1
|
da Silva MF, Flaibam B, de Mélo AHF, Sampaio U, Clerici MTPS, Goldbeck R. Optimization of enzymatic hydrolysis of cellulose extracted from bamboo culm for bioethanol production by Saccharomyces cerevisiae modified via CRISPR/Cas9. Food Res Int 2024; 192:114768. [PMID: 39147496 DOI: 10.1016/j.foodres.2024.114768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
In the context of biorefinery, researchers have been looking for lignocellulosic biomasses and ideal treatments to produce economically viable biofuels. In this scenario, the bamboo culm appears as a plant matrix of great potential, given the high cellulose content of low crystallinity. Thus, the objective and differential of this work was to determine the best conditions for enzymatic hydrolysis of cellulose extracted from bamboo culm and to evaluate its potential application in the production of bioethanol through Separate Hydrolysis and Fermentation (SHF) and Saccharification and Simultaneous Fermentation (SSF) by Saccharomyces cerevisiae modified via CRISPR/Cas9. The average cellulose extraction yield was 41.87 % with an extraction efficiency of 86.76 %. In general, as the hydrolysis time increased, an increase in glucose production was observed in almost all assays, with higher hydrolysis efficiency values at 72 h. The results ranged from 2.09 to 19.8 g/L of glucose obtained with efficiency values of 10.47 to 99 %. The best conditions were found in test 5 (temperature of 36 °C and pH 5.0, with only 10 FPU/g of substrate Cellic Ctec2 Novozymes ® cocktail). It is observed that for all hydrolysis times the independent variables pH and temperature were significant under the hydrolysis efficiency, showing a negative effect, indicating that higher values of the same promote lower values of the response variable. For bioethanol production, a maximum concentration of 7.84 g/L was observed for the SSH process after 4 h of fermentation, while for the SSF process it was 12.6 g/L after 24 h of fermentation, indicating the large potential of the simultaneous process together with the application of bamboo culm biomass for high production of biofuel.
Collapse
Affiliation(s)
- Marcos F da Silva
- Laboratory of Metabolic Engineering and Bioprocesses, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP) - University City Zeferino Vaz, Rua Monteiro Lobato, N° 80, ZIP Code:13.083-862, Campinas, São Paulo, Brazil
| | - Bárbara Flaibam
- Laboratory of Metabolic Engineering and Bioprocesses, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP) - University City Zeferino Vaz, Rua Monteiro Lobato, N° 80, ZIP Code:13.083-862, Campinas, São Paulo, Brazil
| | - Allan H F de Mélo
- Laboratory of Metabolic Engineering and Bioprocesses, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP) - University City Zeferino Vaz, Rua Monteiro Lobato, N° 80, ZIP Code:13.083-862, Campinas, São Paulo, Brazil
| | - Ulliana Sampaio
- Cereal, Roots and Tubers Laboratory, Department of Food Engineering and Technology, Faculty of Food Engineering, School of Food Engineering, University of Campinas (UNICAMP) - University City Zeferino Vaz, Rua Monteiro Lobato, N° 80, ZIP Code:13.083-862, Campinas, São Paulo, Brazil
| | - Maria Teresa P S Clerici
- Cereal, Roots and Tubers Laboratory, Department of Food Engineering and Technology, Faculty of Food Engineering, School of Food Engineering, University of Campinas (UNICAMP) - University City Zeferino Vaz, Rua Monteiro Lobato, N° 80, ZIP Code:13.083-862, Campinas, São Paulo, Brazil
| | - Rosana Goldbeck
- Laboratory of Metabolic Engineering and Bioprocesses, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP) - University City Zeferino Vaz, Rua Monteiro Lobato, N° 80, ZIP Code:13.083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Pang S, Wang X, Pu J, Liang C, Yao S, Qin C. Differential Studies on the Structure of Lignin-Carbohydrate Complexes (LCC) in Alkali-Extracted Plant Hemicelluloses. Polymers (Basel) 2024; 16:1403. [PMID: 38794596 PMCID: PMC11124851 DOI: 10.3390/polym16101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Hemicellulose extracted by alkali treatment is of interest because of the advantages of its intact sugar structure and high degree of polymerization. However, the hemicellulose extracted by alkali treatment contained more lignin fragments and the presence of a lignin-carbohydrate complex (LCC), which affected the isolation and purification of hemicellulose and its comprehensive utilization. Therefore, the evaluation of the LCC structure of different types of lignocellulosic resources is of great significance. In this study, the LCC structures of hardwoods and Gramineae were enriched in alkaline systems. Information on the composition, structural proportions, and connection patterns of LCC samples was discussed. The similarities and differences between the LCC structures of different units of raw materials were comparatively studied. The results indicated that the monosaccharide fractions were higher in the LCC of Gramineae compared to hardwoods. The composition of the lignin fraction was dominated by G and S units. The phenyl glycosidic (PhGlc) bond is the predominant LCC linkage under alkali-stabilized conditions. In addition, Gramineae PhGlc types are more numerous compared to hardwoods. The results of the study provide insights into the differences in the chemical composition and structural features of LCC in different plants and provide important guidance for the optimization of the process of purifying hemicellulose.
