang
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, PR China
| | - Jian Yang
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Jing Cao
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, PR China
| | - Zhaomei Wang
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, PR China.
| |
Collapse
|
10
|
Terán Hilares R, Ramos L, da Silva SS, Dragone G, Mussatto SI, Santos JCD. Hydrodynamic cavitation as a strategy to enhance the efficiency of lignocellulosic biomass pretreatment. Crit Rev Biotechnol 2017; 38:483-493. [PMID: 29233030 DOI: 10.1080/07388551.2017.1369932] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hydrodynamic cavitation (HC) is a process technology with potential for application in different areas including environmental, food processing, and biofuels production. Although HC is an undesirable phenomenon for hydraulic equipment, the net energy released during this process is enough to accelerate certain chemical reactions. The application of cavitation energy to enhance the efficiency of lignocellulosic biomass pretreatment is an interesting strategy proposed for integration in biorefineries for the production of bio-based products. Moreover, the use of an HC-assisted process was demonstrated as an attractive alternative when compared to other conventional pretreatment technologies. This is not only due to high pretreatment efficiency resulting in high enzymatic digestibility of carbohydrate fraction, but also, by its high energy efficiency, simple configuration, and construction of systems, besides the possibility of using on the large scale. This paper gives an overview regarding HC technology and its potential for application on the pretreatment of lignocellulosic biomass. The parameters affecting this process and the perspectives for future developments in this area are also presented and discussed.
Collapse
Affiliation(s)
- Ruly Terán Hilares
- a Department of Biotechnology, Engineering School of Lorena , University of São Paulo , Lorena , Brazil
| | - Lucas Ramos
- a Department of Biotechnology, Engineering School of Lorena , University of São Paulo , Lorena , Brazil
| | - Silvio Silvério da Silva
- a Department of Biotechnology, Engineering School of Lorena , University of São Paulo , Lorena , Brazil
| | - Giuliano Dragone
- b National Food Institute , Technical University of Denmark , Kongens Lyngby , Denmark
| | - Solange I Mussatto
- c Novo Nordisk Foundation Center for Biosustainability , Technical University of Denmark , Kongens Lyngby , Denmark
| | - Júlio César Dos Santos
- a Department of Biotechnology, Engineering School of Lorena , University of São Paulo , Lorena , Brazil
| |
Collapse
|
11
|
Sorokina KN, Taran OP, Medvedeva TB, Samoylova YV, Piligaev AV, Parmon VN. Cellulose Biorefinery Based on a Combined Catalytic and Biotechnological Approach for Production of 5-HMF and Ethanol. CHEMSUSCHEM 2017; 10:562-574. [PMID: 27995758 DOI: 10.1002/cssc.201601244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/24/2016] [Indexed: 06/06/2023]
Abstract
In this study, a combination of catalytic and biotechnological processes was proposed for the first time for application in a cellulose biorefinery for the production of 5-hydroxymethylfurfural (5-HMF) and bioethanol. Hydrolytic dehydration of the mechanically activated microcrystalline cellulose over a carbon-based mesoporous Sibunt-4 catalyst resulted in moderate yields of glucose and 5-HMF (21.1-25.1 and 6.6-9.4 %). 5-HMF was extracted from the resulting mixture with isobutanol and subjected to ethanol fermentation. A number of yeast strains were isolated that also revealed high thermotolerance (up to 50 °C) and resistance to inhibitors found in the hydrolysates. The strains Kluyveromyces marxianus C1 and Ogataea polymorpha CBS4732 were capable of producing ethanol from processed catalytic hydrolysates of cellulose at 42 °C, with yields of 72.0±5.7 and 75.2±4.3 % from the maximum theoretical yield of ethanol, respectively.
