1
|
Hou J, Zhang Q, Tian F, Liu F, Jiang J, Qin J, Wang H, Wang J, Chang S, Hu X. Structure changes of lignin and their effects on enzymatic hydrolysis for bioethanol production: a focus on lignin modification. J Biotechnol 2024; 393:61-73. [PMID: 39067576 DOI: 10.1016/j.jbiotec.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Enzymatic hydrolysis contributes to obtaining fermentable sugars using pretreated lignocellulose materials for bioethanol generation. Unfortunately, the pretreatment of lignocellulose causes low substrate enzymatic hydrolysis, which is due to the structure changes of lignin to produce main phenolic by-products and non-productive cellulase adsorption. It is reported that modified lignin enhances the speed of enzymatic hydrolysis through single means to decrease the negative effects of fermentation inhibitors or non-productive cellulase adsorption. However, a suitable modified lignin should be selected to simultaneously reduce the fermentation inhibitors concentration and non-productive cellulase adsorption for saving resources and maximizing the enzymatic hydrolysis productivity. Meanwhile, the adsorption micro-mechanisms of modified lignin with fermentation inhibitors and cellulase remain elusive. In this review, different pretreatment effects toward lignin structure, and their impacts on subsequent enzymatic hydrolysis are analyzed. The main modification methods for lignin are presented. Density functional theory is used to screen suitable modification methods for the simultaneous reduction of fermentation inhibitors and non-productive cellulase adsorption. Lignin-fermentation inhibitors and lignin-cellulase interaction mechanisms are discussed using different advanced analysis techniques. This article addresses the gap in previous reviews concerning the application of modified lignin in the enhancement of bioethanol production. For the first time, based on existing studies, this work posits the hypothesis of applying theoretical simulations to screen efficient modified lignin-based adsorbents, in order to achieve a dual optimization of the detoxification and saccharification processes. We aim to improve the integrated lignocellulose transformation procedure for the effective generation of cleaner bioethanol.
Collapse
Affiliation(s)
- Jinju Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Fuxiang Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Fuwen Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jingxian Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jiaolong Qin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Huifeng Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jing Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Shufang Chang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
2
|
Pendse DS, Deshmukh M, Pande A. Different pre-treatments and kinetic models for bioethanol production from lignocellulosic biomass: A review. Heliyon 2023; 9:e16604. [PMID: 37260877 PMCID: PMC10227349 DOI: 10.1016/j.heliyon.2023.e16604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Lignocellulosic biomass is the generally explored substrate to produce bioethanol for environmental sustainability due to its availability in abundance. However, the complex network of cellulose-hemicellulose-lignin present in it makes its hydrolysis as a challenging task. To boost the effectiveness of conversion, biomass is pre-treated before enzymatic hydrolysis to alter or destroy its original composition. Enzymes like Cellulases are widely used for breaking down cellulose into fermentable sugars. Enzymatic hydrolysis is a complex process involving many influencing factors such as pH, temperature, substrate concentration. This review presents major four pre-treatment methods used for hydrolysing different substrates under varied reaction conditions along with their mechanism and limitations. A relative comparison of data analysis for most widely studied 10 kinetic models is briefly explained in terms of substrates used to get the brief insight about hydrolysis rates. The summary of pre-treatment methods and hydrolysis rates including cellulase enzyme kinetics will be the value addition for upcoming researchers for optimising the hydrolysis process.
Collapse
Affiliation(s)
- Dhanashri S Pendse
- Research Scholar, School of Chemical Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune, 411038, India
| | - Minal Deshmukh
- School of Petroleum Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune, 411038, India
| | - Ashwini Pande
- School of Petroleum Engineering, Dr Vishwanath Karad MIT World Peace University, Pune, 411038, India
| |
Collapse
|
3
|
Ke L, Duan X, Cui J, Song X, Ma W, Zhang W, Liu Y, Fan Y. Research progress on the extraction technology and activity study of Epimedium polysaccharides. Carbohydr Polym 2023; 306:120602. [PMID: 36746589 DOI: 10.1016/j.carbpol.2023.120602] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/01/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
More pharmacological effects of polysaccharides from traditional Chinese medicines have been discovered in recent years. Epimedium has been used for thousands of years as a traditional Chinese medicine in China. Water-soluble Epimedium polysaccharides is one of the main ingredients of Epimedium, which is one of the main active ingredients of Epimedium, mainly composed of mannose, rhamnose, galacturonic acid, glucose, and galactose. The extraction methods of Epimedium polysaccharides including hot water extraction, cellulase extraction, ultrasonic extraction, microwave-assisted extraction, ultrasound compound enzyme and ultra-high pressure extraction, they affect the yield of Epimedium polysaccharides. The characteristics of deproteinization including enzyme deproteinization, macroporous resin deproteinization and Sevag methods are introduced respectively. Some chemical modification methods of Epimedium polysaccharides are also involved such as phosphorylation, sulfation, selenization, and lipids encapsulated. Epimedium polysaccharides have a variety of pharmacological activities, including immune promotion, reproduction promotion, anti-osteoporosis, anti-tumor, antioxidant, anti-fatigue and antivirus, also beneficial to nervous and hematopoietic systems. At present, the research of Epimedium polysaccharides has been in depth. In this paper, the research progress on extraction, purification, chemical modification methods and pharmacological activity of Epimedium polysaccharides summarized. The aim is to provide reference for further research and development of Epimedium polysaccharides.
