1
|
Development of a simulated moving bed process for ultra-high-purity separation of ribose from a low-selectivity sugar mixture in microalgal hydrolyzate. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Seon G, Kim HS, Cho JM, Kim M, Park WK, Chang YK. Effect of post-treatment process of microalgal hydrolysate on bioethanol production. Sci Rep 2020; 10:16698. [PMID: 33028886 PMCID: PMC7542428 DOI: 10.1038/s41598-020-73816-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/24/2020] [Indexed: 11/14/2022] Open
Abstract
Microalgae accumulate abundant lipids and are a promising source for biodiesel. However, carbohydrates account for 40% of microalgal biomass, an important consideration when using them for the economically feasible production of biodiesel. In this study, different acid hydrolysis and post-treatment processing of Chlorella sp. ABC-001 was performed, and the effect of these different hydrolysates on bioethanol yield by Saccharomyces cerevisiae KL17 was evaluated. For hydrolysis using H2SO4, the neutralization using Ca(OH)2 led to a higher yield (0.43 g ethanol/g sugars) than NaOH (0.27 g ethanol/g sugars). Application of electrodialysis to the H2SO4 + NaOH hydrolysate increased the yield to 0.35 g ethanol/g sugars, and K+ supplementation further enhanced the yield to 0.41 g ethanol/g sugars. Hydrolysis using HNO3 led to the generation of reactive species. Neutralization using only NaOH yielded 0.02 g ethanol/g sugars, and electrodialysis provided only a slight enhancement (0.06 g ethanol/g sugars). However, lowering the levels of reactive species further increased the yield to 0.25 g ethanol/g sugars, and K+ supplementation increased the yield to 0.35 g ethanol/g sugars. Overall, hydrolysis using H2SO4 + Ca(OH)2 provided the highest ethanol yield, and the yield was almost same as from conventional medium. This research emphasizes the importance of post-treatment processing that is modified for the species or strains used for bioethanol fermentation.
Collapse
Affiliation(s)
- Gyeongho Seon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hee Su Kim
- Daegu Center, Korea Basic Science Institute (KBSI), 80 Daehak-ro, Daegu, 41566, Republic of Korea
| | - Jun Muk Cho
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Minsik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Won-Kun Park
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul, 03016, Republic of Korea.
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea. .,Advanced Biomass R&D Center, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
3
|
Wei W, Shang Y, Zhang P, Liu Y, You D, Yin B, Ye B. Engineering Prokaryotic Transcriptional Activator XylR as a Xylose-Inducible Biosensor for Transcription Activation in Yeast. ACS Synth Biol 2020; 9:1022-1029. [PMID: 32268060 DOI: 10.1021/acssynbio.0c00122] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biosensors regulated by specific substrates are needed to develop genetic tools to meet the needs of engineering microbial cell factories. Here, a xylose-inducible biosensor (xylbiosensor), comprising the Escherichia coli activation factor XylR, fusion activation domain (AD) VPRH, and a hybrid promoter with operator xylO, was established in Yarrowia lipolytica. The addition of xylose to an engineered Y. lipolytica strain harboring the xylbiosensor could trigger significant transcriptional activation of target genes, such as mcherry and the xylose utilization gene. Furthermore, a novel promoter Pleu-Pxo-Ptef was developed to construct a bidirectional expression system. The xylbiosensor showed good portability in Saccharomyces cerevisiae, suggesting its potential value in other eukaryotic cells. This study is the first to construct a "turn-on" xylbiosensor induced by xylose addition based on a prokaryotic activator XylR and eukaryotic universal AD. The xylbiosensor exhibits potential in pathway engineering for xylose utilization and xylose-derived product biosynthesis in yeast.