Collapse
Affiliation(s)
| | | | | | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (S.P.); (X.W.); (J.P.); (S.Y.); (C.Q.)
| | | | | |
Collapse
|
3
|
Effects of Lipase and Xylanase Pretreatment on the Structure and Pulping Properties of Wheat Straw. Polymers (Basel) 2022; 14:polym14235129. [PMID: 36501524 PMCID: PMC9735998 DOI: 10.3390/polym14235129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Based on the reduction of environmental pollution, a biological enzyme assisted alkali-oxygen pulping method was explored to improve the delignification efficiency and fiber accessibility of wheat straw and improve the properties of wheat straw pulp. In this paper, lipase and xylanase were used to pretreat wheat straw and the effects of different enzyme types and enzyme dosage on the microstructure and pulp properties of wheat straw were investigated and experimented. The results showed that the lipase can remove fat and wax on the surface of wheat straw, while xylanase degraded the hemicellulose components, such as xylan, of wheat straw fiber, destroyed the structure of the lignin-carbohydrate complex, increasing lignin removal as a result and enhancing the impregnating, diffusion and penetration of alkali. Compared with wheat straw without enzyme pretreatment, the skeleton of wheat straw pretreated by enzyme became looser, the internal cavity appeared and the wall cavity became thin and transparent. The fines decreased obviously and the length of fibers increased. After combined pretreatment with lipase (15 U·g-1) and xylanase (15 U·g-1), the pulping performance of wheat straw was improved and the tensile index (97.37 N·m·g-1), brightness (40.9% ISO) and yield (58.10%) of the pulp increased by 12.9%, 19.9% and 9.9%, respectively. It can be seen that enzyme pretreatment is a green and effective approach to improving the alkali-oxygen pulping performance of wheat straw.
Collapse
|
4
|
Improve Enzymatic Hydrolysis of Lignocellulosic Biomass by Modifying Lignin Structure via Sulfite Pretreatment and Using Lignin Blockers. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Even traditional pretreatments can partially remove or degrade lignin and hemicellulose from lignocellulosic biomass for enhancing its enzymatic digestibility, the remaining lignin in pretreated biomass still restricts its enzymatic hydrolysis by limiting cellulose accessibility and lignin-enzyme nonproductive interaction. Therefore, many pretreatments that can modify lignin structure in a unique way and approaches to block the lignin’s adverse impact have been proposed to directly improve the enzymatic digestibility of pretreated biomass. In this review, recent development in sulfite pretreatment that can transform the native lignin into lignosulfonate and subsequently enhance saccharification of pretreated biomass under certain conditions was summarized. In addition, we also reviewed the approaches of the addition of reactive agents to block the lignin’s reactive sites and limit the cellulase-enzyme adsorption during hydrolysis. It is our hope that this summary can provide a guideline for workers engaged in biorefining for the goal of reaching high enzymatic digestibility of lignocellulose.
Collapse
|
5
|
Huang C, Zhao X, Zheng Y, Lin W, Lai C, Yong Q, Ragauskas AJ, Meng X. Revealing the mechanism of surfactant-promoted enzymatic hydrolysis of dilute acid pretreated bamboo. BIORESOURCE TECHNOLOGY 2022; 360:127524. [PMID: 35764283 DOI: 10.1016/j.biortech.2022.127524] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
To improve the enzymatic digestibility of dilute acid pretreated bamboo residue (DABR), surfactants including PEG 4000 and Tween 80 were added to prevent the non-productive adsorption between residual lignin and enzyme. At the optimal loadings (e.g., 0.2 and 0.3 g surfactant/g lignin), the enzymatic digestibility of DABR improved from 29.4% to 64.6% and 61.6% for PEG 4000 and Tween 80, respectively. Furthermore, the promoting mechanism of these surfactants on enzymatic hydrolysis was investigated by real-time surface plasmon resonance (SPR) and fluorescence spectroscopy. Results from SPR analysis showed that Tween 80 outperformed PEG 4000 in terms of dissociating the irreversible cellulase adsorption onto lignin. Fluorescence quenching mechanism revealed that PEG 4000 and Tween 80 intervened the interaction between lignin and cellulase by hydrogen bonds/Van der Waals and hydrophobic action, respectively. This work provided an in-depth understanding of the mechanisms of PEG 4000 and Tween 80 on enhancing the enzymatic hydrolysis efficiency.