Collapse
Affiliation(s)
- Liting Ke
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xueqin Duan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jing Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
4
|
The Fractionation of Corn Stalk Components by Hydrothermal Treatment Followed by Ultrasonic Ethanol Extraction. ENERGIES 2022. [DOI: 10.3390/en15072616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The fractionation of components of lignocellulosic biomass is important to be able to take advantage of biomass resources. The hydrothermal–ethanol method has significant advantages for fraction separation. The first step of hydrothermal treatment can separate hemicellulose efficiently, but hydrothermal treatment affects the efficiency of ethanol treatment to delignify lignin. In this study, the efficiency of lignin removal was improved by an ultrasonic-assisted second-step ethanol treatment. The effects of ultrasonic time, ultrasonic temperature, and ultrasonic power on the ultrasonic ethanol treatment of hydrothermal straw were investigated. The separated lignin was characterized by solid product composition analysis, FT-IR, and XRD. The hydrolysate was characterized by GC-MS to investigate the advantage on the products obtained by ethanol treatment. The results showed that an appropriate sonication time (15 min) could improve the delignification efficiency. A proper sonication temperature (180 °C) can improve the lignin removal efficiency with a better retention of cellulose. However, a high sonication power 70% (840 W) favored the retention of cellulose and lignin removal.
Collapse
|
5
|
A Green Ultrasound-assisted Enzymatic Extraction Method for Efficient Extraction of Total Polyphenols from Empetrum nigrum and Determination of its Bioactivities. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Extraction of low molecular weight peptides from bovine bone using ultrasound-assisted double enzyme hydrolysis: Impact on the antioxidant activities of the extracted peptides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111470] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Carrillo-Lopez LM, Garcia-Galicia IA, Tirado-Gallegos JM, Sanchez-Vega R, Huerta-Jimenez M, Ashokkumar M, Alarcon-Rojo AD. Recent advances in the application of ultrasound in dairy products: Effect on functional, physical, chemical, microbiological and sensory properties. ULTRASONICS SONOCHEMISTRY 2021; 73:105467. [PMID: 33508590 PMCID: PMC7840480 DOI: 10.1016/j.ultsonch.2021.105467] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 05/03/2023]
Abstract
Alternative methods for improving traditional food processing have increased in the last decades. Additionally, the development of novel dairy products is gaining importance due to an increased consumer demand for palatable, healthy, and minimally processed products. Ultrasonic processing or sonication is a promising alternative technology in the food industry as it has potential to improve the technological and functional properties of milk and dairy products. This review presents a detailed summary of the latest research on the impact of high-intensity ultrasound techniques in dairy processing. It explores the ways in which ultrasound has been employed to enhance milk properties and processes of interest to the dairy industry, such as homogenization, emulsification, yogurt and fermented beverages production, and food safety. Special emphasis has been given to ultrasonic effects on milk components; fermentation and spoilage by microorganisms; and the technological, functional, and sensory properties of dairy foods. Several current and potential applications of ultrasound as a processing technique in milk applications are also discussed in this review.
Collapse
Affiliation(s)
- Luis M Carrillo-Lopez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico; National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México C.P. 03940, Mexico
| | - Ivan A Garcia-Galicia
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico
| | - Juan M Tirado-Gallegos
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico
| | - Rogelio Sanchez-Vega
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico
| | - Mariana Huerta-Jimenez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico; National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México C.P. 03940, Mexico.
| | | | - Alma D Alarcon-Rojo
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico.
