1
|
Wang L, Liu S, Mehdi S, Liu Y, Zhang H, Shen R, Wen H, Jiang J, Sun K, Li B. Lignocellulose-Derived Energy Materials and Chemicals: A Review on Synthesis Pathways and Machine Learning Applications. SMALL METHODS 2025:e2500372. [PMID: 40264353 DOI: 10.1002/smtd.202500372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Lignocellulose biomass, Earth's most abundant renewable resource, is crucial for sustainable production of high-value chemicals and bioengineered materials, especially for energy storage. Efficient pretreatment is vital to boost lignocellulose conversion to bioenergy and biomaterials, cut costs, and broaden its energy-sector applications. Machine learning (ML) has become a key tool in this field, optimizing pretreatment processes, improving decision-making, and driving innovation in lignocellulose valorization for energy storage. This review explores main pretreatment strategies - physical, chemical, physicochemical, biological, and integrated methods - evaluating their pros and cons for energy storage. It also stresses ML's role in refining these processes, supported by case studies showing its effectiveness. The review examines challenges and opportunities of integrating ML into lignocellulose pretreatment for energy storage, underlining pretreatment's importance in unlocking lignocellulose's full potential. By blending process knowledge with advanced computational techniques, this work aims to spur progress toward a sustainable, circular bioeconomy, particularly in energy storage solutions.
Collapse
Affiliation(s)
- Luyao Wang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Sehrish Mehdi
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Huanhuan Zhang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Ruofan Shen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Hao Wen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| |
Collapse
|
2
|
Kubiak A, Pilarska AA, Wolna-Maruwka A, Niewiadomska A, Panasiewicz K. The Use of Fungi of the Trichoderma Genus in Anaerobic Digestion: A Review. Int J Mol Sci 2023; 24:17576. [PMID: 38139408 PMCID: PMC10743432 DOI: 10.3390/ijms242417576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Plant waste biomass is the most abundant renewable energy resource on Earth. The main problem with utilising this biomass in anaerobic digestion is the long and costly stage of degrading its complex structure into simple compounds. One of the promising solutions to this problem is the application of fungi of the Trichoderma genus, which show a high capacity to produce hydrolytic enzymes capable of degrading lignocellulosic biomass before anaerobic digestion. This article discusses the structure of plant waste biomass and the problems resulting from its structure in the digestion process. It presents the methods of pre-treatment of lignocellulose with a particular focus on biological solutions. Based on the latest research findings, key parameters related to the application of Trichoderma sp. as a pre-treatment method are discussed. In addition, the possibility of using the digestate from agricultural biogas plants as a carrier for the multiplication of the Trichoderma sp. fungi, which are widely used in many industries, is discussed.
Collapse
Affiliation(s)
- Adrianna Kubiak
- Department of Soil Science and Microbiology, Poznań University of Life Sciences, Szydłowska 50, 60-656 Poznań, Poland; (A.K.); (A.W.-M.); (A.N.)
| | - Agnieszka A. Pilarska
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznań, Poland
| | - Agnieszka Wolna-Maruwka
- Department of Soil Science and Microbiology, Poznań University of Life Sciences, Szydłowska 50, 60-656 Poznań, Poland; (A.K.); (A.W.-M.); (A.N.)
| | - Alicja Niewiadomska
- Department of Soil Science and Microbiology, Poznań University of Life Sciences, Szydłowska 50, 60-656 Poznań, Poland; (A.K.); (A.W.-M.); (A.N.)
| | - Katarzyna Panasiewicz
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| |
Collapse
|
3
|
Ćwiertniewicz-Wojciechowska M, Cema G, Ziembińska-Buczyńska A. Sewage sludge pretreatment: current status and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88313-88330. [PMID: 37453013 PMCID: PMC10412499 DOI: 10.1007/s11356-023-28613-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
Sewage sludge is regarded by wastewater treatment plants as problematic, from a financial and managerial point of view. Thus, a variety of disposal routes are used, but the most popular is methane fermentation. The proportion of macromolecular compounds in sewage sludges varies, and substrates treated in methane fermentation provide different amounts of biogas with various quality and quantity. Depending on the equipment and financial capabilities for methane fermentation, different methods of sewage sludge pretreatment are available. This review presents the challenges associated with the recalcitrant structure of sewage sludge and the presence of process inhibitors. We also examined the diverse methods of sewage sludge pretreatment that increase methane yield. Moreover, in the field of biological sewage sludge treatment, three future study propositions are proposed: improved pretreatment of sewage sludge using biological methods, assess the changes in microbial consortia caused with pretreatment methods, and verification of microbial impact on biomass degradation.
Collapse
Affiliation(s)
| | - Grzegorz Cema
- Department of Environmental Biotechnology, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | | |
Collapse
|
4
|
Lymperatou A, Engelsen TK, Skiadas IV, Gavala HN. Prediction of methane yield and pretreatment efficiency of lignocellulosic biomass based on composition. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:302-310. [PMID: 36410147 DOI: 10.1016/j.wasman.2022.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/28/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulosic biomass is considered a key resource for the future expansion of biogas production through anaerobic digestion (AD), and research on the development of pretreatment technologies for improving biomass conversion is an intensive and fast-growing field. Consequently, there is a need for creating tools able to predict the efficiency of a certain pretreatment on different biomass types, fast and accurately, and to assist in selecting a pretreatment technology for a specific biomass. In this study, seven different types of raw lignocellulosic biomass of industrial relevance were systematically analyzed regarding their composition (carbohydrates, lignin, lipids, ash, extractives, etc.) and subjected to a common pretreatment. The aim of the study was to identify the most important characteristics that make a biomass good receptor of the specific pretreatment prior to AD. A simple ammonia pretreatment was chosen as a case study and partial least squares regression (PLS-R) was used for modeling initially the ultimate methane yield of raw and pretreated biomass. In the sequel, PLS-R was used for modeling the efficiency of the pretreatment on increasing the ultimate methane yield and hydrolysis rate as a function of the biomass composition. The fit of the models was satisfactory, ranging from R2 = 0.89 to R2 = 0.97. The results showed that the most decisive characteristics for predicting the efficiency of the pretreatment were the lipid (r = -0.88), ash (r = +0.79), protein (r = -0.61), and hemicellulose/lignin (r = -0.53) content of raw biomass. Finally, the approach followed in this study facilitated an improved understanding of the mechanism of the pretreatment and presented a methodology to be followed for developing tools for the prediction of pretreatment efficiency in the field of lignocellulosic biomass valorization.