Collapse
Affiliation(s)
- Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoxue Zhao
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yayue Zheng
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenqian Lin
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenhuan Lai
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
6
|
KONG WQ, LIU MW, WANG ST, GAO HH, QIN Z, LIU HM, WANG XD, HE JR. Enhancing extraction of proanthocyanidins from Chinese quince fruit by ball-milling and enzyme hydrolysis: yield, structure, and bioactivities. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.94422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | | | - Zhao QIN
- Henan University of Technology, China
| | | | | | - Jing-Ren HE
- Wuhan Polytechnic University, China; Wuhan Polytechnic University, China
| |
Collapse
|
7
|
Jeong SY, Lee EJ, Ban SE, Lee JW. Structural characterization of the lignin-carbohydrate complex in biomass pretreated with Fenton oxidation and hydrothermal treatment and consequences on enzymatic hydrolysis efficiency. Carbohydr Polym 2021; 270:118375. [PMID: 34364619 DOI: 10.1016/j.carbpol.2021.118375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/05/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
In this study, lignin-carbohydrate complexes (LCCs) were isolated from biomass (raw and pretreated) to investigate the structural changes in biomass pretreated by Fenton oxidation and hydrothermal treatment, and their effect on enzymatic hydrolysis. The composition and structure of the LCCs fractions were investigated via carbohydrate analysis, XRD, FT-IR, and 2D HSQC NMR. The biomass degradation rate of yellow poplar and larch during Fenton oxidation and hydrothermal treatment was approximately 30%. Most of the hemicellulose was degraded during pretreatment, while xylan remained in the yellow poplar, and galactan, mannan, and xylan remained in the larch. The fractional yield of glucan-rich LCC (LCC1) in the yellow poplar (raw and pretreated biomass) was high, while that of glucomannan-rich LCC (LCC3) in larch was higher than the yield yellow poplar. Phenyl glycoside, γ-ester, and benzyl ether linkages were observed in the LCCs of yellow poplar, while phenyl glycoside and γ-ester were detected in those of larch. Following pretreatment, the frequencies of β-β', β-5, and γ-ester in the LCCs of larch were found to be higher than in those of yellow poplar. The efficiencies of enzymatic hydrolysis for the pretreated yellow poplar and larch were 93.53% and 26.23%, respectively. These finding indicated that the β-β', β-5, and γ-ester linkages included in the pretreated biomass affected the efficiency of enzymatic hydrolysis.
Collapse
Affiliation(s)
- So-Yeon Jeong
- Department of Wood Science and Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eun-Ju Lee
- Department of Wood Science and Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Se-Eun Ban
- Department of Wood Science and Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae-Won Lee
- Department of Wood Science and Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
8
|
Lin W, Yang J, Zheng Y, Huang C, Yong Q. Understanding the effects of different residual lignin fractions in acid-pretreated bamboo residues on its enzymatic digestibility. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:143. [PMID: 34162425 PMCID: PMC8220694 DOI: 10.1186/s13068-021-01994-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/12/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND During the dilute acid pretreatment process, the resulting pseudo-lignin and lignin droplets deposited on the surface of lignocellulose and inhibit the enzymatic digestibility of cellulose in lignocellulose. However, how these lignins interact with cellulase enzymes and then affect enzymatic hydrolysis is still unknown. In this work, different fractions of surface lignin (SL) obtained from dilute acid-pretreated bamboo residues (DAP-BR) were extracted by various organic reagents and the residual lignin in extracted DAP-BR was obtained by the milled wood lignin (MWL) method. All of the lignin fractions obtained from DAP-BR were used to investigate the mechanism for interaction between lignin and cellulase using surface plasmon resonance (SPR) technology to understand how they affect enzymatic hydrolysis RESULTS: The results showed that removing surface lignin significantly decreased the yield for enzymatic hydrolysis DAP-BR from 36.5% to 18.6%. The addition of MWL samples to Avicel inhibited its enzymatic hydrolysis, while different SL samples showed slight increases in enzymatic digestibility. Due to the higher molecular weight and hydrophobicity of MWL samples versus SL samples, a stronger affinity for MWL (KD = 6.8-24.7 nM) was found versus that of SL (KD = 39.4-52.6 nM) by SPR analysis. The affinity constants of all tested lignins exhibited good correlations (r > 0.6) with the effects on enzymatic digestibility of extracted DAP-BR and Avicel. CONCLUSIONS This work revealed that the surface lignin on DAP-BR is necessary for maintaining enzyme digestibility levels, and its removal has a negative impact on substrate digestibility.