| |
Collapse
|
8
|
Chi Y, Deng Y, Pu S, Ren Y, Zhao Z, He Q. Ultrasound-assisted enzymatic extraction of hydroxy-sanshool compounds from the hydrodistillation residue of two Sichuan peppers: optimization, quantification and pungent taste contribution evaluation. RSC Adv 2021; 11:4547-4554. [PMID: 35424415 PMCID: PMC8694509 DOI: 10.1039/d0ra09234g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/11/2021] [Indexed: 12/02/2022] Open
Abstract
Hydroxy-sanshool compounds were extracted from the hydrodistillation residue of Z. bungeanum Maxim. pericarp (ZBM) and Z. armatum DC. pericarp (ZADC) by using ethanol–water extraction and extractions assisted with (i) enzymes, (ii) ultrasound, and (iii) enzymes and ultrasound. The yields of the hydroxy-sanshool extracts under these four extraction conditions were calculated and compared. The ultrasound-assisted enzymatic extraction was then optimized based on a Box–Behnken design. Furthermore, five hydroxy-sanshool compounds in the extracts were quantified and their pungent taste contribution value (PCV) was calculated. Oral sensory evaluation was finally performed. Compared with that of the hydroxy-sanshool extracted with ethanol–water, the yields of the samples from the extraction assisted with enzymes, ultrasound, and enzymes and ultrasound increased by 4.2–7.6%, 9.3–9.8%, and 21.5–26.2%, respectively. A maximum yield of 7.87% (w/w) was achieved by using ultrasound-assisted enzymatic extraction under the optimal conditions: 3.1% (w/w) amount of enzyme, an incubation temperature of 50.3 °C, and an ultrasound irradiation power of 207 W. The PCV of hydroxy-α-sanshool, hydroxy-β-sanshool, hydroxy-γ-sanshool, hydroxy-ε-sanshool, and hydroxy-γ-isosanshool was 1153, 447, 461, 139, and 51 ml g−1 for the ZBM extract, respectively, while the PCV of these five hydroxyl-sanshools was 659 ml g−1, 575 ml g−1, not detected, 119 ml g−1, and not detected for the ZADC extract, respectively. Tingling and salivation were the main taste sensations of ZBM, whereas numbing and tingling sensations were dominant in ZADC. Hydroxy-sanshool compounds were extracted from the hydrodistillation residue of Z. bungeanum Maxim. pericarp and Z. armatum DC. pericarp by using ethanol–water extraction and extractions assisted with (i) enzymes, (ii) ultrasound, and (iii) enzymes and ultrasound.![]()
Collapse
Affiliation(s)
- Yuanlong Chi
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610065 P. R. China +86 28 85404298 +86 28 85404298
| | - Yanglong Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610065 P. R. China +86 28 85404298 +86 28 85404298
| | - Shenghui Pu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610065 P. R. China +86 28 85404298 +86 28 85404298
| | - Yao Ren
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610065 P. R. China +86 28 85404298 +86 28 85404298
| | - Zhifeng Zhao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610065 P. R. China +86 28 85404298 +86 28 85404298
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610065 P. R. China +86 28 85404298 +86 28 85404298
| |
Collapse
|
9
|
Calcio Gaudino E, Cravotto G, Manzoli M, Tabasso S. Sono- and mechanochemical technologies in the catalytic conversion of biomass. Chem Soc Rev 2021; 50:1785-1812. [DOI: 10.1039/d0cs01152e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This tutorial review focuses on the valorisation of biomass by sonochemical and mechanochemical activation.
Collapse
Affiliation(s)
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco
- University of Turin
- 10125 Turin
- Italy
| | - Maela Manzoli
- Dipartimento di Scienza e Tecnologia del Farmaco
- University of Turin
- 10125 Turin
- Italy
| | - Silvia Tabasso
- Dipartimento di Chimica
- University of Turin
- 10125 Turin
- Italy
| |
Collapse
|
10
|
Cao X, Che Z, Zhou B, Guan B, Chen G, Zeng W, Liang Z. Investigations in ultrasound-assisted anticoagulant production by marine Bacillus subtilis ZHX. ULTRASONICS SONOCHEMISTRY 2020; 64:104994. [PMID: 32044681 DOI: 10.1016/j.ultsonch.2020.104994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Anticoagulants are the main drugs for the prevention and treatment of thromboembolism. However, most of the present anticoagulants have shortcomings and novel anticoagulants are in great demand. Marine microorganisms are an important source of new drugs. Therefore, in this study, ultrasound was applied to enhance anticoagulant accumulation by marine Bacillus subtilis ZHX. Ultrasound parameters were optimized by single-factor experiments exploring the effects of ultrasound power, duration, duty cycle and the cell growth phases. The optimum conditions were exponential prophase (5 h) with 25 kHz frequency, 140 W power, and a 40% duty cycle for 5 min. The maximum anticoagulant activity (55.36 U/mL) was 1.73 times that of the control group, and the fermentation time was shortened by 3 h. Under optimal conditions, ultrasound increased the carbon utilization by Bacillus subtilis ZHX without significant changes in morphology, favoring cell growth and anticoagulant production. However, excessive ultrasound caused intracellular damage, which inhibited biomass accumulation, decreasing anticoagulant activity and even leading to cell rupture. This is the first report on the use of ultrasound to enhance anticoagulant production by Bacillus, and it provides useful information for scaling-up the process.
Collapse
Affiliation(s)
- Xiaoyan Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zhiqun Che
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bo Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baohu Guan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Guiguang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wei Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zhiqun Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China.