Collapse
Affiliation(s)
- Anna Lymperatou
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, Kgs. Lyngby 2800, Denmark
| | - Thor K Engelsen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, Kgs. Lyngby 2800, Denmark
| | - Ioannis V Skiadas
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, Kgs. Lyngby 2800, Denmark
| | - Hariklia N Gavala
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, Kgs. Lyngby 2800, Denmark.
| |
Collapse
|
5
|
Khan MU, Usman M, Ashraf MA, Dutta N, Luo G, Zhang S. A review of recent advancements in pretreatment techniques of lignocellulosic materials for biogas production: Opportunities and Limitations. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100263] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
6
|
Xu C, Li J, Yuan Q, Liu N, Zhang X, Wang P, Gao Y. Effects of different fermentation assisted enzyme treatments on the composition, microstructure and physicochemical properties of wheat straw used as a substitute for peat in nursery substrates. BIORESOURCE TECHNOLOGY 2021; 341:125815. [PMID: 34454234 DOI: 10.1016/j.biortech.2021.125815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
To solve the central problems caused by traditional composting treatments, such as long-time consumption and poor regulation effects, this study used three fermentation methods and four enzymes to develop rapid and directional regulation methods to convert wheat straw into a suitable substrate. The results showed that the mixed anaerobic method led to better pH (4.39-5.75) and EC values (1.27-1.89 mS/cm) in the straw substrates, while the aerobic method retained more nutrients and increased lignin and cellulose contents by 5.07-8.04% and 1.52-3.32%. The cellulase mixed with hemicellulase or laccase treatments all increased the crystallinity by 0.45-7.23%. The TG/DTG results showed that all treatments decreased the initial straw glass transition temperature, particularly when using the mixed anaerobic method, with decreases of 10.63-25.48 °C. Overall, mixed anaerobic fermentation and multiple enzymes, including cellulase, have been suggested as alternative biological modification methods for straw substrates.
Collapse
Affiliation(s)
- Chao Xu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Jun Li
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Qiaoxia Yuan
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China.
| | - Nian Liu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Xin Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Panpan Wang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Yong Gao
- Wuhan Optics Valley Bluefire New Energy Co., Ltd., Wuhan 430000, China
| |
Collapse
|
7
|
El Nemr A, Hassaan MA, Elkatory MR, Ragab S, Pantaleo A. Efficiency of Fe 3O 4 Nanoparticles with Different Pretreatments for Enhancing Biogas Yield of Macroalgae Ulva intestinalis Linnaeus. Molecules 2021; 26:5105. [PMID: 34443690 PMCID: PMC8399479 DOI: 10.3390/molecules26165105] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/20/2022] Open
Abstract
In this work, different pretreatment methods for algae proved to be very effective in improving cell wall dissociation for biogas production. In this study, the Ulva intestinalis Linnaeus (U. intestinalis) has been exposed to individual pretreatments of (ultrasonic, ozone, microwave, and green synthesized Fe3O4) and in a combination of the first three mentioned pretreatments methods with magnetite (Fe3O4) NPs, (ultrasonic-Fe3O4, ozone-Fe3O4 and microwave-Fe3O4) in different treatment times. Moreover, the green synthesized Fe3O4 NPs has been confirmed by FTIR, TEM, XRD, SEM, EDEX, PSA and BET. The maximum biogas production of 179 and 206 mL/g VS have been attained when U. intestinalis has been treated with ultrasonic only and when combined microwave with Fe3O4 respectively, where sediment were used as inoculum in all pretreatments. From the obtained results, green Fe3O4 NPs enhanced the microwave (MW) treatment to produce a higher biogas yield (206 mL/g VS) when compared with individual MW (84 mL/g VS). The modified Gompertz model (R2 = 0.996 was appropriate model to match the calculated biogas production and could be used more practically to distinguish the kinetics of the anaerobic digestion (AD) period. The assessment of XRD, SEM and FTIR discovered the influence of different treatment techniques on the cell wall structure of U. intestinalis.
Collapse
Affiliation(s)
- Ahmed El Nemr
- Marine Pollution Lab, National Institute of Oceanography and Fisheries (NIOF), Alexandria 21556, Egypt; (A.E.N.); (S.R.)
| | - Mohamed A. Hassaan
- Marine Pollution Lab, National Institute of Oceanography and Fisheries (NIOF), Alexandria 21556, Egypt; (A.E.N.); (S.R.)
| | - Marwa R. Elkatory
- Advanced Technology and New Materials Research Institute, City for Scientific Research and Technological Applications, Alexandria 21934, Egypt;
| | - Safaa Ragab
- Marine Pollution Lab, National Institute of Oceanography and Fisheries (NIOF), Alexandria 21556, Egypt; (A.E.N.); (S.R.)