Collapse
Affiliation(s)
- Wenqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinlai Yang
- China National Bamboo Research Center and Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Yayue Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
9
|
Shen L, Su Y, Sun Y, Wang G, Chen H, Yu X, Zhang S, Chen G. Establishment of a highly efficient and low cost mixed cellulase system for bioconversion of corn stover by Trichoderma reesei and Aspergillus niger. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Sheng Y, Lam SS, Wu Y, Ge S, Wu J, Cai L, Huang Z, Le QV, Sonne C, Xia C. Enzymatic conversion of pretreated lignocellulosic biomass: A review on influence of structural changes of lignin. BIORESOURCE TECHNOLOGY 2021; 324:124631. [PMID: 33454445 DOI: 10.1016/j.biortech.2020.124631] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 05/09/2023]
Abstract
The demands of energy sustainability drive efforts to bio-chemical conversion of biomass into biofuels through pretreatment, enzymatic hydrolysis, and microbial fermentation. Pretreatment leads to significant structural changes of the complex lignin polymer that affect yield and productivity of the enzymatic conversion of lignocellulosic biomass. Structural changes of lignin after pretreatment include functional groups, inter unit linkages and compositions. These changes influence non-productive adsorption of enzyme on lignin through hydrophobic interaction and electrostatic interaction as well as hydrogen bonding. This paper reviews the relationships between structural changes of lignin and enzymatic hydrolysis of pretreated lignocellulosic biomass. The formation of pseudo-lignin during dilute acid pretreatment is revealed, and their negative effect on enzymatic hydrolysis is discussed.
Collapse
Affiliation(s)
- Yequan Sheng
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Su Shiung Lam
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yingji Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Jinglei Wu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Liping Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Department of Mechanical Engineering, University of North Texas, Denton, TX 76207, USA
| | - Zhenhua Huang
- Department of Mechanical Engineering, University of North Texas, Denton, TX 76207, USA
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Christian Sonne
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
11
|
Steinmetz V, Villain-Gambier M, Klem A, Ziegler I, Dumarcay S, Trebouet D. Lignin Carbohydrate Complexes structure preserved throughout downstream processes for their valorization after recovery from industrial process water. Int J Biol Macromol 2020; 157:726-733. [DOI: 10.1016/j.ijbiomac.2019.11.238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 01/04/2023]
|
12
|
Lin W, Chen D, Yong Q, Huang C, Huang S. Improving enzymatic hydrolysis of acid-pretreated bamboo residues using amphiphilic surfactant derived from dehydroabietic acid. BIORESOURCE TECHNOLOGY 2019; 293:122055. [PMID: 31472409 DOI: 10.1016/j.biortech.2019.122055] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 05/24/2023]
Abstract
In this work, amphiphilic surfactant was obtained using dehydroabietic acid from pine rosin and then pre-adsorbed with acid-pretreated bamboo residues (AP-BR) to block the residual lignin adsorption site, which is expected to improve its enzymatic digestibility. Results from cryogenic-transmission electron microscopy (Cryo-TEM) indicated amphiphilic surfactant with PEG with polymerization degree of 34 (D-34) aggregated to form worm-like micelles, which improved enzymatic hydrolysis yield of AP-BR from 24.3% to 71.9% by pre-adsorbing with 0.8 g/L. Amphiphilic surfactants pre-adsorbed on AP-BR could reduce hydrophobicity of AP-BR, adsorption affinity and adsorption capacity of lignin for cellulase from 0.51 L/g to 0.48-0.32 L/g, from 2.9 mL/mg to 1.8-1.4 mL/mg, and from 122.3 mg/g to 101.9-21.4 mg/g, respectively. These changed properties showed compelling positive contributions (R2 > 0.9) for free enzymes in the supernatants and sequently for final enzymatic hydrolysis yield, which was caused by blocking non-productively hydrophobic adsorption between lignin and cellulase.
