1
|
Xu D, Ma C, Wu M, Deng Y, He YC. Improved production of adipic acid from a high loading of corn stover via an efficient and mild combination pretreatment. BIORESOURCE TECHNOLOGY 2023; 382:129196. [PMID: 37207697 DOI: 10.1016/j.biortech.2023.129196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Adipic acid is one kind of important organic dibasic acid, which has crucial role in manufacturing plastics, lubricants, resins, fibers, etc. Using lignocellulose as feedstock for producing adipic acid can reduce production cost and improve bioresource utilization. After pretreated in the mixture of 7 wt% NaOH and 8 wt% ChCl-PEG10000 at 25 oC for 10 min, the surface of corn stover became loose and rough. The specific surface area was increased after the removal of lignin. A high loading of pretreated corn stover was enzymatically hydrolyzed by cellulase (20 FPU/g substrate) and xylanase (15 U/g substrate), and the yield of reducing sugars was as high as 75%. Biomass-hydrolysates obtained by enzymatic hydrolysis were efficiently fermented to produce adipic acid, and the yield was 0.45 g adipic acid per g reducing sugar. A sustainable approach for manufacturing adipic acid from lignocellulose via a room temperature pretreatment has great potential in future.
Collapse
Affiliation(s)
- Daozhu Xu
- School of Pharmacy, Changzhou University, Changzhou, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, PR China
| | - Mengjia Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, PR China
| | - Yu Deng
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, PR China
| | - Yu-Cai He
- School of Pharmacy, Changzhou University, Changzhou, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, PR China.
| |
Collapse
|
2
|
Xiao K, Li H, Liu L, Liu X, Lian Y. Quantitative comparison of the delignification performance of lignocellulosic biomass pretreatment technologies for enzymatic saccharification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22929-22940. [PMID: 36307567 DOI: 10.1007/s11356-022-23817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Pretreatments for delignification are required for the enzymatic saccharification of lignocellulosic biomasses. However, in the current literature, various pretreatment approaches have been applied for the same kinds of biomass. To find the optimum pretreatments for biomaterials containing various lignin contents, in this study, a quantitative comparison was carried out on the delignification performance of 15 categories of pretreatments. In total, 1729 sets of biomass, cellulose, hemicellulose, and lignin recovery data were collected from 214 relevant studies. Box plots and Cate-Nelson-like graphs were applied for analyses. The results showed that alkali, oxidation, organic solvent, and multistep pretreatments generally were better at removing lignin and recovering cellulose. Moreover, among these four categories, alkali pretreatments had the best performance, increasing the saccharification efficiency by approximately five-fold. Considering both delignification performance and saccharification improvement, alkali pretreatments are currently considered to be the optimum pretreatment methods for enzymatic saccharification.
Collapse
Affiliation(s)
- Kai Xiao
- College of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Huangshi, 435003, China
| | - Haixiao Li
- College of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Le Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaoning Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yi Lian
- College of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, 300387, China
| |
Collapse
|
3
|
Enhanced Enzymatic Saccharification of Tomato Stalk by Combination Pretreatment with NaOH and ChCl:Urea-Thioure in One-Pot Manner. Processes (Basel) 2022. [DOI: 10.3390/pr10101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, the mixture of NaOH and deep eutectic solvent (DES) ChCl:UA-TA was firstly used to pretreat waste tomato stalk (TS). The effects of pretreatment time, pretreatment temperature, NaOH dosage, and DES dose were investigated, and the synergistic effects of dilute NaOH and DES combination pretreatment were tested on the influence of enzymatic saccharification. It was found that the relationship between delignification and saccharification rate had a significant linear correction. When TS was pretreated with NaOH (7 wt%)–ChCl:UA-TA (8 wt%) in a solid-to-liquid ratio of 1:10 (wt:wt) at 75 °C for 60 min, the delignification reached 82.1%. The highest yield of reducing sugars from NaOH–ChCl:UA-TA-treated TS could reach 62.5% in an acetate buffer (50 mM, pH 4.8) system containing cellulase (10.0 FPU/g TS) and xylanase (30.0 CBU/g TS) at 50 °C. In summary, effective enzymatic saccharification of TS was developed by a combination pretreatment with dilute NaOH and ChCl:UA-TA, which has potential application in the future.