| | - Antonio Pantaleo
- Department of Agriculture and Environmental Sciences, Bari University, 70121 Bari, Italy;
| |
Collapse
|
8
|
Zeng S, Jang HM, Park S, Park S, Kan E. Effects of Mechanical Refining on Anaerobic Digestion of Dairy Manure. ACS OMEGA 2021; 6:16934-16942. [PMID: 34250352 PMCID: PMC8264835 DOI: 10.1021/acsomega.1c01760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Mechanical refining (MR) is a cost-effective pretreatment in biochemical conversion processes that is employed to overcome biomass recalcitrance. This work studied the effects of MR on biogas and methane produced by the anaerobic digestion (AD) of dairy manure. The cumulative gas volume and yield from the AD of manure refined at 6k revolutions increased by 33.7 and 7.7% for methane and by 32.0 and 6.4% for biogas, respectively, compared to the unrefined manure. This enhancement was reached by increasing manure solubilization, reducing particle size, and achieving external fibrillation and internal delamination of fibers in manure. However, the highly refined manure (subjected to 60k revolutions) exhibited methane and biogas yields that were reduced by 9.5 and 1.5%, respectively. This decrease was observed because the pore structure was ruptured, and finely ground manure particles were aggregated together at high revolutions (60k), thereby inhibiting the release of organic matter from the manure. Therefore, this study indicates that the MR for pretreatment of dairy manure could have great potential for significantly enhancing AD of dairy manure. Further studies will include optimization of conditions of mechanical refining (i.e., mechanical intensity, process time), a continuous AD of dairy manure pretreated by the MR, and scale-up with cost evaluation.
Collapse
Affiliation(s)
- Shengquan Zeng
- Department
of Biological and Agricultural Engineering & Texas A&M AgriLife
Research Center, Texas A&M University, College Station, Texas 77843, United States
| | - Hyun Min Jang
- Department
of Environmental Engineering and Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Seonghyun Park
- Department
of Forest Biomaterials, North Carolina State
University, Raleigh, North Carolina 27607, United States
| | - Sunkyu Park
- Department
of Forest Biomaterials, North Carolina State
University, Raleigh, North Carolina 27607, United States
| | - Eunsung Kan
- Department
of Biological and Agricultural Engineering & Texas A&M AgriLife
Research Center, Texas A&M University, College Station, Texas 77843, United States
- Department
of Wildlife, Sustainability, and Ecosystem Sciences, Tarleton State University, Stephenville, Texas 76401, United States
| |
Collapse
|
9
|
Hassaan MA, El Nemr A, Elkatory MR, Eleryan A, Ragab S, El Sikaily A, Pantaleo A. Enhancement of Biogas Production from Macroalgae Ulva latuca via Ozonation Pretreatment. ENERGIES 2021; 14:1703. [DOI: 10.3390/en14061703] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
One of the dominant species of green algae growing along the Mediterranean coast of Egypt is Ulva lactuca. Pretreatment can have a major effect on biogas production because hydrolysis of the algae cell wall structure is a rate-limiting stage in the anaerobic digestion (AD) process. The use of ozone, a new pretreatment, to boost biogas production from the green algae Ulva lactuca was investigated in this study. Ozonation at various dosages was used in contrast to untreated biomass, and the effect on the performance of subsequent mesophilic AD using two separate inoculums (cow manure and activated sludge) was examined. The findings indicated that, in different studies, ozonation pretreatment showed a substantial increase in biogas yield relative to untreated algae. With an ozone dose of 249 mg O3 g–1 VS algal for Ulva lactuca, the highest biogas output (498.75 mL/g VS) was achieved using cow manure inoculum. The evaluation of FTIR, TGA, SEM, and XRD revealed the impact of O3 on the structure of the algal cell wall and integrity breakage, which was thus established as the main contributor to improving the biogas production.
Collapse
Affiliation(s)
- Mohamed A. Hassaan
- Marine Pollution Laboratory, National Institute of Oceanography and Fisheries, Alexandria 21556, Egypt
| | - Ahmed El Nemr
- Marine Pollution Laboratory, National Institute of Oceanography and Fisheries, Alexandria 21556, Egypt
| | - Marwa R. Elkatory
- Advanced Technology and New Materials Research Institute, City for Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Ahmed Eleryan
- Marine Pollution Laboratory, National Institute of Oceanography and Fisheries, Alexandria 21556, Egypt
| | - Safaa Ragab
- Marine Pollution Laboratory, National Institute of Oceanography and Fisheries, Alexandria 21556, Egypt
| | - Amany El Sikaily
- Marine Pollution Laboratory, National Institute of Oceanography and Fisheries, Alexandria 21556, Egypt
| | - Antonio Pantaleo
- Department of Agriculture and Environmental Sciences, Bari University, 70121 Bari, Italy
| |
Collapse
|
10
|
Costa RB, Bevilaqua D, Lens PNL. Pre-treatment and temperature effects on the use of slow release electron donor for biological sulfate reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 275:111216. [PMID: 32858270 DOI: 10.1016/j.jenvman.2020.111216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Lignocellulosic materials can be used as slow release electron donor (SRED) for biological sulfate reduction, potentially enhancing the subsequent metal sulfide precipitation. Lignocellulosic materials require a pre-treatment step in other biotechnological applications, but pre-treatment strategies for its use as a SRED for biological sulfate reduction have not yet been tested. Three pre-treatments strategies (mechanical, acid, and mechanical followed by acid pre-treatment) were tested to enhance electron donor release from brewery spent grain (BSG), and compared to a non-pre-treated control. Mechanical pre-treatment provided the highest sulfate removal rate (82.8 ± 8.8 mg SO42-.(g TVS.day)-1), as well as the highest final sulfide concentration (441.0 ± 34.4 mg.L-1) at mesophilic conditions. BSG submitted to mechanical pre-treatment was also assessed under psychrophilic and thermophilic conditions. Under mesophilic and psychrophilic conditions, both sulfate reduction and methane production occurred. Under psychrophilic conditions, the sulfate reduction rate was lower (25 ± 2.0 mg SO42-.(g TVS.day)-1), and the sulfide formation depended on lactate addition. A metal precipitation assay was conducted to assess whether the use of SRED enhances metal recovery. Zinc precipitation and recovery with chemical or biogenic sulfide from the BSG batches were tested. Sulfide was provided in a single spike or slowly added, mimicking the effect of SRED. ZnS was formed in all conditions, but better settling particles were obtained when sulfide was slowly added, regardless of the sulfide source.