Collapse
Affiliation(s)
- Wenqian Lin
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qiang Yong
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
13
|
Xue L, Han H, Fan H, Li P, Wang T, Xiao J, Wang R, Wang J. Construction and Application of Low Cellulase-producing Bacillus licheniformis Strains for Bio-pulping of Bamboo. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0498-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Liu X, Wei W, Wu S. Synergism of organic acid and deep eutectic solvents pretreatment for the co-production of oligosaccharides and enhancing enzymatic saccharification. BIORESOURCE TECHNOLOGY 2019; 290:121775. [PMID: 31319212 DOI: 10.1016/j.biortech.2019.121775] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
A novel pretreatment using organic acid synergism with deep eutectic solvents (DESs) was developed to the co-production of oligosaccharides, especially for the functional oligosaccharides, and enhancement of corn straws enzymatic saccharification. It was found that lactic acid (Lac) pretreatment combined with choline chloride/Lac system could not only selectively convert the hemicellulose to xylo-oligosaccharides (XOS), which account for 89.7% of total xylose in prehydrolysate (the functional XOS (DP < 5) took up about 35%), but also significantly promote the glucose release (33.2 g/100 g material) and well lignin separation (representing 40.9% in whole process), which better than the single organic pretreatment at higher modified severity index (SI). Structural features of various solids were characterized to better comprehend how hemicellulose and lignin removal influenced enzymatic hydrolysis. This work offered the mild and potential method to co-produce fermentable sugars with the effective separation and valorization of lignin.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Weiqi Wei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shubin Wu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
15
|
Preparation of nanocellulose and lignin-carbohydrate complex composite biological carriers and culture of heart coronary artery endothelial cells. Int J Biol Macromol 2019; 137:1161-1168. [DOI: 10.1016/j.ijbiomac.2019.07.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
|
16
|
Tang S, Liu W, Huang C, Lai C, Fan Y, Yong Q. Improving the enzymatic hydrolysis of larch by coupling water pre-extraction with alkaline hydrogen peroxide post-treatment and adding enzyme cocktail. BIORESOURCE TECHNOLOGY 2019; 285:121322. [PMID: 30965281 DOI: 10.1016/j.biortech.2019.121322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Soluble arabinogalactan (AG) in larch leads to reagent waste during its biorefining using oxidative pretreatment strategies. A two-stage pretreatment of water pre-extraction followed by alkaline hydrogen peroxide (AHP) pretreatment was investigated to more efficiently convert larch cellulose into glucose, while also obtaining a value-added AG product stream. The results showed that water pre-extraction increases the lignin selectivity of both NaOH and H2O2 reagents, translating to improved lignin removal and enzymatic hydrolysis yields. This was found to be related to cellulose accessibility alongside the effective consumption of the reagents. Moreover, the addition of mannanase also significantly enhanced enzymatic digestibility of pretreated solid from 81.0% to 97.7% (4% H2O2 charge and 180 °C) when 40 U/g mannanase was supplemented with 20 FPU/g cellulase. In all, it was demonstrated that coupling mannanase with cellulase could improve larch's enzymatic digestibility and overall viability for biorefining processes.
Collapse
Affiliation(s)
- Shuo Tang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Wanying Liu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Yimin Fan
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Qiang Yong
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|
17
|
Structural characterization of lignin and its carbohydrate complexes isolated from bamboo (Dendrocalamus sinicus). Int J Biol Macromol 2018; 126:376-384. [PMID: 30593808 DOI: 10.1016/j.ijbiomac.2018.12.234] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 11/20/2022]
Abstract
Isolation of earth abundant biopolymer, Lignin, from Dendrocalamus sinicus and their structural properties were investigated to achieve its large-scale practical applications in value-added products. Two lignin fractions (MWL, DSL) were isolated with successive treatments of dioxane and dimethylsulfoxide (DMSO) from dewaxed and ball milled bamboo (D. sinicus) sample. The two-step treatments yielded 52.1% lignin based on the total lignin content in the dewaxed bamboo sample. Spectroscopy analyses indicated that the isolated bamboo lignin was a typical grass lignin, consisting of p-hydroxyphenyl, guaiacyl, and syringyl units. The major interunit linkages presented in the obtained bamboo lignin were β-O-4' aryl ether linkages, together with lower amounts of β-β', β-5', and β-1' linkages. The tricin was detected to be linked to lignin polymer through the β-O-4' linkage in the bamboo. In addition, phenyl glycoside and benzyl ether lignin-carbohydrate complexes (LCC) linkages were clearly detected in bamboo (D. sinicus), whereas the γ-ester LCC linkages were ambiguous due to the overlapping NMR signals with other substructures. The detailed structural properties of the obtained lignin fraction together with the light-weight will benefit efficient utilization of natural polymers as a possibly large-scale bio-based precursor for making polymeric materials, biochemicals, functional carbon and biofuels, and multifunctional polymer nanocomposites.