| |
Collapse
|
11
|
Xie Y, Li MN, Chen HQ, Zhang B. Effects of the combination of repeated heat-moisture treatment and compound enzymes hydrolysis on the structural and physicochemical properties of porous wheat starch. Food Chem 2019; 274:351-359. [DOI: 10.1016/j.foodchem.2018.09.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022]
|
12
|
Lerman I, Ma X, Seger C, Maolake A, Garcia-Hernandez MDLL, Rangel-Moreno J, Ackerman J, Nastiuk KL, Susiarjo M, Hammes SR. Epigenetic Suppression of SERPINB1 Promotes Inflammation-Mediated Prostate Cancer Progression. Mol Cancer Res 2019; 17:845-859. [PMID: 30610107 DOI: 10.1158/1541-7786.mcr-18-0638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/26/2018] [Accepted: 12/21/2018] [Indexed: 01/07/2023]
Abstract
Granulocytic myeloid infiltration and resultant enhanced neutrophil elastase (NE) activity is associated with poor outcomes in numerous malignancies. We recently showed that NE expression and activity from infiltrating myeloid cells was high in human prostate cancer xenografts and mouse Pten-null prostate tumors. We further demonstrated that NE directly stimulated human prostate cancer cells to proliferate, migrate, and invade, and inhibition of NE in vivo attenuated xenograft growth. Interestingly, reduced expression of SERPINB1, an endogenous NE inhibitor, also correlates with diminished survival in some cancers. Therefore, we sought to characterize the role of SERPINB1 in prostate cancer. We find that SERPINB1 expression is reduced in human metastatic and locally advanced disease and predicts poor outcome. SERPINB1 is also reduced in Pten-null mouse prostate tumors compared with wild-type prostates, and treatment with sivelestat (SERPINB1 pharmacomimetic) attenuates tumor growth. Knockdown of highly expressed SERPINB1 in nonmalignant prostatic epithelial cells (RWPE-1) increases proliferation, decreases apoptosis, and stimulates expression of epithelial-to-mesenchymal transition markers. In contrast, stable SERPINB1 expression in normally low-expressing prostate cancer cells (C4-2) reduces xenograft growth in vivo. Finally, EZH2-mediated histone (H3K27me3) methylation and DNA methyltransferase-mediated DNA methylation suppress SERPINB1 expression in prostate cancer cells. Analysis of The Cancer Genome Atlas and pyrosequencing demonstrate hypermethylation of the SERPINB1 promoter in prostate cancer compared with normal tissue, and the extent of promoter methylation negatively correlates with SERPINB1 mRNA expression. IMPLICATIONS: Our findings suggest that the balance between SERPINB1 and NE is physiologically important within the prostate and may serve as a biomarker and therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Irina Lerman
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Xiaoting Ma
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Christina Seger
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Aerken Maolake
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York
| | - Maria de la Luz Garcia-Hernandez
- Division of Allergy/Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Javier Rangel-Moreno
- Division of Allergy/Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Jessica Ackerman
- Department of Pathology, University of Rochester Medical Center, Rochester, New York
| | - Kent L Nastiuk
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Stephen R Hammes
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
13
|
Tizazu BZ, Roy K, Moholkar VS. Mechanistic investigations in ultrasound-assisted xylitol fermentation. ULTRASONICS SONOCHEMISTRY 2018; 48:321-328. [PMID: 30080557 DOI: 10.1016/j.ultsonch.2018.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
This study has investigated ultrasound-assisted xylitol production through fermentation of dilute acid (pentose-rich) hydrolysate of sugarcane bagasse using free cells of Candida tropicalis. Sonication of fermentation mixture at optimum conditions was carried out in ultrasound bath (37 kHz and 10% duty cycle). Time profiles of substrate and product in control (mechanical shaking) and test (mechanical shaking + sonication) fermentations were fitted to kinetic model using Genetic Algorithm (GA) optimization. Max. xylitol yield of 0.56 g/g and 0.61 g/g of xylose was achieved in control and test fermentations, respectively. The biomass yield also increased marginally (∼17%) with sonication. However, kinetics of fermentation increased drastically (2.5×) with sonication with 2× rise in xylose uptake and utilization by the cells. With comparative analysis of kinetic parameters in control and test experiments, this result was attributed to enhanced permeability of cell membrane that allowed faster diffusion of nutrients, substrates and products across cell membrane, higher enzyme-substrate affinity, dilution of toxic components and reduced inhibition of intracellular enzymes by substrate.
Collapse
Affiliation(s)
- Belachew Zegale Tizazu
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Kuldeep Roy
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Vijayanand S Moholkar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
14
|
Tizazu BZ, Roy K, Moholkar VS. Ultrasonic enhancement of xylitol production from sugarcane bagasse using immobilized Candida tropicalis MTCC 184. BIORESOURCE TECHNOLOGY 2018; 268:247-258. [PMID: 30081284 DOI: 10.1016/j.biortech.2018.07.141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
This study investigates ultrasonic enhancement of xylitol production from sugarcane bagasse using C. tropicalis MTCC 184 immobilized on PU foam. Initial xylitol yield of 0.53 g/g xylose improved to 0.65 g/g of xylose (in 36 h fermentation) after optimization of medium and fermentation parameters. Optimum values of experimental parameters for maximum xylitol were: yeast extract = 5.78 g/L, (NH4)2SO4 = 3.22 g/L, KH2PO4 = 0.58 g/L, MgSO4·7H2O = 0.57 g/L and temperature = 29.3 °C, initial pH = 6.2, agitation rate = 151 rpm and initial xylose concentration = 20.9 g/L. Application of 37 kHz sonication @10% duty cycle during fermentation at optimum conditions resulted in marked intensification of fermentation kinetics. Xylitol yield of 0.66 g/g of xylose has been obtained in ultrasound-assisted fermentation in just 15 h. Fitting of time profiles of substrates and products to kinetic model has highlighted actual physical mechanisms underlying 2-fold faster kinetics induced by sonication.