Collapse
|
4
|
Enhancement of anaerobic digestion performance of corn straw via combined sodium hydroxide-cellulase pretreatment. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Zhang J, Zhang X, Yang M, Singh S, Cheng G. Transforming lignocellulosic biomass into biofuels enabled by ionic liquid pretreatment. BIORESOURCE TECHNOLOGY 2021; 322:124522. [PMID: 33340950 DOI: 10.1016/j.biortech.2020.124522] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 05/11/2023]
Abstract
Processes that can convert lignocellulosic biomass into biofuels and chemicals are particularly attractive considering renewability and minimal environmental impact. Ionic liquids (ILs) have been used as novel solvents in the process development in that they can effectively deconstruct recalcitrant lignocellulosic biomass for high sugar yield and lignin recovery. From cellulose-dissolving ILs to choline-based and protic acidic ILs, extensive research in this field has been done, driven by the promising future of IL pretreatment. Meanwhile, shortcomings and technological hurdles are ascertained during research and developments. It is necessary to present a general overview of recent developments and challenges in this field. In this review paper, three aspects of advances in IL pretreatment are critically analyzed: biocompatible ILs, protic acidic ILs and combinatory pretreatments.
Collapse
Affiliation(s)
- Jinxu Zhang
- State Key Laboratory of Organic-Inorganic Composites and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Zhang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Mingkun Yang
- State Key Laboratory of Organic-Inorganic Composites and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Seema Singh
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Gang Cheng
- State Key Laboratory of Organic-Inorganic Composites and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
6
|
Li D, Long L, Ding S. Alkaline organosolv pretreatment of different sorghum stem parts for enhancing the total reducing sugar yields and p-coumaric acid release. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:106. [PMID: 32536971 PMCID: PMC7288516 DOI: 10.1186/s13068-020-01746-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The sorghum stem can be divided into the pith and rind parts with obvious differences in cell type and chemical composition, thus arising the different recalcitrance to enzyme hydrolysis and demand for different pretreatment conditions. The introduction of organic solvents in the pretreatment can reduce over-degradation of cellulose and hemicellulose, but significance of organic solvent addition in pretreatment of different parts of sorghum stem is still unclear. Valorization of each component is critical for economy of sorghum biorefinery. Therefore, in this study, NaOH-ethanol pretreatment condition for different parts of the sorghum stem was optimized to maximize p-coumaric acid release and total reducing sugar recovery. RESULT Ethanol addition improved p-coumaric acid release and delignification efficiency, but significantly reduced hemicellulose deconstruction in NaOH-ethanol pretreatment. Optimization using the response surface methodology revealed that the pith, rind and whole stem require different NaOH-ethanol pretreatment conditions for maximal p-coumaric acid release and xylan preservation. By respective optimal NaOH-ethanol pretreatment, the p-coumaric acid release yields reached 94.07%, 97.24% and 95.05% from pith, rind and whole stem, which increased by 8.16%, 8.38% and 8.39% compared to those of NaOH-pretreated samples. The xylan recoveries of pith, rind and whole stem reached 76.80%, 88.46% and 85.01%, respectively, which increased by 47.75%, 15.11% and 35.97% compared to NaOH pretreatment. Adding xylanase significantly enhanced the enzymatic saccharification of pretreated residues. The total reducing sugar yields after respective optimal NaOH-ethanol pretreatment and enzymatic hydrolysis reached 84.06%, 82.29% and 84.09% for pith, rind and whole stem, respectively, which increased by 29.56%, 23.67% and 25.56% compared to those of NaOH-pretreated samples. Considering the separation cost of the different stem parts, whole sorghum stem can be directly used as feedstock in industrial biorefinery. CONCLUSION These results indicated that NaOH-ethanol is effective for the efficient fractionation and pretreatment of sorghum biomass. This work will help to understand the differences of different parts of sorghum stem under NaOH-ethanol pretreatment, thereby improving the full-component utilization of sorghum stem.