Collapse
Affiliation(s)
- Ksenia N Sorokina
- Boreskov Institute of Catalysis (BIC), 630090, Novosibirsk, Lavrentieva ave. 5, Russian Federation
- Novosibirsk State University (NSU), 630090, Novosibirsk, Pirogova str. 2, Russian Federation
| | - Oxana P Taran
- Boreskov Institute of Catalysis (BIC), 630090, Novosibirsk, Lavrentieva ave. 5, Russian Federation
- Novosibirsk State Technical University (NSTU), 630037, Novosibirsk, Prosp. Karla Marksa, 20, Russian Federation
| | - Tatiana B Medvedeva
- Boreskov Institute of Catalysis (BIC), 630090, Novosibirsk, Lavrentieva ave. 5, Russian Federation
| | - Yuliya V Samoylova
- Boreskov Institute of Catalysis (BIC), 630090, Novosibirsk, Lavrentieva ave. 5, Russian Federation
| | - Alexandr V Piligaev
- Boreskov Institute of Catalysis (BIC), 630090, Novosibirsk, Lavrentieva ave. 5, Russian Federation
| | - Valentin N Parmon
- Boreskov Institute of Catalysis (BIC), 630090, Novosibirsk, Lavrentieva ave. 5, Russian Federation
- Novosibirsk State University (NSU), 630090, Novosibirsk, Pirogova str. 2, Russian Federation
| |
Collapse
|
12
|
Reis CLB, Silva LMAE, Rodrigues THS, Félix AKN, Santiago-Aguiar RSD, Canuto KM, Rocha MVP. Pretreatment of cashew apple bagasse using protic ionic liquids: Enhanced enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2017; 224:694-701. [PMID: 27864129 DOI: 10.1016/j.biortech.2016.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
To enhance the enzymatic digestibility of cashew apple bagasse (CAB) feedstock in order to produce sugar fermentation-derived bioproducts, the CAB was subjected to three different pretreatments with the ionic liquid 2-hydroxyl-ethylammonium acetate (2-HEAA) and characterized by FTIR, NMR and chemical methods. All conditions were able to delignify CAB, however the best lignin removal (95.8%) was achieved through the method performed with 8.7% w/w of CAB/2-HEAA ratio at 130°C for 24h. Although the cellulose crystallinity has been increased in CAB treated with the ionic liquid, but this fact did not influence its digestibility. Nevertheless, the pretreatment with 2-HEAA enhanced significantly the cellulose digestibility, increasing the glucose yield from 48 to 747.72mgglucose/gCAB. Furthermore, 2-HEAA pretreatment was efficient even with reused ionic liquid, obtaining high glucose concentration.
Collapse
Affiliation(s)
- Carla Luzia Borges Reis
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza, CE, Brazil
| | | | | | - Anne Kamilly Nogueira Félix
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza, CE, Brazil
| | | | - Kirley Marques Canuto
- Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita, 2270 - Pici, CEP 60511-110 Fortaleza, CE, Brazil
| | - Maria Valderez Ponte Rocha
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza, CE, Brazil.
| |
Collapse
|
13
|
Tang S, Liu R, Sun FF, Dong C, Wang R, Gao Z, Zhang Z, Xiao Z, Li C, Li H. Bioprocessing of tea oil fruit hull with acetic acid organosolv pretreatment in combination with alkaline H 2O 2. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:86. [PMID: 28405217 PMCID: PMC5385081 DOI: 10.1186/s13068-017-0777-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/05/2017] [Indexed: 05/11/2023]
Abstract
BACKGROUND As a natural renewable biomass, the tea oil fruit hull (TOFH) mainly consists of lignocellulose, together with some bioactive substances. Our earlier work constructed a two-stage solvent-based process, including one aqueous ethanol organosolv extraction and an atmospheric glycerol organosolv (AGO) pretreatment, for bioprocessing of the TOFH into diverse bioproducts. However, the AGO pretreatment is not as selective as expected in removing the lignin from TOFH, resulting in the limited delignification and simultaneously high cellulose loss. RESULTS In this study, acetic acid organosolv (AAO) pretreatment was optimized with experimental design to fractionate the TOFH selectively. Alkaline hydrogen peroxide (AHP) pretreatment was used for further delignification. Results indicate that the AAO-AHP pretreatment had an extremely good selectivity at component fractionation, resulting in 92% delignification and 88% hemicellulose removal, with 87% cellulose retention. The pretreated substrate presented a remarkable enzymatic hydrolysis of 85% for 48 h at a low cellulase loading of 3 FPU/g dry mass. The hydrolyzability was correlated with the composition and structure of substrates by using scanning electron microscopy, confocal laser scanning microscopy, and X-ray diffraction. CONCLUSION The mild AAO-AHP pretreatment is an environmentally benign and advantageous scheme for biorefinery of the agroforestry biomass into value-added bioproducts.
