1
|
Díaz-Navarrete P, Marileo L, Madrid H, Belezaca-Pinargote C, Dantagnan P. Lipid Production from Native Oleaginous Yeasts Isolated from Southern Chilean Soil Cultivated in Industrial Vinasse Residues. Microorganisms 2023; 11:2516. [PMID: 37894174 PMCID: PMC10609240 DOI: 10.3390/microorganisms11102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
In this research, six strains of oleaginous yeasts native to southern Chile were analyzed for their biotechnological potential in lipid accumulation. For this purpose, the six strains, named PP1, PP4, PR4, PR10, PR27 and PR29, were cultivated in a nitrogen-deficient synthetic mineral medium (SMM). Then, two strains were selected and cultivated in an industrial residual "vinasse", under different conditions of temperature (°C), pH and carbon/nitrogen (C/N) ratio. Finally, under optimized conditions, the growth kinetics and determination of the lipid profile were evaluated. The results of growth in the SMM indicate that yeasts PP1 and PR27 presented biomass concentrations and lipid accumulation percentages of 2.73 and 4.3 g/L of biomass and 36.6% and 45.3% lipids, respectively. Subsequently, for both strains, when cultured in the residual vinasse under optimized environmental conditions, biomass concentrations of 14.8 ± 1.51 g/L (C/N 80) and 15.83 ± 0.57 g/L (C/N 50) and lipid accumulations of 28% and 30% were obtained for PP1 and PR27, respectively. The composition of the triglycerides (TGs), obtained in the culture of the yeasts in a 2 L reactor, presented 64.25% of saturated fatty acids for strain PR27 and 47.18% for strain PP1. The saturated fatty acid compositions in both strains are mainly constituted of fatty acids, myristic C 14:0, heptadecanoic C 17:0, palmitic C 16:0 and stearic C 18:0, and the monounsaturated fatty acids constituted of oleic acid C 18:1 (cis 9) (28-46%), and in smaller amounts, palmitoleic acid and heptadecenoic acid. This work demonstrates that the native yeast strains PP1 and PR27 are promising strains for the production of microbial oils similar to conventional vegetable oils. The potential applications in the energy or food industries, such as aquaculture, are conceivable.
Collapse
Affiliation(s)
- Paola Díaz-Navarrete
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Luis Marileo
- Programa de Doctorado en Ciencias Agropecuarias, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
| | - Hugo Madrid
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Iquique 1101783, Chile;
| | - Carlos Belezaca-Pinargote
- Facultad de Ciencias Agrarias y Forestales, Universidad Técnica Estatal de Quevedo, Quevedo 120501, Ecuador;
| | - Patricio Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| |
Collapse
|
2
|
Gufrana T, Islam H, Khare S, Pandey A, P R. In-situ transesterification of single-cell oil for biodiesel production: a review. Prep Biochem Biotechnol 2022; 53:120-135. [PMID: 35499507 DOI: 10.1080/10826068.2022.2065684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In recent years, biodiesel synthesis and production demands have increased because of its high degradability, cleaner emissions, non-toxicity, and an alternative to petroleum diesel. In this context, Single Cell Oil (SCO) has been identified as an alternative feedstock, having the advantage of accumulating high intracellular lipid. SCO/microbial lipids are potential alternatives for sustainable biodiesel production. The traditional technique for biodiesel production from the oils obtained from microbes generally requires two steps: lipid extraction and transesterification. In-situ transesterification is an innovative and renewable process for biodiesel production. It rules out the need to isolate and refine the feedstock lipid, as it directly uses biomass in a single step, i.e., the pretreated biomass will be subjected to in-situ transesterification in the presence of catalysts. Hence, the production cost can be reduced by eliminating the lipid extraction procedure. The current review focuses on the basic features and advantages of in-situ transesterification of SCO for biodiesel production with the aid of short-chain alcohols along with different acid, base, and enzyme catalysts. In addition, a comparative study was carried out to highlight the merits of in-situ transesterification over conventional transesterification.