Collapse
Affiliation(s)
- Dandan Li
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Liangkun Long
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Shaojun Ding
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
7
|
Chong G, Di J, Qian J, Wang C, He Y, Huo X, Wu C, Zhang L, Zhang Z, Tang Y, Ma C. Efficient pretreatment of sugarcane bagasse via dilute mixed alkali salts (K2CO3/K2SO3) soaking for enhancing its enzymatic saccharification. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Shen Q, Chen Y, Lin H, Wang Q, Zhao Y. Agro-industrial waste recycling by Trichosporon fermentans: conversion of waste sweetpotato vines alone into lipid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8793-8799. [PMID: 29327194 DOI: 10.1007/s11356-018-1231-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Agro-industrial waste can be used to replace traditional carbohydrates, such as sucrose, starch, and glucose in many industrial fermentation processes. This study investigated the conversion of pre-treated waste sweetpotato vines (SV) into lipid by Trichosporon fermentans under the separate hydrolysis and fermentation (SHF) and the simultaneous saccharification and fermentation (SSF) processes. The results showed that SV autoclaving significantly increased the lipid accumulation of T. fermentans compared with acid or alkaline hydrolysis. The effects of different pre-treatments on SV were also studied by scanning electron microscopy and Fourier transform infrared spectroscopy, which showed the partial removal of the aliphatic fractions, hemicelluloses, and lignin during pre-treatment. Moreover, the lipid yield of T. fermentans in SSF was 6.98 g L-1, which was threefold higher than that (2.79 g L-1) in SHF, and the lipid contents of yeast in SSF and SHF were 36 and 25%, respectively. Overall, this study indicated that SSF using autoclaved SV could increase the growth and lipid production of T. fermentans and provided an efficient way to realize the resource utilization of waste SV.
Collapse
Affiliation(s)
- Qi Shen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
| | - Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
| | - Hui Lin
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China
| | - Qun Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuhua Zhao
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
9
|
Wang S, Chen J, Yang G, Gao W, Chen K. Efficient conversion of Hubrid Pennisetum to glucose by oxygen-aqueous alkaline ionic liquid media pretreatment under benign conditions. BIORESOURCE TECHNOLOGY 2017; 243:335-338. [PMID: 28683386 DOI: 10.1016/j.biortech.2017.06.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
To enhance the cellulose digestibility of energy grass hybrid Pennisetum (P. americanum×P. purpureum, HP) with low energy-consumption and high efficiency, a novel combinatorial pretreatment of oxygen-aqueous alkaline ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([Emim]Ac) media (OEA) was developed in this work. The combinatorial pretreatment was performed under the relatively low temperature (120°C), short retention time (30min), and 12bar oxygen pressure. The combinatorial pretreatment of OEA was demonstrated effectively for pretreatment of hybrid Pennisetum, which evidenced by the removal of lignin, degradation of carbohydrate, and porosity property of the regenerated biomass. Subsequently, a higher glucose recovery (96.9%) at a low enzyme loading (20FPU/g substrate) was obtained by the OEA pretreatment, and it was 9.1 times as much as the untreated samples. Overall, the novel OEA combinatorial pretreatment has the advantages of low thermal energy input and enzyme usage, and short retention time.
Collapse
Affiliation(s)
- Shengdan Wang
- State Key Laboratory of Pulp and Paper Engineering, Plant Micro/Nano Fiber Research Center, South China University of Technology, Guangzhou 510640, China
| | - Jiachuan Chen
- Key Lab of Pulp & Paper Science and Technology of Education Ministry of China, Qi Lu University of Technology, Jinan 250353, China
| | - Guihua Yang
- Key Lab of Pulp & Paper Science and Technology of Education Ministry of China, Qi Lu University of Technology, Jinan 250353, China
| | - Wenhua Gao
- State Key Laboratory of Pulp and Paper Engineering, Plant Micro/Nano Fiber Research Center, South China University of Technology, Guangzhou 510640, China.