Collapse
Affiliation(s)
- Song Tang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Rukuan Liu
- National Engineering Research Center for Oil-tea Camellia, Hunan Academy of Forestry, Changsha, 410004 China
| | - Fubao Fuelbiol Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Chunying Dong
- National Engineering Research Center for Oil-tea Camellia, Hunan Academy of Forestry, Changsha, 410004 China
| | - Rui Wang
- National Engineering Research Center for Oil-tea Camellia, Hunan Academy of Forestry, Changsha, 410004 China
| | - Zhongyuan Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Zhanying Zhang
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4001 Australia
| | - Zhihong Xiao
- National Engineering Research Center for Oil-tea Camellia, Hunan Academy of Forestry, Changsha, 410004 China
| | - Changzhu Li
- National Engineering Research Center for Oil-tea Camellia, Hunan Academy of Forestry, Changsha, 410004 China
| | - Hui Li
- National Engineering Research Center for Oil-tea Camellia, Hunan Academy of Forestry, Changsha, 410004 China
| |
Collapse
|
14
|
Li K, Qin JC, Liu CG, Bai FW. Optimization of pretreatment, enzymatic hydrolysis and fermentation for more efficient ethanol production by Jerusalem artichoke stalk. BIORESOURCE TECHNOLOGY 2016; 221:188-194. [PMID: 27639238 DOI: 10.1016/j.biortech.2016.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Jerusalem artichoke (JA) is a potential energy crop for biorefinery due to its unique agronomic traits such as resistance to environmental stresses and high biomass yield in marginal lands. Although JA tubers have been explored for inulin extraction and biofuels production, there is little concern on its stalk (JAS). In this article, the pretreatment of JAS by alkaline hydrogen peroxide was optimized using the response surface methodology to improve sugars yield and reduce chemicals usage. Scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis were applied to characterize the structures of the pretreated JAS to evaluate the effectiveness of the pretreatment. Furthermore, the feeding of the pretreated JAS and cellulase was performed for high solid uploading (up to 30%) to increase ethanol titer, and simultaneous saccharification and fermentation with 55.6g/L ethanol produced, 36.5% more than that produced through separate hydrolysis and fermentation, was validated to be more efficient.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jin-Cheng Qin
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116023, China.
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116023, China.
| |
Collapse
|
15
|
Keshav PK, Naseeruddin S, Rao LV. Improved enzymatic saccharification of steam exploded cotton stalk using alkaline extraction and fermentation of cellulosic sugars into ethanol. BIORESOURCE TECHNOLOGY 2016; 214:363-370. [PMID: 27155264 DOI: 10.1016/j.biortech.2016.04.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/22/2016] [Accepted: 04/24/2016] [Indexed: 06/05/2023]
Abstract
Cotton stalk, a widely available and cheap agricultural residue lacking economic alternatives, was subjected to steam explosion in the range 170-200°C for 5min. Steam explosion at 200°C and 5min led to significant hemicellulose solubilization (71.90±0.10%). Alkaline extraction of steam exploded cotton stalk (SECOH) using 3% NaOH at room temperature for 6h led to 85.07±1.43% lignin removal with complete hemicellulose solubilization. Besides, this combined pretreatment allowed a high recovery of the cellulosic fraction from the biomass. Enzymatic saccharification was studied between steam exploded cotton stalk (SECS) and SECOH using different cellulase loadings. SECOH gave a maximum of 785.30±8.28mg/g reducing sugars with saccharification efficiency of 82.13±0.72%. Subsequently, fermentation of SECOH hydrolysate containing sugars (68.20±1.16g/L) with Saccharomyces cerevisiae produced 23.17±0.84g/L ethanol with 0.44g/g yield.
Collapse
Affiliation(s)
- Praveen K Keshav
- Department of Microbiology, Osmania University, Hyderabad 500 007, India
| | - Shaik Naseeruddin
- Department of Microbiology, Osmania University, Hyderabad 500 007, India
| | - L Venkateswar Rao
- Department of Microbiology, Osmania University, Hyderabad 500 007, India.
| |
Collapse
|
16
|
Ma K, Ruan Z, Shui Z, Wang Y, Hu G, He M. Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis. BIORESOURCE TECHNOLOGY 2016; 203:295-302. [PMID: 26744803 DOI: 10.1016/j.biortech.2015.12.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 05/04/2023]
Abstract
The aim of present study was to develop a process for open ethanol fermentation from food waste using an acid-tolerant mutant of Zymomonas mobilis (ZMA7-2). The mutant showed strong tolerance to acid condition of food waste hydrolysate and high ethanol production performance. By optimizing fermentation parameters, ethanol fermentation with initial glucose concentration of 200 g/L, pH value around 4.0, inoculum size of 10% and without nutrient addition was considered as best conditions. Moreover, the potential of bench scales fermentation and cell reusability was also examined. The fermentation in bench scales (44 h) was faster than flask scale (48 h), and the maximum ethanol concentration and ethanol yield (99.78 g/L, 0.50 g/g) higher than that of flask scale (98.31 g/L, 0.49 g/g). In addition, the stable cell growth and ethanol production profile in five cycles successive fermentation was observed, indicating the mutant was suitable for industrial ethanol production.