Collapse
Affiliation(s)
- Tasneem Gufrana
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Hasibul Islam
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Shivani Khare
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ankita Pandey
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Radha P
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
3
|
Sundaramahalingam MA, Sivashanmugam P, Rajeshbanu J, Ashokkumar M. A review on contemporary approaches in enhancing the innate lipid content of yeast cell. CHEMOSPHERE 2022; 293:133616. [PMID: 35033523 DOI: 10.1016/j.chemosphere.2022.133616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
For the past few decades, industrialization has made a huge environmental hazard to the world with its waste. The approach of waste to wealth in the recent era has made many Eco-economical suggestions for the industries. The valuable products in biorefinery aspects of the eco-economical suggestions include; energy products, high-value drugs and novel materials. Bio-lipids are found to be the major influencing eco-economical products in the process. Production of bio-lipid from microbial sources has paved the way for future research on lipid-bioproducts. The yeast cell is a unique organism with a large unicellular structure capable of accumulating a high amount of lipids. It constitutes 90% of neutral lipids. Various strategies enhance the lipid profile of yeast cells: usage of oleaginous yeast, usage of low cost (or) alternative substrates, developing stress conditions in the growth medium, using genetically modified yeast, altering metabolic pathways of yeast and by using the symbiotic cultures of yeast with other microbes. The metabolic alterations of lipid pathways such as lipid biosynthesis, lipid elongation, lipid accumulation and lipid degradation have been a striking feature of research in lipid-based microbial work. The lipid-bioproducts have also made a strong footprint in the history of alternative energy products. It includes partial acyl glycerol, oleochemicals, phospholipids and biofuels. This report comprises the recent approaches carried out in the yeast cell for enhancing its lipid content. The limitations, challenges and future scope of individual strategies were also highlighted in this article.
Collapse
Affiliation(s)
- M A Sundaramahalingam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - P Sivashanmugam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India.
| | - J Rajeshbanu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | | |
Collapse
|
4
|
Shi Y, Liu X, Jin M, Chen H, Yi F, Wang L, Qiao N, Yu D. Incorporating corn oil refining wastewater improves lipid accumulation and self-settling property of Trichosporon fermentans in corn starch wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Cutaneotrichosporon oleaginosus: A Versatile Whole-Cell Biocatalyst for the Production of Single-Cell Oil from Agro-Industrial Wastes. Catalysts 2021. [DOI: 10.3390/catal11111291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cutaneotrichosporon oleaginosus is an oleaginous yeast with several favourable qualities: It is fast growing, accumulates high amounts of lipids and has a very broad substrate spectrum. Its resistance to hydrolysis by-products makes it a promising biocatalyst for custom tailored microbial oils. C. oleaginosus can accumulate up to 60 wt.% of its biomass as lipids. This species is able to grow by using several compounds as a substrate, such as acetic acid, biodiesel-derived glycerol, N-acetylglucosamine, lignocellulosic hydrolysates, wastepaper and other agro-industrial wastes. This review is focused on state-of-the-art innovative and sustainable biorefinery schemes involving this promising yeast and second- and third-generation biomasses. Moreover, this review offers a comprehensive and updated summary of process strategies, biomass pretreatments and fermentation conditions for enhancing lipid production by C. oleaginosus as a whole-cell biocatalyst. Finally, an overview of the main industrial applications of single-cell oil is reported together with future perspectives.
Collapse
|
6
|
Cao X, Pan Y, Wei W, Yuan T, Wang S, Xiang L, Yuan Y. Single cell oil production by Trichosporon sp.: Effects of fermentation conditions on fatty acid composition and applications in synthesis of structured triacylglycerols. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Schikora-Tamarit MÀ, Marcet-Houben M, Nosek J, Gabaldón T. Shared evolutionary footprints suggest mitochondrial oxidative damage underlies multiple complex I losses in fungi. Open Biol 2021; 11:200362. [PMID: 33906412 PMCID: PMC8080010 DOI: 10.1098/rsob.200362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oxidative phosphorylation is among the most conserved mitochondrial pathways. However, one of the cornerstones of this pathway, the multi-protein complex NADH : ubiquinone oxidoreductase (complex I) has been lost multiple independent times in diverse eukaryotic lineages. The causes and consequences of these convergent losses remain poorly understood. Here, we used a comparative genomics approach to reconstruct evolutionary paths leading to complex I loss and infer possible evolutionary scenarios. By mining available mitochondrial and nuclear genomes, we identified eight independent events of mitochondrial complex I loss across eukaryotes, of which six occurred in fungal lineages. We focused on three recent loss events that affect closely related fungal species, and inferred genomic changes convergently associated with complex I loss. Based on these results, we predict novel complex I functional partners and relate the loss of complex I with the presence of increased mitochondrial antioxidants, higher fermentative capabilities, duplications of alternative dehydrogenases, loss of alternative oxidases and adaptation to antifungal compounds. To explain these findings, we hypothesize that a combination of previously acquired compensatory mechanisms and exposure to environmental triggers of oxidative stress (such as hypoxia and/or toxic chemicals) induced complex I loss in fungi.
