1
|
Liu Y, Wu R, Wu J, Li J, Zhang Q, Wang S, Sheng G. Improving the shock resistance of anaerobic digestion under demand-oriented biogas production mode by using converter steel slag powder. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2025:734242X251333692. [PMID: 40298885 DOI: 10.1177/0734242x251333692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Introducing flexible biogas production (FB) can result in instantaneous high-shock loads for anaerobic digestion system, posing risks to the system's stable operation. Steel slag, a typical metallurgical solid waste, has been demonstrated to enhance the buffering capacity of digestion systems, thereby increasing methane production and achieving 'waste treatment using waste'. However, its efficacy under high-shock loads in FB is uncertain. Pulse feeding experiments simulating FB were conducted to analyse the system's impact resistance with steel slag addition and investigate its enhancement mechanisms. The addition of steel slag improved the methane production rate under various shock conditions, with a particularly notable enhancement under concentration shock. This scenario also saw a significant increase in the generation of soluble chemical oxygen demand and its utilization by microorganisms. This can be attributed to the enrichment of hydrolytic bacterial phyla (Firmicutes) and genera (Gelria), with functional gene analysis revealing an increase in genes associated with Fe(III) reduction and CO2-to-methane pathways. The study results indicate that the role of steel slag as an alkaline, iron-rich material enhances system alkalinity, reduces inhibition from H2 partial pressure and boosts hydrogenotrophic methanogen activity, making it suitable as an exogenous enhancer for demand-oriented anaerobic digestion.
Collapse
Affiliation(s)
- Yiyun Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, China
- Engineering Research Center of Biofilm Water Purification and Utilization Technology Ministry of Education, Maanshan, China
| | - Rongqi Wu
- School of Energy and Environment, Anhui University of Technology, Maanshan, China
| | - Jun Wu
- School of Energy and Environment, Anhui University of Technology, Maanshan, China
| | - Jianjun Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, China
| | - Qin Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, China
- Engineering Research Center of Biofilm Water Purification and Utilization Technology Ministry of Education, Maanshan, China
| | - Shisheng Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, China
- Engineering Research Center of Biofilm Water Purification and Utilization Technology Ministry of Education, Maanshan, China
| | - Guanghong Sheng
- School of Energy and Environment, Anhui University of Technology, Maanshan, China
- Engineering Research Center of Biofilm Water Purification and Utilization Technology Ministry of Education, Maanshan, China
| |
Collapse
|
2
|
Liu Y, Wu J, Wu R, Li J, Zhang Q, Sheng G. Nitrogen-doped activated carbon-based steel slag composite material as an accelerant for enhancing the resilience of flexible biogas production process against shock loads: Performance, mechanism and modified ADM1 modeling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121874. [PMID: 39025014 DOI: 10.1016/j.jenvman.2024.121874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Anaerobic digestion for flexible biogas production can lead to digestion inhibition under high shock loads. While steel slag addition has shown promise in enhancing system buffering, its limitations necessitate innovation. This study synthesized the nitrogen-doped activated carbon composite from steel slag to mitigate intermediate product accumulation during flexible biogas production. Material characterization preceded experiments introducing the composite into anaerobic digestion systems, evaluating its impact on methane production efficiency under hydraulic and concentration sudden shocks. Mechanistic insights were derived from microbial community and metagenomic analyses, facilitating the construction of the modified Anaerobic Digestion Model No. 1 (ADM1) to quantitatively assess the material's effects. Results indicate superior resistance to concentration shocks with substantial increment of methane production rate up to 33.45% compared with control group, which is mediated by direct interspecies electron transfer, though diminishing with increasing shock intensity. This study contributes theoretical foundations for stable flexible biogas production and offers an effective predictive tool for conductor material reinforcement processes.
Collapse
Affiliation(s)
- Yiyun Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, 243002, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology Ministry of Education, Maanshan, 243002, 243002, China
| | - Jun Wu
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, 243002, China
| | - Rongqi Wu
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, 243002, China
| | - Jianjun Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, 243002, China
| | - Qin Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, 243002, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology Ministry of Education, Maanshan, 243002, 243002, China
| | - Guanghong Sheng
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, 243002, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology Ministry of Education, Maanshan, 243002, 243002, China.