Collapse
Affiliation(s)
- Belachew Zegale Tizazu
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Kuldeep Roy
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Vijayanand S Moholkar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
15
|
Wang D, Yan L, Ma X, Wang W, Zou M, Zhong J, Ding T, Ye X, Liu D. Ultrasound promotes enzymatic reactions by acting on different targets: Enzymes, substrates and enzymatic reaction systems. Int J Biol Macromol 2018; 119:453-461. [PMID: 30041035 DOI: 10.1016/j.ijbiomac.2018.07.133] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022]
Abstract
With the extensive application of enzyme-catalyzed reactions in numerous fields, improving enzymatic efficiency has attracted wide attention for reducing operating costs and increasing output. There are three targets throughout enzymatic reactions: the enzyme, substrate, and mixed reaction system. Ultrasound has been known to accelerate enzymatic reactions by acting on different targets. It can modify both enzyme and substrate macromolecules, which is helpful for enhancing enzyme activity and product yields. The synergistic effect of ultrasound and enzymes is widely reported to increase catalytic rates. The present review discusses the positive effect induced by ultrasound throughout the enzymatic process, including ultrasonic modification of enzymes, ultrasound assisted immobilization, ultrasonic pretreatment of substrates, and ultrasound assisted enzymatic reactions.
Collapse
Affiliation(s)
- Danli Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Lufeng Yan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaobin Ma
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Mingming Zou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianjun Zhong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Elgharbawy AA, Alam MZ, Moniruzzaman M, Kabbashi NA, Jamal P. Chemical and structural changes of pretreated empty fruit bunch (EFB) in ionic liquid-cellulase compatible system for fermentability to bioethanol. 3 Biotech 2018; 8:236. [PMID: 29744268 DOI: 10.1007/s13205-018-1253-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/23/2018] [Indexed: 11/30/2022] Open
Abstract
The pretreatment of empty fruit bunch (EFB) was conducted using an integrated system of IL and cellulases (IL-E), with simultaneous fermentation in one vessel. The cellulase mixture (PKC-Cel) was derived from Trichoderma reesei by solid-state fermentation. Choline acetate [Cho]OAc was utilized for the pretreatment due to its biocompatibility and biodegradability. The treated EFB and its hydrolysate were characterized by the Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis. The results showed that there were significant structural changes in EFB after the treatment in IL-E system. The sugar yield after enzymatic hydrolysis by the PKC-Cel was increased from 0.058 g/g of EFB in the crude sample (untreated) to 0.283 and 0.62 ± 06 g/g in IL-E system after 24 and 48 h of treatment, respectively. The EFB hydrolysate showed the eligibility for ethanol production without any supplements where ethanol yield was 0.275 g ethanol/g EFB in the presence of the IL, while lower yield obtained without IL-pretreatment. Moreover, it was demonstrated that furfural and phenolic compounds were not at the level of suppressing the fermentation process.
Collapse
Affiliation(s)
- Amal A Elgharbawy
- 1Bioenvironmental Engineering Research Unit (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, 50728 Kuala Lumpur, Malaysia
| | - Md Zahangir Alam
- 1Bioenvironmental Engineering Research Unit (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, 50728 Kuala Lumpur, Malaysia
| | - Muhammad Moniruzzaman
- 2Chemical Engineering Department, Centre of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Malaysia
| | - Nassereldeen Ahmad Kabbashi
- 1Bioenvironmental Engineering Research Unit (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, 50728 Kuala Lumpur, Malaysia
| | - Parveen Jamal
- 1Bioenvironmental Engineering Research Unit (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, 50728 Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Wang D, Ma X, Yan L, Chantapakul T, Wang W, Ding T, Ye X, Liu D. Ultrasound assisted enzymatic hydrolysis of starch catalyzed by glucoamylase: Investigation on starch properties and degradation kinetics. Carbohydr Polym 2017; 175:47-54. [PMID: 28917890 DOI: 10.1016/j.carbpol.2017.06.093] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 01/13/2023]
Abstract
The present work investigates the synergistic impact of glucoamylase and ultrasound on starch hydrolysis. The extent of starch hydrolysis at different reaction parameters (ultrasonic intensity, temperature, reaction time) was analyzed. The hydrolysis extent increased with the reaction time and reached a maximum value under ultrasonic intensity of 7.20W/mL at 10min. Ultrasound did not alter the optimum enzymatic temperature but speeded up the thermal inactivation of glucoamylase. The evaluation of enzymatic kinetics and starch degradation kinetics indicated a promotion of the reaction rate and enzyme-substrate affinity. According to the thermodynamic results, sonoenzymolysis reactions require less energy than enzymolysis reactions. The measurement of molecular weight, solubility, thermal properties, and structures of the substrates revealed that sonoenzymolysis reaction generated greater impacts on starch properties. The molecular weight and radii of gyration decreased by 80.19% and 90.05% respectively while the starch solubility improved by 136.50%.
Collapse
Affiliation(s)
- Danli Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Xiaobin Ma
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Lufeng Yan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Thunthacha Chantapakul
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou 310058, China.
| | - Xingqan Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou 310058, China.