| | - Kefu Chen
- State Key Laboratory of Pulp and Paper Engineering, Plant Micro/Nano Fiber Research Center, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
10
|
Enzymatic in situ saccharification of sugarcane bagasse pretreated with low loading of alkalic salts Na 2 SO 3 /Na 3 PO 4 by autoclaving. J Biotechnol 2017; 259:73-82. [DOI: 10.1016/j.jbiotec.2017.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/26/2017] [Accepted: 08/04/2017] [Indexed: 11/18/2022]
|
11
|
Chong GG, He YC, Liu QX, Kou XQ, Huang XJ, Di JH, Ma CL. Effective enzymatic in situ saccharification of bamboo shoot shell pretreated by dilute alkalic salts sodium hypochlorite/sodium sulfide pretreatment under the autoclave system. BIORESOURCE TECHNOLOGY 2017; 241:726-734. [PMID: 28628976 DOI: 10.1016/j.biortech.2017.05.182] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 05/25/2023]
Abstract
In this study, dilute alkali salts (0.6% NaClO, 0.067% Na2S) pretreatment at 10% sulfidity under the autoclave system at 120°C for 40min was used for pretreating bamboo shoot shell (BSS). Furthermore, FT-IR, XRD and SEM were employed to characterize the changes in the cellulose structural characteristics (porosity, morphology, and crystallinity) of the pretreated BSS solid residue. After 72h, the reducing sugars and glucose from the enzymatic in situ hydrolysis of 50g/L pretreated BSS in dilute NaClO/Na2S media could be obtained at 31.11 and 20.32g/L, respectively. Finally, the obtained BSS-hydrolysates containing alkalic salt NaClO/Na2S resulted in slightly negative effects on the ethanol production. Glucose in BSS-hydrolysates was fermented from 20.0 to 0.17g/L within 48h, and an ethanol yield of 0.41g/g glucose, which represents 80.1% of the theoretical yield, was obtained. This study provided an effective strategy for potential utilization of BSS.
Collapse
Affiliation(s)
- Gang-Gang Chong
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Yu-Cai He
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.
| | - Qiu-Xiang Liu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Xiao-Qin Kou
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Xiao-Jun Huang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Jun-Hua Di
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Cui-Luan Ma
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
12
|
Chong GG, He YC, Liu QX, Kou XQ, Qing Q. Sequential Aqueous Ammonia Extraction and LiCl/N,N-Dimethyl Formamide Pretreatment for Enhancing Enzymatic Saccharification of Winter Bamboo Shoot Shell. Appl Biochem Biotechnol 2017; 182:1341-1357. [DOI: 10.1007/s12010-017-2402-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/10/2017] [Indexed: 11/30/2022]
|
13
|
Elgharbawy AA, Alam MZ, Kabbashi NA, Moniruzzaman M, Jamal P. Evaluation of several ionic liquids for in situ hydrolysis of empty fruit bunches by locally-produced cellulase. 3 Biotech 2016; 6:128. [PMID: 28330203 PMCID: PMC4909025 DOI: 10.1007/s13205-016-0440-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/25/2016] [Indexed: 11/26/2022] Open
Abstract
Lignocellulosic biomasses, exhibit resistance to enzymatic hydrolysis due to the presence of lignin and hemicellulose. Ionic liquids proved their applicability in lignin degradation, however, ionic liquid removal has to be performed to proceed to hydrolysis. Therefore, this study reports an in situ hydrolysis of empty fruit bunches (EFB) that combined an ionic liquid (IL) pretreatment and enzymatic hydrolysis. For enzyme production, palm kernel cake (PKC) was used as the primary media for microbial cellulase (PKC-Cel) from Trichoderma reesei (RUTC30). The obtained enzyme exhibited a promising stability in several ionic liquids. Among few, in choline acetate [Cho]OAc, PKC-Cel retained 63.16 % of the initial activity after 6 h and lost only 10 % of its activity in 10 % IL/buffer mixture. Upon the confirmation of the PKC-Cel stability, EFB was subjected to IL-pretreatment followed by hydrolysis in a single step without further removal of the IL. The findings revealed that choline acetate [Cho]OAc and choline butyrate [Cho]Bu were among the best ILs used in the study since 0.332 ± 0.05 g glucose/g and 0.565 ± 0.08 g total reducing sugar/g EFB were obtained after 24 h of enzymatic hydrolysis. Compared to the untreated EFB, the amount of reducing sugar obtained after enzymatic hydrolysis increased by three-fold in the case of [Cho]OAc and [Cho]Bu, two-fold with [EMIM]OAc and phosphate-based ILs whereas the lowest concentration was obtained in [TBPH]OAc. Pretreatment of EFB with [Cho]OAc and [Cho]Bu showed significant differences in the morphology of EFB samples when observed with SEM. Analysis of the lignin, hemicellulose and hemicellulose showed that the total lignin content from the raw EFB was reduced from 37.8 ± 0.6 to 25.81 ± 0.35 % (w/w) upon employment of [Cho]OAc in the compatible system. The PKC-Cel from T. reesei (RUTC30) exhibited promising characteristics that need to be investigated further towards a single-step process for bioethanol production.