Collapse
|
18
|
Lyu H, Zhou J, Geng Z, Lyu C, Li Y. Two-stage processing of liquid hot water pretreatment for recovering C5 and C6 sugars from cassava straw. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Gu BJ, Wolcott MP, Ganjyal GM. Pretreatment with lower feed moisture and lower extrusion temperatures aids in the increase in the fermentable sugar yields from fine-milled Douglas-fir. BIORESOURCE TECHNOLOGY 2018; 269:262-268. [PMID: 30189379 DOI: 10.1016/j.biortech.2018.08.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
The impact of independent variables of extrusion on dependent variables of pre-milled Douglas-fir forest residuals was studied to enhance the enzymatic hydrolysis for production of fermentable sugar without catalysts. Co-rotating twin screw extruder was operated with three different feedstock moisture contents (30, 40, and 50%) at four different barrel temperatures (25, 50, 100, and 150 °C) as a pretreatment. The specific mechanical energy input ranged from 0.07 and 0.30 kWh/kg and had a very strong positive correlation with torque (r = 0.96, p < 0.01), glucose (r = 0.92, p < 0.01) and xylose/mannose yields with (r = 0.84, p < 0.01). Douglas-fir residuals extruded at lowest moisture content (30%) and temperature (25 °C) had the highest sugar yield, requiring the highest SME. Higher barrel temperature increased the median particle size and had lower glucose and xylose/mannose yields. Recrystallization and agglomeration were observed under higher temperature conditions.
Collapse
Affiliation(s)
- Bon-Jae Gu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Michael P Wolcott
- Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164, USA
| | - Girish M Ganjyal
- School of Food Science, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
20
|
Pandey RK, Chand K, Tewari L. Solid state fermentation and crude cellulase based bioconversion of potential bamboo biomass to reducing sugar for bioenergy production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4411-4419. [PMID: 29435990 DOI: 10.1002/jsfa.8963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/04/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Lignocellulosic biomass from bamboo is an attractive feedstock for the bioethanol industry owing to its high cellulosic content and fast growth rate. In this study, powdery biomass was first enzymatically delignified and then saccharified using crude enzymes. RESULTS The biological pretreatment decreased the lignin content of the biomass from an initial value of 295 to 137.7 g kg-1 , with a simultaneous increase in exposed cellulose content from 379.3 to 615.9 g kg-1 . For optimization of the saccharification, response surface methodology was adopted using a three-factor/three-level Box-Behnken design with crude fungal cellulase loading (FPU g-1 substrate), substrate concentration (% w/v) and saccharification temperature (°C) as the main process parameters. A maximum saccharification yield of 47.19% was achieved under the optimized conditions (cellulase enzyme 18.4 FPU g-1 substrate, substrate concentration 1.0% w/v, temperature 39.49 °C). Biological delignification and saccharification of the biomass were further confirmed through scanning electron microscopy analysis. CONCLUSION It is evident from the study that bamboo, as a renewable energy bioresource, can be hydrolysed to reducing sugars by using crude laccase/cellulase enzymes of fungal origin with good saccharification yield. Thus crude enzyme preparations could be utilized efficiently for eco-friendly and cost-effective bioethanol production. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Raj Kumar Pandey
- Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Khan Chand
- Department of Post Harvest Process and Food Engineering, College of Technology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Lakshmi Tewari
- Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
21
|
Structural elucidation of lignin-carbohydrate complexes (LCCs) from Chinese quince (Chaenomeles sinensis) fruit. Int J Biol Macromol 2018; 116:1240-1249. [DOI: 10.1016/j.ijbiomac.2018.05.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 11/21/2022]
|
22
|
Kim JE, Lee JW. Enzyme adsorption properties on dilute acid pretreated biomass by low vacuum-scanning electron microscopy and structural analysis of lignin. BIORESOURCE TECHNOLOGY 2018; 262:107-113. [PMID: 29702419 DOI: 10.1016/j.biortech.2018.04.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 05/09/2023]
Abstract
In this study, enzyme adsorption properties were investigated as a function of the structural change of lignin in dilute acid pretreated biomass using oxalic and sulfuric acid catalysts under the same reaction conditions. Although the contents of glucan and lignin in the dilute acid pretreated biomass were similar regardless of the catalysts used, the enzymatic hydrolysis efficiency and degree of enzyme adsorption differed considerably. The highest efficiencies were 87.79% and 96.49% for the oxalic acid and sulfuric acid catalysts, respectively. The reasons for this observation were investigated by low vacuum-scanning electron microscopy and the structural analysis of lignin. In the oxalic acid pretreated biomass, the enzyme was irreversibly adsorbed onto the lignin. The oxalic acid pretreated biomass possessed a higher content of G-type lignin than did the sulfuric acid pretreated biomass. This type of lignin has a high affinity for the enzyme, inducing irreversible enzyme adsorption onto the biomass.