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou 310058, China.
| |
Collapse
|
18
|
Lerman I, Garcia-Hernandez MDLL, Rangel-Moreno J, Chiriboga L, Pan C, Nastiuk KL, Krolewski JJ, Sen A, Hammes SR. Infiltrating Myeloid Cells Exert Protumorigenic Actions via Neutrophil Elastase. Mol Cancer Res 2017; 15:1138-1152. [PMID: 28512253 DOI: 10.1158/1541-7786.mcr-17-0003] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/20/2017] [Accepted: 05/10/2017] [Indexed: 12/31/2022]
Abstract
Tissue infiltration and elevated peripheral circulation of granulocytic myeloid-derived cells is associated with poor outcomes in prostate cancer and other malignancies. Although myeloid-derived cells have the ability to suppress T-cell function, little is known about the direct impact of these innate cells on prostate tumor growth. Here, it is reported that granulocytic myeloid-derived suppressor cells (MDSC) are the predominant tumor-infiltrating cells in prostate cancer xenografts established in athymic nude mice. MDSCs significantly increased in number in the peripheral circulation as a function of xenograft growth and were successfully depleted in vivo by Gr-1 antibody treatment. Importantly, MDSC depletion significantly decreased xenograft growth. We hypothesized that granulocytic MDSCs might exert their protumorigenic actions in part through neutrophil elastase (ELANE), a serine protease released upon granulocyte activation. Indeed, it was determined that NE is expressed by infiltrating immune cells and is enzymatically active in prostate cancer xenografts and in prostate tumors of prostate-specific Pten-null mice. Importantly, treatment with sivelestat, a small-molecule inhibitor specific for NE, significantly decreased xenograft growth, recapitulating the phenotype of Gr-1 MDSC depletion. Mechanistically, NE activated MAPK signaling and induced MAPK-dependent transcription of the proliferative gene cFOS in prostate cancer cells. Functionally, NE stimulated proliferation, migration, and invasion of prostate cancer cells in vitro IHC on human prostate cancer clinical biopsies revealed coexpression of NE and infiltrating CD33+ MDSCs.Implications: This report suggests that MDSCs and NE are physiologically important mediators of prostate cancer progression and may serve as potential biomarkers and therapeutic targets. Mol Cancer Res; 15(9); 1138-52. ©2017 AACR.
Collapse
Affiliation(s)
- Irina Lerman
- Department of Medicine, Division of Endocrinology and Metabolism, University of Rochester Medical Center, Rochester, New York
| | - Maria de la Luz Garcia-Hernandez
- Department of Medicine, Division of Allergy/Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy/Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York
| | - Luis Chiriboga
- Department of Pathology, NYU Langone Medical Center, New York, New York
| | - Chunliu Pan
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York
| | - Kent L Nastiuk
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York
| | - John J Krolewski
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York
| | - Aritro Sen
- Department of Medicine, Division of Endocrinology and Metabolism, University of Rochester Medical Center, Rochester, New York
| | - Stephen R Hammes
- Department of Medicine, Division of Endocrinology and Metabolism, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
19
|
Joshi G, Rawat DS, Sharma AK, Pandey JK. Microwave enhanced alcoholysis of non-edible (algal, jatropha and pongamia) oils using chemically activated egg shell derived CaO as heterogeneous catalyst. BIORESOURCE TECHNOLOGY 2016; 219:487-492. [PMID: 27521785 DOI: 10.1016/j.biortech.2016.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Microwave enhanced fast and efficient alcoholysis (methanolysis and ethanolysis) of non-edible oils (algal, jatropha and pongamia) is achieved using chemically activated waste egg shell derived CaO (i.e. CaO(cesp)) as heterogeneous catalyst. CaO(cesp) was extracted from waste chicken egg shell and further activated chemically by supporting transition metal oxide. The maximum conversion was achieved using 3wt% catalysts under 700W microwave irradiation and 10:1 alcohol/oil ratio in 6min. Alcoholysis using ZnO activated CaO(cesp) catalyst has shown higher reaction yields in comparison to other modified catalysts. Methanolysis has shown better biodiesel conversion in comparison to ethanolysis. The catalyst has shown longer lifetime and sustained activity after being used for four cycles. Due to more saturated fatty acid content; algal biodiesel has shown improved fuel properties in comparison to other biodiesels.
Collapse
Affiliation(s)
- Girdhar Joshi
- Department of Research & Development, University of Petroleum & Energy Studies (UPES), Bidholi, Dehradun, India.