Collapse
Affiliation(s)
- Rachel B Costa
- National University of Ireland, University Road, H91 TK33, Galway, Ireland; Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, R. Francisco Degni, 55, 14800-060, Araraquara, SP, Brazil.
| | - Denise Bevilaqua
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, R. Francisco Degni, 55, 14800-060, Araraquara, SP, Brazil
| | - Piet N L Lens
- National University of Ireland, University Road, H91 TK33, Galway, Ireland
| |
Collapse
|
11
|
Does Acid Addition Improve Liquid Hot Water Pretreatment of Lignocellulosic Biomass towards Biohydrogen and Biogas Production? SUSTAINABILITY 2020. [DOI: 10.3390/su12218935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of liquid hot water (LHW) pretreatment with or without acid addition (A-LHW) on the production of hydrogen—through dark fermentation (DF)—and methane—through anaerobic digestion (AD)—using three different lignocellulosic biomass types (sunflower straw (SS), grass lawn (GL), and poplar sawdust (PS)) was investigated. Both pretreatment methods led to hemicellulose degradation, but A-LHW resulted in the release of more potential inhibitors (furans and acids) than the LHW pretreatment. Biological hydrogen production (BHP) of the cellulose-rich solid fractions obtained after LHW and A-LHW pretreatment was enhanced compared to the untreated substrates. Due to the release of inhibitory compounds, LHW pretreatment led to higher biochemical methane potential (BMP) than A-LHW pretreatment when both separated fractions (liquid and solid) obtained after pretreatments were used for AD. The recovered energy in the form of methane with LHW pretreatment was 8.4, 12.5, and 7.5 MJ/kg total solids (TS) for SS, GL, and PS, respectively.
Collapse
|
12
|
Hassaan MA, Pantaleo A, Santoro F, Elkatory MR, De Mastro G, Sikaily AE, Ragab S, Nemr AE. Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw. ENERGIES 2020; 13:5001. [DOI: 10.3390/en13195001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The aim of this study was to analyze the effect of ZnO nanoparticles (ZnO NPs) on the biogas production from mechanically treated barley straw and to perform a techno-economic analysis based on the costs assessment and on the results of biogas production. The structural changes of mechanically pretreated barley straw were observed using FTIR, XRD, TGA, and SEM. Additionally, both green ZnO NPs prepared from red alga (Antithamnion plumula) extract and chemically prepared ZnO NPs were characterized by FTIR, XRD, SEM, and TEM, surface area, and EDX. The results revealed that the biogas production was slightly improved by 14.9 and 13.2% when the barley straw of 0.4 mm was mechanically pretreated with 10 mg/L of both green and chemical ZnO NPs and produced 390.5 mL biogas/g VS and 385 mL biogas/g VS, respectively. On the other hand, the higher concentrations of ZnO NPs equal to 20 mg/L had an inhibitory effect on biogas production and decreased the biogas yield to 173 mL biogas/g VS, which was less than the half of previous values. It was also clear that the mechanically treated barley straw of 0.4 mm size presented a higher biogas yield of about 340 mL/g VS, in comparison to 279 mL biogas/g VS of untreated biomass. The kinetic study showed that the first order, modified Gompertz and logistic function models had the best fit with the experimental data. The results showed that the nanoparticles (NPs) of the mechanically treated barely straw are a suitable source of biomass for biogas production, and its yields are higher than the untreated barley straw. The results of the cost-benefit analysis showed that the average levelized cost of energy (LCOE), adopting the best treatments (0.4 mm + 10 mg/L ZnO), is 0.21 €/kWh, which is not competitive with the other renewable energy systems in the Egyptian energy market.