Collapse
Affiliation(s)
- Kedong Ma
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
| | - Zhiyong Ruan
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Zongxia Shui
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Yanwei Wang
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Guoquan Hu
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China.
| |
Collapse
|
17
|
Wang Q, Hu J, Shen F, Mei Z, Yang G, Zhang Y, Hu Y, Zhang J, Deng S. Pretreating wheat straw by the concentrated phosphoric acid plus hydrogen peroxide (PHP): Investigations on pretreatment conditions and structure changes. BIORESOURCE TECHNOLOGY 2016; 199:245-257. [PMID: 26264398 DOI: 10.1016/j.biortech.2015.07.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 05/25/2023]
Abstract
Wheat straw was pretreated by PHP (the concentrated H3PO4 plus H2O2) to clarify effects of temperature, time and H3PO4 proportion on hemicellulose removal, delignification, cellulose recovery and enzymatic digestibility. Overall, hemicellulose removal was intensified by PHP comparing to the concentrated H3PO4. Moreover, efficient delignification specially happened in PHP pretreatment. Hemicellulose removal and delignification by PHP positively responded to temperature and time. Increasing H3PO4 proportion in PHP can promote hemicellulose removal, however, decrease the delignification. Maximum hemicellulose removal and delignification were achieved at 100% and 83.7% by PHP. Enzymatic digestibility of PHP-pretreated wheat straw was greatly improved by increasing temperature, time and H3PO4 proportion, and complete hydrolysis can be achieved consequently. As temperature of 30-40°C, time of 2.0 h and H3PO4 proportion of 60% were employed, more than 92% cellulose was retained in the pretreated wheat straw, and 29.1-32.6g glucose can be harvested from 100g wheat straw.
Collapse
Affiliation(s)
- Qing Wang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jinguang Hu
- Forest Products Biotechnology, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, BC, Canada
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Zili Mei
- Biogas Institute of Ministry of Agriculture, Chengdu, Sichuan 610041, PR China
| | - Gang Yang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanzong Zhang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yaodong Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jing Zhang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shihuai Deng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
18
|
Rodrigues THS, de Barros EM, de Sá Brígido J, da Silva WM, Rocha MVP, Gonçalves LRB. The Bioconversion of Pretreated Cashew Apple Bagasse into Ethanol by SHF and SSF Processes. Appl Biochem Biotechnol 2015; 178:1167-83. [DOI: 10.1007/s12010-015-1936-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/24/2015] [Indexed: 11/30/2022]
|
19
|
Wang H, Kobayashi S, Mochidzuki K. Effect of non-enzymatic proteins on enzymatic hydrolysis and simultaneous saccharification and fermentation of different lignocellulosic materials. BIORESOURCE TECHNOLOGY 2015; 190:373-380. [PMID: 25974351 DOI: 10.1016/j.biortech.2015.04.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 05/28/2023]
Abstract
Non-enzymatic proteins were added during hydrolysis of cellulose and simultaneous saccharification and fermentation (SSF) of different biomass materials. Bovine serum albumin (BSA), a model non-enzymatic protein, increased cellulose and xylose conversion efficiency and also enhanced the ethanol yield during SSF of rice straw subjected to varied pretreatments. Corn steep liquor, yeast extract, and peptone also exerted a similar effect as BSA and enhanced the enzymatic hydrolysis of rice straw. Compared to the glucose yields obtained after enzymatic hydrolysis of rice straw in the absence of additives, the glucose yields after 72h of hydrolysis increased by 12.7%, 13.5%, and 13.7% after addition of the corn steep liquor, yeast extract, and peptone, respectively. This study indicated the use of BSA as an alternative to intensive pretreatment of lignocellulosic materials for enhancing enzymatic digestibility. The utilization of non-enzymatic protein additives is promising for application in glucose and ethanol production from lignocellulosic materials.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Shinichi Kobayashi
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Kazuhiro Mochidzuki
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan.
| |
Collapse
|