Collapse
Affiliation(s)
- Jo Eun Kim
- Department of Forest Products and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jae-Won Lee
- Department of Forest Products and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
23
|
Preparation of Lignosulfonates from Biorefinery Lignins by Sulfomethylation and Their Application as a Water Reducer for Concrete. Polymers (Basel) 2018; 10:polym10080841. [PMID: 30960766 PMCID: PMC6403876 DOI: 10.3390/polym10080841] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 11/21/2022] Open
Abstract
Lignosulfonate (LG), a water-soluble polymer from sulfite pulping process of lignocellulosic biomass, has been commercially applied as admixture for concrete. In this work, lignosulfonates were produced from alkaline lignin (AL) and enzymatic hydrolysis residue (EHR) by sulfomethylation and these lignosulfonates as water reducers for concrete were then evaluated. Results showed that 94.9% and 68.9% of lignins in AL and EHR could be sulfonated under optimum sulfomethylation conditions, respectively. The sulfonic groups in lignosulfonates from AL (AL-LG) and EHR (EHR-LG) were 1.6 mmol/g and 1.0 mmol/g, respectively. Surface tension and zeta potential analysis indicated that both AL-LG and EHR-LG can be potentially used to as dispersant for improving the fluidity of the cement paste, similarly to commercial lignosulfonate (CM-LG). Adding 0.2 wt % of AL-LG, EHR-LG, and CM-LG in the concrete, the compressive strength (28 days) of concretes increased from 38.4 Mpa to 41.6, 42.6, and 40.9 Mpa, respectively. These findings suggest that the lignosulfonate from biorefinery lignin by sulfomethylation can meet the industrial standards as water reducers for cement admixtures.
Collapse
|
24
|
Structural Characterization of Lignin and Lignin-Carbohydrate Complex (LCC) from Ginkgo Shells ( Ginkgo biloba L.) by Comprehensive NMR Spectroscopy. Polymers (Basel) 2018; 10:polym10070736. [PMID: 30960661 PMCID: PMC6404004 DOI: 10.3390/polym10070736] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 12/02/2022] Open
Abstract
Lignin and lignin-carbohydrate complexes are important polymers for lignocellulosic biorefinery and functional materials, but those in ginkgo shells are not effectively analyzed and exploited. Based on this background, milled wood lignins (MWLML and MWLFZ) and lignin-carbohydrate complexes (LCCML and LCCFZ) were isolated from the shells of Ginkgo biloba L. cv. Damaling (ML) and Ginkgo biloba L. cv. Dafozhi (FZ) correspondingly, and were structurally characterized by comprehensive NMR spectroscopy. The results showed that ginkgo shells exhibited higher lignin (42%) and xylan (20%) content than general softwood species. Isolated MWLs were rich in guaiacyl units with the presence of ferulates and p-coumarates, and the molecular formula was C9H7.93O2.73(OCH3)0.81 and C9H7.87O2.76(OCH3)0.88 for MWLML and MWLFZ, respectively. Phenolic hydroxyl of MWLML (1.38 mmol/g) and MWLFZ (1.23 mmol/g) in ginkgo shells was much less than that in general softwoods, suggesting a higher etherification and condensation degree of ginkgo shells lignin, and β-5′, α-O-4′, and 4-O-5′ bonds were the main condensed structures. O-acetylated β-d-xylopyranoside and β-d-mannopyranoside were the main polysaccharides associated with lignin, and the acetyl groups frequently acylate the C2 and C3 positions. LCCML had more phenyl glycoside (0.035/Ar) and less γ-ester (0.026/Ar) linkages than LCCFZ.
Collapse
|
25
|
Zhang H, Fan M, Li X, Zhang A, Xie J. Enhancing enzymatic hydrolysis of sugarcane bagasse by ferric chloride catalyzed organosolv pretreatment and Tween 80. BIORESOURCE TECHNOLOGY 2018; 258:295-301. [PMID: 29555585 DOI: 10.1016/j.biortech.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 05/15/2023]
Abstract
In this work, a FeCl3-catalyzed organosolv pretreatment was employed at 160 °C to remove hemicellulose and lignin in sugarcane bagasse leaving the cellulose-enriched residue for enzymatic hydrolysis to sugars. The solubilized hemicellulose fractions consisted more monomer xylose than oligomer xylose. The FeCl3-catalyzed organosolv pretreatment significantly improved the enzymatic hydrolysis, nearly 100% of cellulose components were converted to glucose after pretreatment with 0.05 M FeCl3. Structural analysis was employed to reveal how pretreatment affected the enzymatic hydrolysis. With the addition of Tween 80, the same level of glucose was obtained with 50% reduction of enzyme dosage after 24 h. Furthermore, the influence of Tween 80 on different pretreatment systems was investigated, indicating that the improvement was increased as the lignin content increased, decreased with high enzyme loading and extending hydrolysis time. This work suggested that the addition of Tween 80 could improve the enzymatic hydrolysis, reduce the hydrolysis time and enzyme dosage.