Collapse
Affiliation(s)
- Wenping Wei
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanzhe Shang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ping Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yong Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Di You
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bincheng Yin
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bangce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China
| |
Collapse
|
4
|
Liu JJ, Lee JW, Yun EJ, Jung SM, Seo JH, Jin YS. L-Fucose production by engineered Escherichia coli. Biotechnol Bioeng 2019; 116:904-911. [PMID: 30597526 DOI: 10.1002/bit.26907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/18/2018] [Accepted: 12/26/2018] [Indexed: 12/31/2022]
Abstract
L-Fucose (6-deoxy-L-galactose) is a major constituent of glycans and glycolipids in mammals. Fucosylation of glycans can confer unique functional properties and may be an economical way to manufacture L-fucose. Research can extract L-fucose directly from brown algae, or by enzymatic hydrolysis of L-fucose-rich microbial exopolysaccharides. However, these L-fucose production methods are not economical or scalable for various applications. We engineered an Escherichia coli strain to produce L-fucose. Specifically, we modified the strain genome to eliminate endogenous L-fucose and lactose metabolism, produce 2'-fucosyllactose (2'-FL), and to liberate L-fucose from 2'-FL. This E. coli strain produced 16.7 g/L of L-fucose with productivity of 0.1 g·L-1 ·h-1 in a fed-batch fermentation. This study presents an efficient one-pot biosynthesis strategy to produce a monomeric form of L-fucose by microbial fermentation, making large-scale industrial production of L-fucose feasible.
Collapse
Affiliation(s)
- Jing-Jing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jae Won Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IIllinois
| | - Eun Ju Yun
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Biotechnology, Graduate School, Korea University, Seoul, Republic of Korea
| | - Sang-Min Jung
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IIllinois
| |
Collapse
|
5
|
Seon G, Joo HW, Kim YJ, Park J, Chang YK. Hydrolysis of Lipid-Extracted Chlorella vulgaris by Simultaneous Use of Solid and Liquid Acids. Biotechnol Prog 2018; 35:e2729. [PMID: 30299000 DOI: 10.1002/btpr.2729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/16/2018] [Accepted: 09/28/2018] [Indexed: 11/05/2022]
Abstract
Microalgal biomass was hydrolyzed using a solid acid catalyst with the aid of liquid acid. The use of solid acid as the main catalyst instead of liquid acid was to omit subsequent neutralization and/or desalination steps, which are commonly required in using the resulting hydrolysates for microbial fermentation. The hydrolysis of 10 g/L of lipid-extracted Chlorella vulgaris containing 12.2% carbohydrates using 7.6 g/L Amberlyst 36 and 0.0075 N nitric acid at 150°C resulted in 1.08 g/L of mono-sugars with a yield of 88.5%. For hydrolysis of higher concentrations of the biomass over 10 g/L, the amount of Amberlyst 36 needed to be increased in proportion to the biomass concentration to maintain similar levels of hydrolysis performance. Increasing the solid acid concentration protected the surface of the solid acid from being severely covered by cell debris during the reaction. A hydrolysate of lipid-extracted C. vulgaris 50 g/L was used, with no post-treatment of desalination, for the cultivation of Klebsiella oxytoca producing 2,3-butanediol. Cell growth in the hydrolysate was found to be almost the same as in the conventional medium with the same monosaccharide composition, confirming its fermentation compatibility. It was noticeable that the yield of 2,3-butanediol with the hydrolysate was observed to be 2.6 times higher than that with the conventional medium. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2729, 2019.