Collapse
Affiliation(s)
- Amal Ahmed Elgharbawy
- Department of Biotechnology Engineering, Faculty of Engineering, Bioenvironmental Engineering Research Centre (BERC), International Islamic University Malaysia, 50728, Kuala Lumpur, Malaysia
| | - Md Zahangir Alam
- Department of Biotechnology Engineering, Faculty of Engineering, Bioenvironmental Engineering Research Centre (BERC), International Islamic University Malaysia, 50728, Kuala Lumpur, Malaysia.
| | - Nassereldeen Ahmad Kabbashi
- Department of Biotechnology Engineering, Faculty of Engineering, Bioenvironmental Engineering Research Centre (BERC), International Islamic University Malaysia, 50728, Kuala Lumpur, Malaysia
| | - Muhammad Moniruzzaman
- Centre of Research in Ionic Liquids (CORIL), Chemical Engineering Department, Universiti Teknologi Petronas, 32610, Bandar Seri Iskandar, Malaysia
| | - Parveen Jamal
- Department of Biotechnology Engineering, Faculty of Engineering, Bioenvironmental Engineering Research Centre (BERC), International Islamic University Malaysia, 50728, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Hydrolysis kinetics of inulin by imidazole-based acidic ionic liquid in aqueous media and bioethanol fermentation. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2016.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
He YC, Zhang DP, Di JH, Wu YQ, Tao ZC, Liu F, Zhang ZJ, Chong GG, Ding Y, Ma CL. Effective pretreatment of sugarcane bagasse with combination pretreatment and its hydrolyzates as reaction media for the biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate by whole cells of E. coli CCZU-K14. BIORESOURCE TECHNOLOGY 2016; 211:720-726. [PMID: 27060248 DOI: 10.1016/j.biortech.2016.03.150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/26/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
In this study, sugarcane bagasse (SB) was pretreated with combination pretreatment (e.g., sequential KOH extraction and ionic liquid soaking, sequential KOH extraction and Fenton soaking, or sequential KOH extraction and glycerol soaking). After the enzymatic hydrolysis of pretreated SBs, it was found that all these three concentrated hydrolyzates could be used for the asymmetric bioreduction of ethyl 4-chloro-3-oxobutanoate (COBE) into ethyl (S)-4-chloro-3-hydroxybutanoate [(S)-CHBE]. Compared with glucose, arabinose and cellobiose couldn't promote the initial reaction rate, and xylose could increase the intracellular NADH content. Moreover, it was the first report that hydrolyzates could be used for the effective biosynthesis of (S)-CHBE (∼500g/L; 98.0% yield) from 3000 COBE by whole cells of Escherichia coli CCZU-K14 in the presence of β-CD (0.4mol β-CD/mol COBE), l-glutamine (200mM) and glycine (500mM). In conclusion, it is a new alternative to utilize bioresource for the synthesis of key chiral intermediate (S)-CHBE.
Collapse
Affiliation(s)
- Yu-Cai He
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China; Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA.
| | - Dan-Ping Zhang
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Jun-Hua Di
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Yin-Qi Wu
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Zhi-Cheng Tao
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Feng Liu
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Gang-Gang Chong
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Yun Ding
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Cui-Luan Ma
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| |
Collapse
|
16
|
Cai LY, Ma YL, Ma XX, Lv JM. Improvement of enzymatic hydrolysis and ethanol production from corn stalk by alkali and N-methylmorpholine-N-oxide pretreatments. BIORESOURCE TECHNOLOGY 2016; 212:42-46. [PMID: 27078206 DOI: 10.1016/j.biortech.2016.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/01/2016] [Accepted: 04/02/2016] [Indexed: 06/05/2023]
Abstract
A combinative technology of alkali and N-methylmorpholine-N-oxide (NMMO) was used to pretreat corn stalk (CS) for improving the efficiencies of subsequent enzymatic hydrolysis and ethanol fermentation. The results showed that this strategy could not only remove hemicellulose and lignin but also decrease the crystallinity of cellulose. About 98.0% of enzymatic hydrolysis yield was obtained from the pretreated CS as compared with 46.9% from the untreated sample. The yield for corresponding ethanol yield was 64.6% while untreated CS was only 18.8%. Besides, xylose yield obtained from the untreated CS was only 11.1%, while this value was 93.8% for alkali with NMMO pretreated sample. These results suggest that a combination of alkali with 50% (wt/wt) NMMO solution may be a promising alternative for pretreatment of lignocellulose, which can increase the productions of subsequent enzymatic hydrolysis and ethanol fermentation.