Collapse
Affiliation(s)
- Miquel Àngel Schikora-Tamarit
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Marina Marcet-Houben
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
8
|
Qiao N, Fan X, Hu S, Zhang X, Wang L, Du Y, Wang L, Zhang X, Yu D. Bacterial cellulose as an oleaginous yeast cell carrier for soybean oil refinery effluent treatment and pyrolysis oil production. Bioprocess Biosyst Eng 2021; 44:661-671. [PMID: 33211199 DOI: 10.1007/s00449-020-02476-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/03/2020] [Indexed: 11/25/2022]
Abstract
Bacterial cellulose produced from soybean oil refinery effluent is a good immobilization carrier because of the large pores in its fiber network, its high water-holding capacity, and its good biocompatibility. In this study, it was applied to immobilization of oleaginous yeasts for treating soybean oil refinery effluent. The immobilization percentage reached 50%, and the removal of chemical oxygen demand and oil content reached 92.1% and 93.1%, respectively, during dynamic immobilization using a mass percentage of bacterial cellulose of 30% and an immobilization time of 24 h, which were significantly higher than those of free oleaginous yeasts or yeasts immobilized by bacterial cellulose from rich medium. The immobilized oleaginous yeasts facilitated the recovery of the yeasts and effectively treated three batches of soybean oil refinery effluent. The immobilized oleaginous yeasts recovered after soybean oil refinery effluent treatment were pyrolyzed to produce bio-oil, which contributed to more alkanes and a higher calorific value of bio-oil in the pyrolysis products as compared to those of free oleaginous yeasts. As bacterial cellulose used as an oleaginous yeast cell carrier is produced from soybean oil refinery effluent, no waste of immobilization materials is involved and an efficient waste-into-oil bioprocess is developed.
Collapse
Affiliation(s)
- Nan Qiao
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China
| | - Xue Fan
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China
- School of Resources and Environmental Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Shuang Hu
- Sci-Tech Center for Clean Conversion and High-Valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, Jilin, China
| | - Xiuzhen Zhang
- Sci-Tech Center for Clean Conversion and High-Valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, Jilin, China
| | - Ling Wang
- Sci-Tech Center for Clean Conversion and High-Valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, Jilin, China
| | - Yundi Du
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China
| | - Lei Wang
- Sci-Tech Center for Clean Conversion and High-Valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, Jilin, China
| | - Xiaojun Zhang
- Sci-Tech Center for Clean Conversion and High-Valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, Jilin, China.
| | - Dayu Yu
- Sci-Tech Center for Clean Conversion and High-Valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012, Jilin, China.
| |
Collapse
|
9
|
Li Y, Wang J, Liu N, Ke L, Zhao X, Qi G. Microbial synthesis of poly-γ-glutamic acid (γ-PGA) with fulvic acid powder, the waste from yeast molasses fermentation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:180. [PMID: 33133238 PMCID: PMC7594462 DOI: 10.1186/s13068-020-01818-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Molasses is a wildly used feedstock for fermentation, but it also poses a severe wastewater-disposal problem worldwide. Recently, the wastewater from yeast molasses fermentation is being processed into fulvic acid (FA) powder as a fertilizer for crops, but it consequently induces a problem of soil acidification after being directly applied into soil. In this study, the low-cost FA powder was bioconverted into a value-added product of γ-PGA by a glutamate-independent producer of Bacillus velezensis GJ11. RESULTS FA power could partially substitute the high-cost substrates such as sodium glutamate and citrate sodium for producing γ-PGA. With FA powder in the fermentation medium, the amount of sodium glutamate and citrate sodium used for producing γ-PGA were both decreased around one-third. Moreover, FA powder could completely substitute Mg2+, Mn2+, Ca2+, and Fe3+ in the fermentation medium for producing γ-PGA. In the optimized medium with FA powder, the γ-PGA was produced at 42.55 g/L with a productivity of 1.15 g/(L·h), while only 2.87 g/L was produced in the medium without FA powder. Hydrolyzed γ-PGA could trigger induced systemic resistance (ISR), e.g., H2O2 accumulation and callose deposition, against the pathogen's infection in plants. Further investigations found that the ISR triggered by γ-PGA hydrolysates was dependent on the ethylene (ET) signaling and nonexpressor of pathogenesis-related proteins 1 (NPR1). CONCLUSIONS To our knowledge, this is the first report to use the industry waste, FA powder, as a sustainable substrate for microbial synthesis of γ-PGA. This bioprocess can not only develop a new way to use FA powder as a cheap feedstock for producing γ-PGA, but also help to reduce pollution from the wastewater of yeast molasses fermentation.