Collapse
Affiliation(s)
- Hongdan Zhang
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, and Application, Guangzhou 510640, PR China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530003, PR China.
| | - Meishan Fan
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Xin Li
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Aiping Zhang
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Jun Xie
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
26
|
Relations Between Moso Bamboo Surface Properties Pretreated by Kraft Cooking and Dilute Acid with Enzymatic Digestibility. Appl Biochem Biotechnol 2017; 183:1526-1538. [DOI: 10.1007/s12010-017-2520-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
|
27
|
Huang C, Jeuck B, Du J, Yong Q, Chang HM, Jameel H, Phillips R. Novel process for the coproduction of xylo-oligosaccharides, fermentable sugars, and lignosulfonates from hardwood. BIORESOURCE TECHNOLOGY 2016; 219:600-607. [PMID: 27543951 DOI: 10.1016/j.biortech.2016.08.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
Many biorefineries have not been commercialized due to poor economic returns from final products. In this work, a novel process has been developed to coproduce valuable sugars, xylo-oligosaccharides, and lignosulfonates from hardwood. The modified process includes a mild autohydrolysis pretreatment, which enables for the recovery of the xylo-oligosaccharides in auto-hydrolysate. Following enzymatic hydrolysis, the residue is sulfomethylated to produce lignosulfonates. Recycling the sulfomethylation residues increased both the glucan recovery and lignosulfonate production. The glucose recovery was increased from 81.7% to 87.9%. Steady state simulation using 100g of hardwood produced 46.7g sugars, 5.9g xylo-oligosaccharides, and 25.7g lignosulfonates, which were significantly higher than that produced from the no-recycling process with 39.1g sugars, 5.9g xylo-oligosaccharides, and 15.0g lignosulfonates. The results indicate that this novel biorefinery process can improve the production of fermentable sugars and lignosulfonate from hardwood as compared to a conventional biorefinery process.
Collapse
Affiliation(s)
- Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, China; Department of Forestry Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005, USA
| | - Ben Jeuck
- Department of Forestry Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005, USA
| | - Jing Du
- Department of Forestry Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005, USA
| | - Qiang Yong
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, China
| | - Hou-Min Chang
- Department of Forestry Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005, USA
| | - Hasan Jameel
- Department of Forestry Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005, USA.
| | - Richard Phillips
- Department of Forestry Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005, USA
| |
Collapse
|
28
|
Liu KX, Li HQ, Zhang J, Zhang ZG, Xu J. The effect of non-structural components and lignin on hemicellulose extraction. BIORESOURCE TECHNOLOGY 2016; 214:755-760. [PMID: 27213576 DOI: 10.1016/j.biortech.2016.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 05/24/2023]
Abstract
As the important structural component of corn stover, hemicellulose could be converted into a variety of high value-added products. However, high quality hemicellulose extraction is not an easy issue. The present study aims to investigate the effects of non-structural components (NSCs) and lignin removal on alkaline extraction of hemicellulose. Although NSCs were found to have a minimal effect on hemicellulose dissolution, they affected the color values of the hemicellulose extracts. The lignin limited the hemicellulose dissolution and increased the color value by binding to hemicellulose molecules and forming lignin-carbohydrate complexes. Sodium chlorite method can remove about 90% lignin from corn stover, especially the lignin connected to hemicellulose through p-coumaric and ferulic acids. Which increased the hemicellulose dissolution ratio to 93% and reduced the color value 14-28%, but the cost is about 20% carbohydrates lost.
Collapse
Affiliation(s)
- Kai-Xuan Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong-Qiang Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhi-Guo Zhang
- Collage of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
29
|
Huang C, He J, Min D, Lai C, Yong Q. Understanding the Nonproductive Enzyme Adsorption and Physicochemical Properties of Residual Lignins in Moso Bamboo Pretreated with Sulfuric Acid and Kraft Pulping. Appl Biochem Biotechnol 2016; 180:1508-1523. [DOI: 10.1007/s12010-016-2183-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
|
30
|
Zhong C, Wang C, Wang F, Jia H, Wei P, Zhao Y. Enhanced biogas production from wheat straw with the application of synergistic microbial consortium pretreatment. RSC Adv 2016. [DOI: 10.1039/c5ra27393e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pretreatment of lignocellulosic biomass by using synergistic microbial consortium is an efficient way to promote biomass utilization efficiency.
Collapse
Affiliation(s)
- Chao Zhong
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211800
- P. R. China
| | - Chunming Wang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211800
- P. R. China
| | - Fengxue Wang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211800
- P. R. China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211800
- P. R. China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211800
- P. R. China
| | - Yin Zhao
- Henan Tianguan Group Co. Ltd
- Nanyang 473000
- P. R. China
| |
Collapse
|