Collapse
Affiliation(s)
- Mohamed A. Hassaan
- Marine Pollution Lab, National Institute of Oceanography and Fisheries, Alexandria 21556, Egypt
- Department of Agriculture and Environmental Sciences, Bari University, 70121 Bari, Italy
| | - Antonio Pantaleo
- Department of Agriculture and Environmental Sciences, Bari University, 70121 Bari, Italy
| | - Francesco Santoro
- Department of Agriculture and Environmental Sciences, Bari University, 70121 Bari, Italy
| | - Marwa R. Elkatory
- City for Scientific Research and Technological Applications, Advanced Technology and New Materials Research Institute, Alexandria 21934, Egypt
| | - Giuseppe De Mastro
- Department of Agriculture and Environmental Sciences, Bari University, 70121 Bari, Italy
| | - Amany El Sikaily
- Marine Pollution Lab, National Institute of Oceanography and Fisheries, Alexandria 21556, Egypt
| | - Safaa Ragab
- Marine Pollution Lab, National Institute of Oceanography and Fisheries, Alexandria 21556, Egypt
| | - Ahmed El Nemr
- Marine Pollution Lab, National Institute of Oceanography and Fisheries, Alexandria 21556, Egypt
| |
Collapse
|
13
|
Argiz L, Reyes C, Belmonte M, Franchi O, Campo R, Fra-Vázquez A, Val Del Río A, Mosquera-Corral A, Campos JL. Assessment of a fast method to predict the biochemical methane potential based on biodegradable COD obtained by fractionation respirometric tests. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 269:110695. [PMID: 32425161 DOI: 10.1016/j.jenvman.2020.110695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
The biochemical methane potential test (BMP) is the most common analytical technique to predict the performance of anaerobic digesters. However, this assay is time-consuming (from 20 to over than 100 days) and consequently impractical when it is necessary to obtain a quick result. Several methods are available for faster BMP prediction but, unfortunately, there is still a lack of a clear alternative. Current aerobic tests underestimate the BMP of substrates since they only detect the easily biodegradable COD. In this context, the potential of COD fractionation respirometric assays, which allow the determination of the particulate slowly biodegradable fraction, was evaluated here as an alternative to early predict the BMP of substrates. Seven different origin waste streams were tested and the anaerobically biodegraded organic matter (CODmet) was compared with the different COD fractions. When considering adapted microorganisms, the appropriate operational conditions and the required biodegradation time, the differences between the CODmet, determined through BMP tests, and the biodegradable COD (CODb) obtained by respirometry, were not significant (CODmet (57.8026 ± 21.2875) and CODb (55.6491 ± 21.3417), t (5) = 0.189, p = 0.853). Therefore, results suggest that the BMP of a substrate might be early predicted from its CODb in only few hours. This methodology was validated by the performance of an inter-laboratory studyconsidering four additional substrates.
Collapse
Affiliation(s)
- L Argiz
- CRETUS Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain.
| | - C Reyes
- Laboratorio de Biotecnología, Medio Ambiente e Ingeniería (LABMAI), Facultad de Ingeniería, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, 2340000, Valparaíso, Chile
| | - M Belmonte
- Laboratorio de Biotecnología, Medio Ambiente e Ingeniería (LABMAI), Facultad de Ingeniería, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, 2340000, Valparaíso, Chile
| | - O Franchi
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, Viña del Mar, Chile
| | - R Campo
- Dipartimento di Ingegneria Civile e Ambientale (DICEA), Università degli Studi Firenze, Via di Santa Marta, 3, 50139, Firenze, Italy
| | - A Fra-Vázquez
- CRETUS Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
| | - A Val Del Río
- CRETUS Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
| | - A Mosquera-Corral
- CRETUS Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
| | - J L Campos
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, Viña del Mar, Chile
| |
Collapse
|
14
|
Abraham A, Mathew AK, Park H, Choi O, Sindhu R, Parameswaran B, Pandey A, Park JH, Sang BI. Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2020; 301:122725. [PMID: 31958690 DOI: 10.1016/j.biortech.2019.122725] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 05/24/2023]
Abstract
The inclusion of a pretreatment step in anaerobic digestion processes increases the digestibility of lignocellulosic biomass and enhances biogas yields by promoting lignin removal and the destruction of complex biomass structures. The increase in surface area enables the efficient interaction of microbes or enzymes, and a reduction in cellulose crystallinity improves the digestion process under anaerobic conditions. The pretreatment methods may vary based on the type of the lignocellulosic biomass, the nature of the subsequent process and the overall economics of the process. An improved biogas production by 1200% had been reported when ionic liquid used as pretreatment strategy for anaerobic digestion. The different pretreatment techniques used for lignocellulosic biomasses are generally grouped into physical, chemical, physicochemical, and biological methods. These four modes of pretreatment on lignocellulosic biomass and their impact on biogas production process is the major focus of this review article.
Collapse
Affiliation(s)
- Amith Abraham
- Department of Chemical Engineering, Hanyang University, 222Wangshimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Anil K Mathew
- Department of Chemical Engineering, Hanyang University, 222Wangshimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyojung Park
- Department of Chemical Engineering, Hanyang University, 222Wangshimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Okkyoung Choi
- Department of Chemical Engineering, Hanyang University, 222Wangshimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India
| | - Ashok Pandey
- Center for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Jung Han Park
- Science&Technology Policy Coordination Division, Ministry of Science, ICT and Future Planning, 47 Gwanmun-ro, Gwacheon-si, Gyeonggi-do 13809, Republic of Korea
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, 222Wangshimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
15
|
Methods for the Evaluation of Industrial Mechanical Pretreatments before Anaerobic Digesters. Molecules 2020; 25:molecules25040860. [PMID: 32075266 PMCID: PMC7071009 DOI: 10.3390/molecules25040860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
Different methods were tested to evaluate the performance of a pretreatment before anaerobic digestion. Besides conventional biochemical parameters, such as the biochemical methane potential (BMP), the methane production rate, or the extent of solubilization of organic compounds, methods for physical characterization were also developed in the present work. Criteria, such as the particle size distribution, the water retention capacity, and the rheological properties, were thus measured. These methods were tested on samples taken in two full-scale digesters operating with cattle manure as a substrate and using hammer mills. The comparison of samples taken before and after the pretreatment unit showed no significant improvement in the methane potential. However, the methane production rate increased by 15% and 26% for the two hammer mills, respectively. A relevant improvement of the rheological properties was also observed. This feature is likely correlated with the average reduction in particle size during the pretreatment operation, but these results needs confirmation in a wider range of systems.