Collapse
Affiliation(s)
- Yazhou Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jianghan Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Na Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Luxin Ke
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
10
|
Díaz-Fernández D, Aguiar TQ, Martín VI, Romaní A, Silva R, Domingues L, Revuelta JL, Jiménez A. Microbial lipids from industrial wastes using xylose-utilizing Ashbya gossypii strains. BIORESOURCE TECHNOLOGY 2019; 293:122054. [PMID: 31487616 DOI: 10.1016/j.biortech.2019.122054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 05/08/2023]
Abstract
This work presents the exploitation of waste industrial by-products as raw materials for the production of microbial lipids in engineered strains of the filamentous fungus Ashbya gossypii. A lipogenic xylose-utilizing strain was used to apply a metabolic engineering approach aiming at relieving regulatory mechanisms to further increase the biosynthesis of lipids. Three genomic manipulations were applied: the overexpression of a feedback resistant form of the acetyl-CoA carboxylase enzyme; the expression of a truncated form of Mga2, a regulator of the main Δ9 desaturase gene; and the overexpression of an additional copy of DGA1 that codes for diacylglycerol acyltransferase. The performance of the engineered strain was evaluated in culture media containing mixed formulations of corn-cob hydrolysates, sugarcane molasses or crude glycerol. Our results demonstrate the efficiency of the engineered strains, which were able to accumulate about 40% of cell dry weight (CDW) in lipid content using organic industrial wastes as feedstocks.
Collapse
Affiliation(s)
- David Díaz-Fernández
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Tatiana Q Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Victoria Isabel Martín
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Aloia Romaní
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Rui Silva
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - José Luis Revuelta
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain.
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain.
| |
Collapse
|
11
|
Rolz C, de León R, Mendizábal de Montenegro AL. Co-production of ethanol and biodiesel from sweet sorghum juice in two consecutive fermentation steps. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
12
|
Shen Q, Sun H, Yao X, Wu Y, Wang X, Chen Y, Tang J. A comparative study of pig manure with different waste straws in an ectopic fermentation system with thermophilic bacteria during the aerobic process: Performance and microbial community dynamics. BIORESOURCE TECHNOLOGY 2019; 281:202-208. [PMID: 30822641 DOI: 10.1016/j.biortech.2019.01.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
In the present study, ectopic fermentation systems were treated with both solid and liquid waste from livestock. Then, the various physicochemical properties and compositions of microbial communities in different waste straws treatments were compared. The addition of thermophilic bacteria was beneficial to the decomposition of litter, and it improved the fermentation process. Proteobacteria, Bacteroidetes, and Firmicutes were the predominant types in the fermentation vessels, and the presence of the phyla Proteobacteria and Bacteroidetes was correlated with factors prevailing in the mature phase. Furthermore, pig manure with sawdust, rape stem, and rice chaff and pig manure with sawdust, rice straw, and rice chaff vessels had higher concentrations of dissolved nitrogen, which were conducive to the conversion of fermentation wastes into useful fertilizer. These results demonstrate the feasibility of using rape stem and rice straw as padding materials during the treatment of both liquid and solid livestock waste in ectopic fermentation systems.