| | - Devendra S Rawat
- Department of Chemistry, University of Petroleum & Energy Studies (UPES), Bidholi, Dehradun, India
| | - Amit Kumar Sharma
- Biofuel Research Laboratory, University of Petroleum & Energy Studies (UPES), Bidholi, Dehradun, India
| | - Jitendra K Pandey
- Department of Research & Development, University of Petroleum & Energy Studies (UPES), Bidholi, Dehradun, India
| |
Collapse
|
20
|
Borah AJ, Agarwal M, Poudyal M, Goyal A, Moholkar VS. Mechanistic investigation in ultrasound induced enhancement of enzymatic hydrolysis of invasive biomass species. BIORESOURCE TECHNOLOGY 2016; 213:342-349. [PMID: 26898160 DOI: 10.1016/j.biortech.2016.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 06/05/2023]
Abstract
This study has assessed four invasive weeds, viz. Saccharum spontaneum (SS), Mikania micrantha (MM), Lantana camara (LC) and Eichhornia crassipes (EC) for enzymatic hydrolysis prior to bioalcohol fermentation. Enzymatic hydrolysis of pretreated biomasses of weeds has been conducted with mechanical agitation and sonication under constant (non-optimum) conditions. Profiles of total reducible sugar release have been fitted to HCH-1 model of enzymatic hydrolysis using Genetic Algorithm. Trends in parameters of this model reveal physical mechanism of ultrasound-induced enhancement of enzymatic hydrolysis. Sonication accelerates hydrolysis kinetics by ∼10-fold. This effect is contributed by several causes, attributed to intense micro-convection generated during sonication: (1) increase in reaction velocity, (2) increase in enzyme-substrate affinity, (3) reduction in product inhibition, and (4) enhancement of enzyme activity due to conformational changes in its secondary structure. Enhancement effect of sonication is revealed to be independent of conditions of enzymatic hydrolysis - whether optimum or non-optimum.
Collapse
Affiliation(s)
- Arup Jyoti Borah
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Mayank Agarwal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Manisha Poudyal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Arun Goyal
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Vijayanand S Moholkar
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
21
|
Nagula KN, Pandit AB. Process intensification of delignification and enzymatic hydrolysis of delignified cellulosic biomass using various process intensification techniques including cavitation. BIORESOURCE TECHNOLOGY 2016; 213:162-168. [PMID: 27090406 DOI: 10.1016/j.biortech.2016.03.152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/27/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Different methods of pretreatment including alkali treatment, treatment with ultrasound, biological treatment using laccase enzyme and combined treatment like ultrasound-laccase for Napier grass have been tried. With alkali pretreatment optimized conditions obtained were sodium hydroxide 0.3% w/v giving 86% delignification at temperature of 80°C, treatment time of 2h. In physical methods of treatment ultrasound, at a temperature of 45°C, treatment time of 2h, operating at frequency 24kHz and power of 100W gave 18% delignification. For laccase pretreatment, optimized conditions obtained were 300rpm impeller speed, enzyme concentration 10U/gm of Napier grass gave 50% delignification with cellulose. The optimized conditions for delignification by using combination treatment of ultrasound & enzymatic were obtained at 24kHz frequency, 100W giving 75% of delignification in 6h. An enhancement in lignin degradation by 25% and reduction in the treatment time from 12 to 6h is achieved as compared to only laccase treatment.
Collapse
Affiliation(s)
- Karuna Narsappa Nagula
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| | | |
Collapse
|
22
|
Li S, Yang X, Zhang Y, Ma H, Qu W, Ye X, Muatasim R, Oladejo AO. Enzymolysis kinetics and structural characteristics of rice protein with energy-gathered ultrasound and ultrasound assisted alkali pretreatments. ULTRASONICS SONOCHEMISTRY 2016; 31:85-92. [PMID: 26964926 DOI: 10.1016/j.ultsonch.2015.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 06/05/2023]
Abstract
This research investigated the structural characteristics and enzymolysis kinetics of rice protein which was pretreated by energy-gathered ultrasound and ultrasound assisted alkali. The structural characteristics of rice protein before and after the pretreatment were performed with surface hydrophobicity and Fourier transform infrared (FTIR). There was an increase in the intensity of fluorescence spectrum and changes in functional groups after the pretreatment on rice protein compared with the control (without ultrasound and ultrasound assisted alkali processed), thus significantly enhancing efficiency of the enzymatic hydrolysis. A simplified kinetic equation for the enzymolysis model with the impeded reaction of enzyme was deduced to successfully describe the enzymatic hydrolysis of rice protein by different pretreatments. The initial observed rate constants (Kin,0) as well as ineffective coefficients (kimp) were proposed and obtained based on the experimental observation. The results showed that the parameter of kin,0 increased after ultrasound and ultrasound assisted alkali pretreatments, which proved the effects of the pretreatments on the substrate enhancing the enzymolysis process and had relation to the structure changes of the pretreatments on the substrate. Furthermore, the applicability of the simplified model was demonstrated by the enzymatic hydrolysis process for other materials.