Collapse
|
16
|
Antonopoulou G, Vayenas D, Lyberatos G. Biogas Production from Physicochemically Pretreated Grass Lawn Waste: Comparison of Different Process Schemes. Molecules 2020; 25:molecules25020296. [PMID: 31940836 PMCID: PMC7024254 DOI: 10.3390/molecules25020296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 11/29/2022] Open
Abstract
Various pretreatment methods, such as thermal, alkaline and acid, were applied on grass lawn (GL) waste and the effect of each pretreatment method on the Biochemical Methane Potential was evaluated for two options, namely using the whole slurry resulting from pretreatment or the separate solid and liquid fractions obtained. In addition, the effect of each pretreatment on carbohydrate solubilization and lignocellulossic content fractionation (to cellulose, hemicellulose, lignin) was also evaluated. The experimental results showed that the methane yield was enhanced with alkaline pretreatment and, the higher the NaOH concentration (20 g/100 gTotal Solids (TS)), the higher was the methane yield observed (427.07 L CH4/kg Volatile Solids (VS), which was almost 25.7% higher than the BMP of the untreated GL). Comparing the BMP obtained under the two options, i.e., that of the whole pretreatment slurry with the sum of the BMPs of both fractions, it was found that direct anaerobic digestion without separation of the pretreated biomass was favored, in almost all cases. A preliminary energy balance and economic assessment indicated that the process could be sustainable, leading to a positive net heat energy only when using a more concentrated pretreated slurry (i.e., 20% organic loading), or when applying NaOH pretreatment at a lower chemical loading.
Collapse
Affiliation(s)
- Georgia Antonopoulou
- Institute of Chemical Engineering Sciences, Stadiou, Platani, GR 26504 Patras, Greece; (D.V.); (G.L.)
- Correspondence: ; Tel.: +30-26-1096-5318
| | - Dimitrios Vayenas
- Institute of Chemical Engineering Sciences, Stadiou, Platani, GR 26504 Patras, Greece; (D.V.); (G.L.)
- Department of Chemical Engineering, University of Patras, GR 26500 Patras, Greece
| | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences, Stadiou, Platani, GR 26504 Patras, Greece; (D.V.); (G.L.)
- School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece
| |
Collapse
|
17
|
Insight into Pretreatment Methods of Lignocellulosic Biomass to Increase Biogas Yield: Current State, Challenges, and Opportunities. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183721] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lignocellulosic biomass is recalcitrant due to its heterogeneous structure, which is one of the major limitations for its use as a feedstock for methane production. Although different pretreatment methods are being used, intermediaries formed are known to show adverse effect on microorganisms involved in methane formation. This review, apart from highlighting the efficiency and limitations of the different pretreatment methods from engineering, chemical, and biochemical point of views, will discuss the strategies to increase the carbon recovery in the form of methane by way of amending pretreatments to lower inhibitory effects on microbial groups and by optimizing process conditions.
Collapse
|
18
|
Dahunsi SO. Mechanical pretreatment of lignocelluloses for enhanced biogas production: Methane yield prediction from biomass structural components. BIORESOURCE TECHNOLOGY 2019; 280:18-26. [PMID: 30754002 DOI: 10.1016/j.biortech.2019.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 05/22/2023]
Abstract
In this study, mechanical pretreatment was applied to six different lignocelluloses in two different treatment phases and the prediction of their methane yield was done from biomass chemical composition. Physicochemical, proximate and microbial analyses were carried out on both pretreated and untreated biomass using standard methods. Mechanical pretreatments caused the breakdown of structural materials in all the used biomass which was characterized by reduction of the lagging time during anaerobic digestion and the subsequent increase in methane yield up to 22%. The different loading rate of biomass had no effect on the overall methane yield increase. Both single and multiple linear regressions models were used in order to correlate the chemical composition of the biomass with their methane potentials and a fairly high correlation (R2 = 0.63) was obtained. The study also showed that the pretreatments are economically feasible. Therefore, its further application to other biomass is encouraged.
Collapse
Affiliation(s)
- S O Dahunsi
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Biomass and Bioenergy Group, Environment and Technology Research Cluster, Landmark University, Nigeria.
| |
Collapse
|
19
|
Hosseini Koupaie E, Dahadha S, Bazyar Lakeh AA, Azizi A, Elbeshbishy E. Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production-A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:774-784. [PMID: 30314871 DOI: 10.1016/j.jenvman.2018.09.106] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 05/25/2023]
Abstract
The rapid depletion of natural resources and the environmental concerns associated with the use of fossil fuels as the main source of global energy is leading to an increased interest in alternative and renewable energy sources. Particular interest has been given to the lignocellulosic biomass as the most abundant source of organic matter with a potential of being utilized for energy recovery. Different approaches have been applied to convert the lignocellulosic biomass to energy products including anaerobic digestion (AD), fermentation, combustion, pyrolysis, and gasification. The AD process has been proven as an effective technology for converting organic material into energy in the form of methane-rich biogas. However, the complex structure of the lignocellulosic biomass comprised of cellulose, hemicelluloses, and lignin hinders the ability of microorganisms in an AD process to degrade and convert these compounds to biogas. Therefore, a pretreatment step is essential to improve the degradability of the lignocellulosic biomass to achieve higher biogas rate and yield. A system that uses pretreatment and AD is known as advanced AD. Several pretreatment methods have been studied over the past few years including physical, thermal, chemical and biological pretreatment. This paper reviews the enzymatic pretreatment as one of the biological pretreatment methods which has received less attention in the literature than the other pretreatment methods. This paper includes a review of lignocellulosic biomass composition, AD process, challenges in degrading lignocellulosic materials, the current status of research to improve the biogas rate and yield from the AD of lignocellulosic biomass via enzymatic pretreatment, and the future trend in research for the reduction of enzymatic pretreatment cost.