Collapse
Affiliation(s)
- Ling-Yan Cai
- State Key Laboratory Cultivation Base of Energy Sources and Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yu-Long Ma
- State Key Laboratory Cultivation Base of Energy Sources and Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Xiao-Xia Ma
- State Key Laboratory Cultivation Base of Energy Sources and Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jun-Min Lv
- State Key Laboratory Cultivation Base of Energy Sources and Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
17
|
Jiang K, Li L, Long L, Ding S. Comparison of alkali treatments for efficient release of p-coumaric acid and enzymatic saccharification of sorghum pith. BIORESOURCE TECHNOLOGY 2016; 207:1-10. [PMID: 26868149 DOI: 10.1016/j.biortech.2016.01.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 05/07/2023]
Abstract
Two separate temperature and time ranges were respectively conducted for optimizing release of p-coumaric acid and enzymatic saccharification of sorghum pith by NaOH pretreatment using response surface methodology. Two desirable pretreatment conditions were selected as follows: 37°C, 2% NaOH and 12h, and 100°C, 1.75% NaOH and 37min in the low and high temperature ranges, respectively. Under these conditions, the enzymatic glucose yields were 85.6% and 90.4% respectively, whereas p-coumaric acid yields were 95.1% and 98.1% respectively. The final recovery of esterified p-coumaric acid reached 82.8% and 87.4% respectively after further separation with HP-20 resin. Interestingly, strong linear correlations exist between p-coumaric acid release with glucan saccharification yield and lignin dissolution. These results indicate that sorghum pith could be an attractive source for natural p-coumaric acid and efficient release of p-coumaric acid and enzymatic saccharification of sorghum pith can be achieved by mild NaOH pretreatment.
Collapse
Affiliation(s)
- Kankan Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lulu Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Liangkun Long
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shaojun Ding
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
18
|
Xu GC, Ding JC, Han RZ, Dong JJ, Ni Y. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. BIORESOURCE TECHNOLOGY 2016; 203:364-9. [PMID: 26597485 DOI: 10.1016/j.biortech.2015.11.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 05/18/2023]
Abstract
In this study, an effective corn stover (CS) pretreatment method was developed for biobutanol fermentation. Deep eutectic solvents (DESs), consisted of quaternary ammonium salts and hydrogen donors, display similar properties to room temperature ionic liquid. Seven DESs with different hydrogen donors were facilely synthesized. Choline chloride:formic acid (ChCl:formic acid), an acidic DES, displayed excellent performance in the pretreatment of corn stover by removal of hemicellulose and lignin as confirmed by SEM, FTIR and XRD analysis. After optimization, glucose released from pretreated CS reached 17.0 g L(-1) and yield of 99%. The CS hydrolysate was successfully utilized in butanol fermentation by Clostridium saccharobutylicum DSM 13864, achieving butanol titer of 5.63 g L(-1) with a yield of 0.17 g g(-1) total sugar and productivity of 0.12 g L(-1)h(-1). This study demonstrates DES could be used as a promising and biocompatible pretreatment method for the conversion of lignocellulosic biomass into biofuel.