Collapse
Affiliation(s)
- Gyeongho Seon
- Dept. of Chemical & Biomolecular Engineering, Daejeon, 34141, Republic of Korea
| | - Hyun Woo Joo
- Dept. of Chemical & Biomolecular Engineering, Daejeon, 34141, Republic of Korea
| | - Yong Jae Kim
- Dept. of Chemical & Biomolecular Engineering, Daejeon, 34141, Republic of Korea
| | - Juyi Park
- Advanced Biomass R&D Center, Daejeon, 34141, Republic of Korea
| | - Yong Keun Chang
- Dept. of Chemical & Biomolecular Engineering, Daejeon, 34141, Republic of Korea.,Advanced Biomass R&D Center, Daejeon, 34141, Republic of Korea
| |
Collapse
|
6
|
Lee CG, Jo CY, Song YJ, Mun S. Continuous-mode separation of fucose and 2,3-butanediol using a three-zone simulated moving bed process and its performance improvement by using partial extract-collection, partial extract-recycle, and partial desorbent-port closing. J Chromatogr A 2018; 1579:49-59. [PMID: 30389210 DOI: 10.1016/j.chroma.2018.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/07/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
Abstract
If a multi-component monosugar mixture including fucose was used as the substrates for the Klebsiella oxytoca fermentation, it could offer the following two benefits simultaneously; (i) the removal of all monosugars other than fucose, and (ii) the acquisition of 2,3-butanediol (BD). To utilize such two benefits in favor of the economical efficiency of the fucose production process, it is essential to accomplish a high-purity separation between fucose and BD on the basis of a highly-economical mode. To address this issue, we aimed to develop a simulated moving bed (SMB) process for continuous-mode separation of fucose and BD with high purities. It was first found that an Amberchrom-CG71C resin could become a suitable adsorbent for the separation of interest. The intrinsic parameters of fucose and BD on such proven adsorbent were determined, and then applied to the optimal design of the fucose-BD separation SMB. The capability of the designed SMB in ensuring high purities and high yields was experimentally verified. Finally, we devised two potential strategies to make a further improvement in product concentrations and/or desorbent usage while keeping the purities and yields of fucose and BD almost unchanged. The first strategy was based on partial extract-collection and partial extract-discard, which was found to result in 33% higher BD product concentration. The second strategy was based on partial extract-collection, partial extract-recycle, and partial desorbent-port closing, which could lead to 25% lower desorbent usage, 33% higher BD product concentration, and 7% higher fucose product concentration.
Collapse
Affiliation(s)
- Chung-Gi Lee
- Department of Chemical Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul, 04763, South Korea
| | - Cheol Yeon Jo
- Department of Chemical Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul, 04763, South Korea
| | - Ye Jin Song
- Department of Chemical Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul, 04763, South Korea
| | - Sungyong Mun
- Department of Chemical Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul, 04763, South Korea.
| |
Collapse
|
7
|
Optimization of production rate, productivity, and product concentration for a simulated moving bed process aimed atfucose separation using standing-wave-design and genetic algorithm. J Chromatogr A 2018; 1575:113-121. [PMID: 30287060 DOI: 10.1016/j.chroma.2018.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/08/2018] [Accepted: 09/15/2018] [Indexed: 11/23/2022]
Abstract
The effectiveness of a simulated moving bed (SMB) technology in the continuous separation of fucose from a multi-component monosugar mixture, which stemmed from defatted microalgae, has recently been identified. To guarantee high economical efficiency of such fucose-production method, the comprehensive optimization of the relevant fucose-separation SMB process needs to be accomplished such that its production rate (Prate) and/or productivity (Prod) can be maximized while meeting the requirements on fucose product concentration (Cprod,F) and pressure drop (ΔPSMB). To resolve this issue, the SMB optimization program based on standing-wave-design method and genetic algorithm was prepared and then applied to the fucose-separation SMB optimization. It was found that the Prate, under a given particle size, could reach its maximum when the column length was selected to create a balance between the effects of the two limiting factors related to Cprod,F and ΔPSMB. It was also found that the Prate was governed by fucose yield, if the SMB would be in need of a relatively high Cprod,F; otherwise, the Prate was governed by feed flow rate. If the particle size of the SMB adsorbent was fixed at one of the commercially available ones, the SMB conditions leading to the highest Prate and the highest Prod coincided with each other. By contrast, if the particle size was included as one of optimization variables, the Prate and Prod represented a trade-off relationship. Finally, it was confirmed from the simultaneous optimization for Prate and Prod that the increase of particle size improved Prate at the cost of Prod, thereby causing the maximum Prod to be always attained at a smaller particle size than the maximum Prate regardless of the target Cprod,F level.