Collapse
Affiliation(s)
- E Hosseini Koupaie
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - S Dahadha
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - A A Bazyar Lakeh
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - A Azizi
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - E Elbeshbishy
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada.
| |
Collapse
|
20
|
Schneider C, Rajmohan RS, Zarebska A, Tsapekos P, Hélix-Nielsen C. Treating anaerobic effluents using forward osmosis for combined water purification and biogas production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1021-1030. [PMID: 30180310 DOI: 10.1016/j.scitotenv.2018.08.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/23/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Forward osmosis (FO) can be used to reclaim nutrients and high-quality water from wastewater streams. This could potentially contribute towards relieving global water scarcity. Here we investigated the feasibility of extracting water from four real and four synthetic anaerobically digested effluents, using FO membranes. The goal of this study was to 1) evaluate FO membrane performance in terms of water flux and nutrient rejection 2) examine the methane yield that can be achieved and 3) analyse FO membrane fouling. Out of the four tested real anaerobically digested effluents, swine manure and potato starch wastewater achieved the highest combined average FO water flux (>3 liter per square meter per hour (LMH) with 0.66 M MgCl2 as initial draw solution concentration) and methane yield (>300 mL CH4 per gram of organic waste expressed as volatile solids (VS)). Rejection of total ammonia nitrogen (TAN), total Kjeldahl nitrogen (TKN) and total phosphorous (TP) was high (up to 96.95%, 95.87% and 99.83%, respectively), resulting in low nutrient concentrations in the recovered water. Membrane autopsy revealed presence of organic and biological fouling on the FO membrane. However, no direct correlation between feed properties and methane yield and fouling potential was found, indicating that there is no inherent trade-off between high water flux and high methane production.
Collapse
Affiliation(s)
- Carina Schneider
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Rajath Sathyadev Rajmohan
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Agata Zarebska
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Panagiotis Tsapekos
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Claus Hélix-Nielsen
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark; University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
21
|
Effect of Mechanical Pre-Treatment of the Agricultural Substrates on Yield of Biogas and Kinetics of Anaerobic Digestion. SUSTAINABILITY 2018. [DOI: 10.3390/su10103669] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of mechanical pre-treatment of nine different agricultural substrates minced to particle sizes of 1.5 mm, 5 mm and 10 mm on biogas and methane yields and fermentation kinetics was investigated. The results showed, that for five of the nine tested substrates (grass, Progas rye, Palazzo rye, tall wheatgrass, beet), a higher biogas production was obtained for the degree of fragmentation of 10 mm compared to fragmentation of 5 mm and 1.5 mm. For fragmentation of 5 mm, the highest biogas production was achieved for sorghum silage, Atletico maize and Cannavaro maize—649.80, 735.59 and 671.83 Nm3/Mg VS, respectively. However, for the degree of fragmentation of 1.5 mm, the highest biogas production (510.43 Nm3/Mg volatile solid (VS)) was obtained with Topinambur silage. The modified Gompertz model fitted well the kinetics of anaerobic digestion of substrates and show a significant dependence of the model parameters Hmax (biogas production potential) and Rmax (maximum rate of biogas production) on the degree of substrate fragmentation.
Collapse
|
22
|
Tsapekos P, Kougias PG, Angelidaki I. Mechanical pretreatment for increased biogas production from lignocellulosic biomass; predicting the methane yield from structural plant components. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 78:903-910. [PMID: 32559985 DOI: 10.1016/j.wasman.2018.07.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/14/2018] [Accepted: 07/06/2018] [Indexed: 05/25/2023]
Abstract
Lignocellulosic substrates are associated with limited biodegradability due to the structural complexity. For that reason, a pretreatment step is mandatory for efficient biomass transformation which will lead to increased bioenergy output. The aim of the present study was to assess the efficiency of two pretreatment machines to enhance the methane yield of meadow grass. Specifically, the application of shearing forces with a rotated plastic sweeping brush against a steel roller significantly increased biomass biodegradability by 20% under relatively gentle operation conditions (600 rpm). The more intense operation (1200 rpm) was not associated with higher methane yield enhancement. Regarding an alternative machine, in which the brush was replaced with a coarse steel roller resulted in a more distinct effect (+27%) despite the lower rotating speed (∼400 rpm). Moreover, the association of the substrate's individual chemical components and the practical methane yield was assessed, establishing single and multiple linear regression models. However, the estimation accuracy was rather low with either single (regressor: lignin, R2: 0.50) or multiple linear regression analyses (regressors: arabinan-lignin-protein, R2: 0.61). Results showed that poorly lignified plant tissue containing relatively high fractions of protein and arabinan is more susceptible to anaerobic digestion.
Collapse
Affiliation(s)
- Panagiotis Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Panagiotis G Kougias
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
23
|
Lymperatou A, Gavala HN, Skiadas IV. Optimization of Aqueous Ammonia Soaking of manure fibers by Response Surface Methodology for unlocking the methane potential of swine manure. BIORESOURCE TECHNOLOGY 2017; 244:509-516. [PMID: 28803100 DOI: 10.1016/j.biortech.2017.07.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Swine manure mono-digestion often results to economically non-feasible processes, due to the high dilution and ammonia concentration together with the low degradation rates it presents. The effects of different parameters of Aqueous Ammonia Soaking (AAS) as a pretreatment for improving the digestion of manure fibers when coupled to an ammonia removal step were investigated in this study. Response Surface Methodology was followed and the influence and interactions of the following AAS parameters were studied: NH3 concentration, duration and solid-to-liquid ratio. The mild conditions found to be optimal (7%w/w NH3, 96h, and 0.16kg/L) in combination to a significant increase of the short term CH4 yield (244% in 17days), make this pretreatment a promising solution for improving swine manure mono-digestion. Furthermore, compositional analysis of the manure fibers revealed significant solubilization of hemicellulose, while no lignin removal or loss of cellulose occurred under optimal conditions.