Collapse
Affiliation(s)
- Qi Shen
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China
| | - Hong Sun
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China
| | - Xiaohong Yao
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China
| | - Yifei Wu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China
| | - Xin Wang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China
| | - Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China
| | - Jiangwu Tang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
13
|
Yu D, Wang X, Fan X, Ren H, Hu S, Wang L, Shi Y, Liu N, Qiao N. Refined soybean oil wastewater treatment and its utilization for lipid production by the oleaginous yeast Trichosporon fermentans. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:299. [PMID: 30410574 PMCID: PMC6211406 DOI: 10.1186/s13068-018-1306-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/27/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The release of refined soybean oil wastewater (RSOW) with a high chemical oxygen demand (COD) and oil content burdens the environment. The conversion of RSOW into lipids by oleaginous yeasts may be a good way to turn this waste into usable products. RESULTS The oleaginous yeast Trichosporon fermentans was used for treating the RSOW without sterilization, dilution, or nutrient supplementation. It was found that the COD and oil content of the RSOW were removed effectively; microbial oil was abundantly produced in 48 h; and the phospholipids in the RSOW tended to contribute to a higher biomass and microbial lipid content. With Plackett-Burman design and response surface design experiments, the optimal wastewater treatment conditions were determined: temperature 28.3 °C, amount of inoculum 5.9% (v/v), and initial pH 6.1. The optimized conditions were used in a 5-L bioreactor to treat the RSOW. The maximum COD degradation of 94.7% was obtained within 40 h, and the removal of the oil content was 89.9%. The biomass was 7.9 g/L, the lipid concentration was 3.4 g/L, and the lipid content was 43% (w/w). The microbial oil obtained, with a main component of unsaturated fatty acids, was similar to vegetable oils and was suggested as a potential raw material for biodiesel production. CONCLUSION Trichosporon fermentans can be effectively used for RSOW treatment, and lipid production and can complete pretreatment and biochemical treatment simultaneously, allowing the utilization of RSOW, which both solves an environmental problem and positively impacts the use of resources. These results provide valuable information for developing and designing more efficient waste-into-lipid bioprocesses.
Collapse
Affiliation(s)
- Dayu Yu
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012 China
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012 China
| | - Xiaoning Wang
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012 China
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012 China
| | - Xue Fan
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012 China
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012 China
| | - Huimin Ren
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012 China
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012 China
| | - Shuang Hu
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012 China
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012 China
| | - Lei Wang
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012 China
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012 China
| | - Yunfen Shi
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012 China
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012 China
| | - Na Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021 China
| | - Nan Qiao
- Sci-Tech Center for Clean Conversion and High-valued Utilization of Biomass, Jilin Province, Northeast Electric Power University, Jilin, 132012 China
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021 China
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012 China
| |
Collapse
|
14
|
Cho HU, Park JM. Biodiesel production by various oleaginous microorganisms from organic wastes. BIORESOURCE TECHNOLOGY 2018; 256:502-508. [PMID: 29478783 DOI: 10.1016/j.biortech.2018.02.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 05/23/2023]
Abstract
Biodiesel is a biodegradable and renewable fuel. A large amount of research has considered microbial oil production using oleaginous microorganisms, but the commercialization of microbial lipids produced in this way remains uncertain due to the high cost of feedstock or low lipid yield. Microbial lipids can be typically produced by microalgae, yeasts, and bacteria; the lipid yields of these microorganisms can be improved by using sufficient concentrations of organic carbon sources. Therefore, combining low-cost organic compounds contained in organic wastes with cultivation of oleaginous microorganisms can be a promising approach to obtain commercial viability. However, to achieve effective bioconversion of low-cost substrates to microbial lipids, the characteristics of each microorganism and each substrate should be considered simultaneously. This article discusses recent approaches to developing cost-effective microbial lipid production processes that use various oleaginous microorganisms and organic wastes.
Collapse
Affiliation(s)
- Hyun Uk Cho
- School of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Bioenergy Research Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jong Moon Park
- School of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Bioenergy Research Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
15
|
Shen Q, Chen Y, Lin H, Wang Q, Zhao Y. Agro-industrial waste recycling by Trichosporon fermentans: conversion of waste sweetpotato vines alone into lipid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8793-8799. [PMID: 29327194 DOI: 10.1007/s11356-018-1231-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Agro-industrial waste can be used to replace traditional carbohydrates, such as sucrose, starch, and glucose in many industrial fermentation processes. This study investigated the conversion of pre-treated waste sweetpotato vines (SV) into lipid by Trichosporon fermentans under the separate hydrolysis and fermentation (SHF) and the simultaneous saccharification and fermentation (SSF) processes. The results showed that SV autoclaving significantly increased the lipid accumulation of T. fermentans compared with acid or alkaline hydrolysis. The effects of different pre-treatments on SV were also studied by scanning electron microscopy and Fourier transform infrared spectroscopy, which showed the partial removal of the aliphatic fractions, hemicelluloses, and lignin during pre-treatment. Moreover, the lipid yield of T. fermentans in SSF was 6.98 g L-1, which was threefold higher than that (2.79 g L-1) in SHF, and the lipid contents of yeast in SSF and SHF were 36 and 25%, respectively. Overall, this study indicated that SSF using autoclaved SV could increase the growth and lipid production of T. fermentans and provided an efficient way to realize the resource utilization of waste SV.