Collapse
|
8
|
Yu S, Liu JJ, Yun EJ, Kwak S, Kim KH, Jin YS. Production of a human milk oligosaccharide 2'-fucosyllactose by metabolically engineered Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:101. [PMID: 29950173 PMCID: PMC6020385 DOI: 10.1186/s12934-018-0947-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/16/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND 2'-Fucosyllactose (2-FL), one of the most abundant oligosaccharides in human milk, has potential applications in foods due to its health benefits such as the selective promotion of bifidobacterial growth and the inhibition of pathogenic microbial binding to the human gut. Owing to the limited amounts of 2-FL in human milk, alternative microbial production of 2-FL is considered promising. To date, microbial production of 2-FL has been studied mostly in Escherichia coli. In this study, 2-FL was produced alternatively by using a yeast Saccharomyces cerevisiae, which may have advantages over E. coli. RESULTS Fucose and lactose were used as the substrates for the salvage pathway which was constructed with fkp coding for a bifunctional enzyme exhibiting L-fucokinase and guanosine 5'-diphosphate-L-fucose phosphorylase activities, fucT2 coding for α-1,2-fucosyltransferase, and LAC12 coding for lactose permease. Production of 2-FL by the resulting engineered yeast was verified by mass spectrometry. 2-FL titers of 92 and 503 mg/L were achieved from 48-h batch fermentation and 120-h fed-batch fermentation fed with ethanol as a carbon source, respectively. CONCLUSIONS This is the first report on 2-FL production by using yeast S. cerevisiae. These results suggest that S. cerevisiae can be considered as a host engineered for producing 2-FL via the salvage pathway.
Collapse
Affiliation(s)
- Sora Yu
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 South Korea
| | - Jing-Jing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 South Korea
| | - Suryang Kwak
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 South Korea
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
9
|
Kashiwagi N, Ogino C, Kondo A. Production of chemicals and proteins using biomass-derived substrates from a Streptomyces host. BIORESOURCE TECHNOLOGY 2017; 245:1655-1663. [PMID: 28651868 DOI: 10.1016/j.biortech.2017.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Bioproduction using microbes from biomass feedstocks is of interest in regards to environmental problems and cost reduction. Streptomyces as an industrial microorganism plays an important role in the production of useful secondary metabolites for various applications. This strain also secretes a wide range of extracellular enzymes which degrade various biopolymers in nature, and it consumes these degrading substrates as nutrients. Hence, Streptomyces can be employed as a cell factory for the conversion of biomass-derived substrates into various products. This review focuses on the following two points: (1) Streptomyces as a producer of enzymes for degrading biomass-derived polysaccharides and polymers; and, (2) wild-type and engineered strains of Streptomyces as a host for chemical production from biomass-derived substrates.
Collapse
Affiliation(s)
- Norimasa Kashiwagi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
10
|
Development of an efficient process for recovery of fucose in a multi-component mixture of monosugars stemming from defatted microalgal biomass. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Chin YW, Seo N, Kim JH, Seo JH. Metabolic engineering of Escherichia coli to produce 2'-fucosyllactose via salvage pathway of guanosine 5'-diphosphate (GDP)-l-fucose. Biotechnol Bioeng 2016; 113:2443-52. [PMID: 27217241 DOI: 10.1002/bit.26015] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/20/2016] [Accepted: 05/15/2016] [Indexed: 12/24/2022]
Abstract
2'-Fucosyllactose (2-FL) is one of the key oligosaccharides in human milk. In the present study, the salvage guanosine 5'-diphosphate (GDP)-l-fucose biosynthetic pathway from fucose was employed in engineered Escherichia coli BL21star(DE3) for efficient production of 2-FL. Introduction of the fkp gene coding for fucokinase/GDP-l-fucose pyrophosphorylase (Fkp) from Bacteroides fragilis and the fucT2 gene encoding α-1,2-fucosyltransferase from Helicobacter pylori allows the engineered E. coli to produce 2-FL from fucose, lactose and glycerol. To enhance the lactose flux to 2-FL production, the attenuated, and deleted mutants of β-galactosidase were employed. Moreover, the 2-FL yield and productivity were further improved by deletion of the fucI-fucK gene cluster coding for fucose isomerase (FucI) and fuculose kinase (FucK). Finally, fed-batch fermentation of engineered E. coli BL21star(DE3) deleting lacZ and fucI-fucK, and expressing fkp and fucT2 resulted in 23.1 g/L of extracellular concentration of 2-FL and 0.39 g/L/h productivity. Biotechnol. Bioeng. 2016;113: 2443-2452. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Young-Wook Chin
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Nari Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Han Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|