Collapse
Affiliation(s)
- Guo-Chao Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ji-Cai Ding
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Rui-Zhi Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jin-Jun Dong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ye Ni
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
19
|
He YC, Liu F, Gong L, Di JH, Ding Y, Ma CL, Zhang DP, Tao ZC, Wang C, Yang B. Enzymatic in situ saccharification of chestnut shell with high ionic liquid-tolerant cellulases from Galactomyces sp. CCZU11-1 in a biocompatible ionic liquid-cellulase media. BIORESOURCE TECHNOLOGY 2016; 201:133-139. [PMID: 26642218 DOI: 10.1016/j.biortech.2015.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 11/13/2015] [Accepted: 11/15/2015] [Indexed: 06/05/2023]
Abstract
In this study, it was the first time to report that the cellulases of Galactomyces sp. CCZU11-1 showed high activity and stability in the culture and reaction media containing IL [Mmim]DMP. Using untreated chestnut shell (CNS) as carbon source in the culture media containing IL [Mmim]DMP (5%, w/v), high activity of FPA (28.6U/mL), xylanase (186.2U/mL), and CMCase (107.3U/mL) were obtained, and 184.9mg/L of total protein was achieved. Furthermore, the changes in the structural features (crystallinity, morphology, and porosity) of the solid residue of CNS utilized with Galactomyces sp. CCZU11-1 were characterized with Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. After was enzymatically hydrolyzed with the prepared crude enzymes in IL diluted to 20% (w/v), a high yield of reducing sugars, 62.1%, was obtained. Significantly, Galactomyces sp. CCZU11-1 showed high potential for the efficient transformation of lignocellulosic materials to glucose in a single-step process.
Collapse
Affiliation(s)
- Yu-Cai He
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA.
| | - Feng Liu
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Lei Gong
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Jun-Hua Di
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Yun Ding
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Cui-Luan Ma
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Dan-Ping Zhang
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Zhi-Cheng Tao
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Cheng Wang
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Bin Yang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| |
Collapse
|
20
|
Effective pretreatment of dilute NaOH-soaked chestnut shell with glycerol–HClO4–water media: structural characterization, enzymatic saccharification, and ethanol fermentation. Bioprocess Biosyst Eng 2016; 39:533-43. [DOI: 10.1007/s00449-015-1535-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/27/2015] [Indexed: 10/22/2022]
|
21
|
He YC, Ding Y, Xue YF, Yang B, Liu F, Wang C, Zhu ZZ, Qing Q, Wu H, Zhu C, Tao ZC, Zhang DP. Enhancement of enzymatic saccharification of corn stover with sequential Fenton pretreatment and dilute NaOH extraction. BIORESOURCE TECHNOLOGY 2015; 193:324-30. [PMID: 26142999 DOI: 10.1016/j.biortech.2015.06.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 05/21/2023]
Abstract
In this study, an effective method by the sequential Fenton pretreatment and dilute NaOH extraction (FT-AE) was chosen for pretreating corn stover. Before dilute NaOH (0.75 wt%) extraction at 90 °C for 1h, Fenton reagent (0.95 g/L of FeSO4 and 29.8 g/L of H2O2) was employed to pretreat CS at a solid/liquid ratio of 1/20 (w/w) at 35 °C for 30 min. The changes in the cellulose structural characteristics (porosity, morphology, and crystallinity) of the pretreated solid residue were correlated with the enhancement of enzymatic saccharification. After being enzymatically hydrolyzed for 72 h, the reducing sugars and glucose from the hydrolysis of 60 g/L FT-AE-CS pretreated could be obtained at 40.96 and 23.61 g/L, respectively. Finally, the recovered hydrolyzates containing glucose had no inhibitory effects on the ethanol fermenting microorganism. In conclusion, the sequential Fenton pretreatment and dilute NaOH extraction has high potential application in future.
Collapse
Affiliation(s)
- Yu-Cai He
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; Laboratory of Biocatalysis and Bioprocessing, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Yun Ding
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; Laboratory of Biocatalysis and Bioprocessing, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Yu-Feng Xue
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Bin Yang
- Department of Biological Systems Engineering, Bioproducts, Sciences and Engineering Laboratory, Washington State University, Richland, WA 99354, USA
| | - Feng Liu
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; Laboratory of Biocatalysis and Bioprocessing, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Cheng Wang
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Zheng-Zhong Zhu
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Qing Qing
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; Laboratory of Biocatalysis and Bioprocessing, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Hao Wu
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Cheng Zhu
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Zhi-Cheng Tao
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; Laboratory of Biocatalysis and Bioprocessing, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Dan-Ping Zhang
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; Laboratory of Biocatalysis and Bioprocessing, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| |
Collapse
|