Collapse
Affiliation(s)
- Anna Lymperatou
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, Kongens Lyngby 2800, Denmark
| | - Hariklia N Gavala
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, Kongens Lyngby 2800, Denmark
| | - Ioannis V Skiadas
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, Kongens Lyngby 2800, Denmark.
| |
Collapse
|
24
|
Rodriguez C, Alaswad A, El-Hassan Z, Olabi AG. Mechanical pretreatment of waste paper for biogas production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 68:157-164. [PMID: 28688546 DOI: 10.1016/j.wasman.2017.06.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
In the anaerobic digestion of lignocellulosic materials such as waste paper, the accessibility of microorganisms to the fermentable sugars is restricted by their complex structure. A mechanical pretreatment with a Hollander beater was assessed in order to reduce the biomass particle size and to increase the feedstock' specific surface area available to the microorganisms, and therefore improve the biogas yield. Pretreatment of paper waste for 60min improves the methane yield by 21%, from a value of 210ml/gVS corresponding to untreated paper waste to 254ml/gVS. 30min pretreatment have no significant effect on the methane yield. A response surface methodology was used to evaluate the effect of the beating time and feedstock/inoculum ratio on the methane yield. An optimum methane yield of 253ml/gVS was achieved at 55min of beating pretreatment and a F/I ratio of 0.3.
Collapse
Affiliation(s)
- C Rodriguez
- Institute of Engineering and Energy Technologies, School of Engineering and Computing, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - A Alaswad
- School of Engineering and the Built Environment, Birmingham City University, Birmingham B5 5JU, UK
| | - Z El-Hassan
- Institute of Engineering and Energy Technologies, School of Engineering and Computing, University of the West of Scotland, Paisley PA1 2BE, UK
| | - A G Olabi
- Institute of Engineering and Energy Technologies, School of Engineering and Computing, University of the West of Scotland, Paisley PA1 2BE, UK
| |
Collapse
|
25
|
Tsapekos P, Kougias P, Egelund H, Larsen U, Pedersen J, Trénel P, Angelidaki I. Improving the energy balance of grass-based anaerobic digestion through combined harvesting and pretreatment. Anaerobe 2017; 46:131-137. [DOI: 10.1016/j.anaerobe.2016.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
|
26
|
Strang O, Ács N, Wirth R, Maróti G, Bagi Z, Rákhely G, Kovács KL. Bioaugmentation of the thermophilic anaerobic biodegradation of cellulose and corn stover. Anaerobe 2017; 46:104-113. [DOI: 10.1016/j.anaerobe.2017.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/16/2017] [Accepted: 05/24/2017] [Indexed: 12/26/2022]
|
27
|
|
28
|
Tsapekos P, Kougias PG, Vasileiou SA, Treu L, Campanaro S, Lyberatos G, Angelidaki I. Bioaugmentation with hydrolytic microbes to improve the anaerobic biodegradability of lignocellulosic agricultural residues. BIORESOURCE TECHNOLOGY 2017; 234:350-359. [PMID: 28340440 DOI: 10.1016/j.biortech.2017.03.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 05/23/2023]
Abstract
Bioaugmentation with hydrolytic microbes was applied to improve the methane yield of bioreactors fed with agricultural wastes. The efficiency of Clostridium thermocellum and Melioribacter roseus to degrade lignocellulosic matter was evaluated in batch and continuously stirred tank reactors (CSTRs). Results from batch assays showed that C. thermocellum enhanced the methane yield by 34%. A similar increase was recorded in CSTR during the bioaugmentation period; however, at steady-state the effect was noticeably lower (7.5%). In contrast, the bioaugmentation with M. roseus did not promote markedly the anaerobic biodegradability, as the methane yield was increased up to 10% in batch and no effect was shown in CSTR. High-throughput 16S rRNA amplicon sequencing was used to assess the effect of bioaugmentation strategies on bacterial and archaeal populations. The microbial analysis revealed that both strains were not markedly resided into biogas microbiome. Additionally, the applied strategies did not alter significantly the microbial communities.
Collapse
Affiliation(s)
- P Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - P G Kougias
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| | - S A Vasileiou
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark; School of Chemical Engineering, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
| | - L Treu
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - S Campanaro
- Department of Biology, University of Padua, Via U. Bassi 58/b, 35121 Padova, Italy
| | - G Lyberatos
- School of Chemical Engineering, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
| | - I Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
29
|
Vyrides I, Stuckey DC. Compatible solute addition to biological systems treating waste/wastewater to counteract osmotic and other environmental stresses: a review. Crit Rev Biotechnol 2017; 37:865-879. [DOI: 10.1080/07388551.2016.1266460] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ioannis Vyrides
- Department of Environmental Science and Technology, Cyprus University of Technology, Lemesos, Cyprus
| | - David C. Stuckey
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
30
|
Tsapekos P, Kougias PG, Frison A, Raga R, Angelidaki I. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment. BIORESOURCE TECHNOLOGY 2016; 216:545-552. [PMID: 27268439 DOI: 10.1016/j.biortech.2016.05.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/23/2016] [Accepted: 05/28/2016] [Indexed: 06/06/2023]
Abstract
Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from the effluent stream of biogas reactors. Batch and continuous experiments were conducted to evaluate the efficiency of these pretreatments. In batch experiments, the mechanical pretreatment improved the degradability up to 45%. Even higher efficiency was shown by applying thermal alkaline pretreatments, enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55°C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas plants can be increased by further exploiting the fraction of the digested manure fibers which are discarded in the post-storage tank.
Collapse
Affiliation(s)
- P Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Panagiotis G Kougias
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - A Frison
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark; DII Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy
| | - R Raga
- DII Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy
| | - I Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|