Collapse
Affiliation(s)
- Suyun Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Road, Zhengzhou, Henan 450002, China; Collaborative Innovation Center of Food Production and Safety, Henan Province, 5 Dongfeng Road, Zhengzhou, Henan 450002, China
| | - Xue Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yanyan Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Wenjuan Qu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xiaofei Ye
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Rahma Muatasim
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Ayobami Olayemi Oladejo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Department of Agricultural and Food Engineering, University of Uyo, P.M.B 1017, Uyo 520003, Nigeria
| |
Collapse
|
23
|
Dahroud BD, Mokarram RR, Khiabani MS, Hamishehkar H, Bialvaei AZ, Yousefi M, Kafil HS. Low intensity ultrasound increases the fermentation efficiency of Lactobacillus casei subsp.casei ATTC 39392. Int J Biol Macromol 2016; 86:462-7. [DOI: 10.1016/j.ijbiomac.2016.01.103] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 01/18/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
|
24
|
Methrath Liyakathali NA, Muley PD, Aita G, Boldor D. Effect of frequency and reaction time in focused ultrasonic pretreatment of energy cane bagasse for bioethanol production. BIORESOURCE TECHNOLOGY 2016; 200:262-271. [PMID: 26496215 DOI: 10.1016/j.biortech.2015.10.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/01/2015] [Accepted: 10/03/2015] [Indexed: 06/05/2023]
Abstract
Pretreatment of lignocellulosic biomass is a critical steps in bioethanol production. Ultrasonic pretreatment significantly improves cellulose hydrolysis increasing sugar yields, but current system designs have limitations related to efficiency and scalability. This study evaluates the ultrasonic pretreatment of energy cane bagasse in a novel scalable configuration and by maximizing coupling of ultrasound energy to the material via active modulation of frequency. Pretreatment was conducted in 28% ammonia water mixture at a sample:ammonia:water ratio of 1:0.5:8. Process performance was investigated as a function of frequency (20, 20.5, 21kHz), reaction time (30, 45, 60min), temperature, and power levels for multiple combinations of ammonia, water and sample mixture. Results indicated an increased enzymatic digestibility, with maximum glucose yield of 24.29g/100g dry biomass. Theoretical ethanol yields obtained ranged from 6.47 to a maximum of 24.29g/100g dry biomass. Maximum energy attainable was 886.34kJ/100g dry biomass.
Collapse
Affiliation(s)
- Niyaz Ahamed Methrath Liyakathali
- Department of Biological and Agricultural Engineering, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, United States
| | - Pranjali D Muley
- Department of Biological and Agricultural Engineering, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, United States
| | - Giovanna Aita
- Audubon Sugar Institute, LSU AgCenter, St. Gabriel, LA 70776, United States
| | - Dorin Boldor
- Department of Biological and Agricultural Engineering, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, United States.
| |
Collapse
|
25
|
Zou Y, Ding Y, Feng W, Wang W, Li Q, Chen Y, Wu H, Wang X, Yang L, Wu X. Enzymolysis kinetics, thermodynamics and model of porcine cerebral protein with single-frequency countercurrent and pulsed ultrasound-assisted processing. ULTRASONICS SONOCHEMISTRY 2016; 28:294-301. [PMID: 26384911 DOI: 10.1016/j.ultsonch.2015.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/24/2015] [Accepted: 08/11/2015] [Indexed: 06/05/2023]
Abstract
The present work investigated the enzymolysis kinetics, thermodynamics and model of porcine cerebral protein (PCP) which was pretreated by single-frequency countercurrent and pulsed ultrasound. The kinetic constants for ultrasonic pretreated and traditional enzymolysis have been determined. Results showed that the value of KM in ultrasonic PCP (UPCP) enzymolysis decreased by 9% over that in the traditional enzymolysis. The values of reaction rate constant (k) for UPCP enzymolysis increased by 207%, 121%, 62%, and 45% at 293, 303, 313 and 323 K, respectively. For the thermodynamic parameters, ultrasound decreased activation energy (Ea), change in enthalpy (ΔH) and entropy (ΔS) by 76%, 82% and 31% in PCP, respectively. However, ultrasound had little change in Gibbs free energy (ΔG) value in the temperature range of 293-323 K. Therefore, a general kinetic equation for the enzymolysis model of UPCP by a simple empirical equation was suggested. The experimental values fits with the enzymolysis kinetic model with a low average relative error (4%) confirmed that the kinetic model was accurate to reflect the enzymolysis process. The positive effect of single-frequency countercurrent and pulsed ultrasound in this study and application of the kinetic model may be useful for the release of bioactive peptides from meat processing by-products.
Collapse
Affiliation(s)
- Ye Zou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yangyang Ding
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Weiwei Feng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Wei Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Qian Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Huiyu Wu
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xintong Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Xiangyang Wu
- School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
26
|
Ranjan A, Singh S, Malani RS, Moholkar VS. Ultrasound-assisted bioalcohol synthesis: review and analysis. RSC Adv 2016. [DOI: 10.1039/c6ra11580b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present article highlights the efficacy of ultrasound in the intensification of all the steps of bioalcohol synthesis with a critical analysis of the literature.
Collapse
Affiliation(s)
- Amrita Ranjan
- Center for Energy
- Indian Institute of Technology Guwahati
- Guwahati-781 039
- India
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)
| | - Shuchi Singh
- Center for Energy
- Indian Institute of Technology Guwahati
- Guwahati-781 039
- India
| | - Ritesh S. Malani
- Center for Energy
- Indian Institute of Technology Guwahati
- Guwahati-781 039
- India
| | - Vijayanand S. Moholkar
- Center for Energy
- Indian Institute of Technology Guwahati
- Guwahati-781 039
- India
- Department of Chemical Engineering
| |
Collapse
|