Collapse
Affiliation(s)
- Qi Shen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
| | - Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
| | - Hui Lin
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
| | - Qun Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuhua Zhao
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
16
|
Yu D, Shi Y, Wang Q, Zhang X, Zhao Y. Application of methanol and sweet potato vine hydrolysate as enhancers of citric acid production by Aspergillus niger. BIORESOUR BIOPROCESS 2017; 4:35. [PMID: 28804701 PMCID: PMC5532408 DOI: 10.1186/s40643-017-0166-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/20/2017] [Indexed: 12/03/2022] Open
Abstract
Background Agricultural waste is as an alternative low-cost carbon source or beneficial additives which catch most people’s eyes. In addition, methanol and sweet potato vine hydrolysate (SVH) have been reported as the efficient enhancers of fermentation according to some reports. The objective of the present study was to confirm SVH as an efficient additive in CA production and explore the synergistic effects of methanol and SVH in fermentation reactions. Results The optimal fermentation conditions resulted in a maximum citric acid concentration of 3.729 g/L. The final citric acid concentration under the optimized conditions was increased by 3.6-fold over the original conditions, 0.49-fold over the optimized conditions without methanol, and 1.8-fold over the optimized conditions in the absence of SVH. Kinetic analysis showed that Qp, Yp/s, and Yx/s in the optimized systems were significantly improved compared with those obtained in the absence of methanol or SVH. Further, scanning electron microscopy (SEM) revealed that methanol stress promoted the formation of conidiophores, while SVH could neutralize the effect and prolong Aspergillus niger vegetative growth. Cell viability analysis also showed that SVH might eliminate the harmful effects of methanol and enhance cell membrane integrity. Conclusions SVH was a superior additive for organic acid fermentation, and the combination of methanol and SVH displayed a significant synergistic effect. The research provides a preliminary theoretical basis for SVH practical application in the fermentation industry.
Collapse
Affiliation(s)
- Daobing Yu
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin'an, 311300 Zhejiang People's Republic of China
| | - Yanke Shi
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin'an, 311300 Zhejiang People's Republic of China
| | - Qun Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang People's Republic of China
| | - Xin Zhang
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin'an, 311300 Zhejiang People's Republic of China
| | - Yuhua Zhao
- College of Life Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang People's Republic of China
| |
Collapse
|
17
|
Poontawee R, Yongmanitchai W, Limtong S. Efficient oleaginous yeasts for lipid production from lignocellulosic sugars and effects of lignocellulose degradation compounds on growth and lipid production. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.11.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Rolz C. Two consecutive step process for ethanol and microbial oil production from sweet sorghum juice. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Huang C, Wang C, Xiong L, Chen XF, Lin XQ, Qi GX, Shi SL, Wang B, Chen XD. Elucidating the Beneficial Effect of Corncob Acid Hydrolysate Environment on Lipid Fermentation of Trichosporon dermatis by Method of Cell Biology. Appl Biochem Biotechnol 2016; 178:1420-9. [PMID: 26749297 DOI: 10.1007/s12010-015-1956-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022]
Abstract
In present study, the beneficial effect of corncob acid hydrolysate environment on lipid fermentation of Trichosporon dermatis was elucidated by method of cell biology (mainly using flow cytometry and microscope) for the first time. Propidium iodide (PI) and rhodamine 123 (Rh123) staining showed that corncob acid hydrolysate environment was favorable for the cell membrane integrity and mitochondrial membrane potential of T. dermatis and thus made its lipid fermentation more efficient. Nile red (NR) staining showed that corncob acid hydrolysate environment made the lipid accumulation of T. dermatis slower, but this influence was not serious. Moreover, the cell morphology of T. dermatis elongated in the corncob acid hydrolysate, but the cell morphology changed as elliptical-like during fermentation. Overall, this work offers one simple and effective method to evaluate the influence of lignocellulosic hydrolysates environment on lipid fermentation.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
| | - Can Wang
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
| | - Lian Xiong
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
| | - Xue-Fang Chen
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
| | - Xiao-Qing Lin
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
| | - Gao-Xiang Qi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Si-Lan Shi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Bo Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin-De Chen
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China. .,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China. .,, No. 2 Nengyuan Road, Tianhe District, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|