| |
Collapse
|
3
|
He Q, Shen Y, Li R, Peng T, Chen N, Wu Z, Feng C. Rice washing drainage (RWD) embedded in poly(vinyl alcohol)/sodium alginate as denitrification inoculum for high nitrate removal rate with low biodiversity. BIORESOURCE TECHNOLOGY 2022; 355:127288. [PMID: 35545208 DOI: 10.1016/j.biortech.2022.127288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Immobilization technology with low maintenance is a promising alternative to enhance nitrate removal from water. In this study, washing rice drainage (RWD) was immobilized by poly(vinyl alcohol)/sodium alginate (PVA/SA) to obtain RWD-PVA/SA gel beads as inoculum for denitrification. When initial nitrate concentration was 50 mg N/L, nitrate was effectively removed at rates of 50-600 mg/(L∙d) using acetate as carbon source (C/N = 1.25). Arrhenius activation energy (Ea) of nitrate oxidoreductase was 28.64 kJ/mol for the RWD-PVA/SA gel beads. Temporal and spatial variation in microbial community structures were revealed along with RWD storage and in the reactors by Illumina high-throughput sequencing technology. RWD-PVA/SA gel beads has a simple (operational taxonomic units (OTUs) 〈100). Dechloromonas, Pseudomonas, Flavobacterium and Acidovorax were the most four dominant genera in the denitrification reactors inoculated with RWD-PVA/SA gel beads. This study provides an inoculum for denitrification with high nitrate removal performance and simple microbial community structures.
Collapse
Affiliation(s)
- Qiaochong He
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yunpeng Shen
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Rui Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tong Peng
- Beijing Nature Science and Technology Development Co. LTD, No. 2 Ronghua Nan Road, Beijing Economic-Technological Development Area, China
| | - Nan Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhenjun Wu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
4
|
Abdallah M, Greige S, Beyenal H, Harb M, Wazne M. Investigating microbial dynamics and potential advantages of anaerobic co-digestion of cheese whey and poultry slaughterhouse wastewaters. Sci Rep 2022; 12:10529. [PMID: 35732864 PMCID: PMC9217800 DOI: 10.1038/s41598-022-14425-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Resource recovery and prevention of environmental pollution are key goals for sustainable development. It is widely reported that agro-industrial activities are responsible for the discharge of billions of liters of wastewater to the environment. Anaerobic digestion of these energy rich agro-industrial wastewaters can simultaneously mitigate environmental pollution and recover embedded energy as methane gas. In this study, an assessment of mono- and co-digestion of cheese whey wastewater (CWW) and poultry slaughterhouse wastewater (PSW) was conducted in 2.25-L lab-scale anaerobic digesters. Treatment combinations evaluated included CWW (R1), PSW (R2), 75:25 CWW:PSW (R3), 25:75 CWW:PSW (R4), and 50:50 CWW:PSW (R5). The digestion efficiencies of the mixed wastewaters were compared to the weighted efficiencies of the corresponding combined mono-digested samples. R4, with a mixture of 25% CWW and 75% PSW, achieved the greatest treatment efficiency. This corresponded with an average biodegradability of 84%, which was greater than for R1 and R2 at 68.5 and 71.9%, respectively. Similarly, R4 produced the highest average cumulative methane value compared to R1 and R2 at 1.22× and 1.39× for similar COD loading, respectively. The modified Gompertz model provided the best fit for the obtained methane production data, with lag time decreasing over progressive treatment cycles. PCoA and heatmap analysis of relative microbial abundances indicated a divergence of microbial communities based on feed type over the treatment cycles. Microbial community analysis showed that genus Petrimonas attained the highest relative abundance (RA) at up to 38.9% in the first two cycles, then subsequently decreased to near 0% for all reactors. Syntrophomonas was highly abundant in PSW reactors, reaching up to 36% RA. Acinetobacter was present mostly in CWW reactors with a RA reaching 56.5%. The methanogenic community was dominated by Methanothrix (84.3–99.9% of archaea). The presence of phosphate and Acinetobacter in CWW feed appeared to reduce the treatment efficiency of associated reactors. Despite Acinetobacter being strictly aerobic, previous and current results indicate its survival under anaerobic conditions, with the storage of phosphate likely playing a key role in its ability to scavenge acetate during the digestion process.
Collapse
Affiliation(s)
- M Abdallah
- Civil Engineering, Lebanese American University, 301 Bassil Building, Byblos, Lebanon
| | - S Greige
- Civil Engineering, Lebanese American University, 301 Bassil Building, Byblos, Lebanon
| | - H Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - M Harb
- Civil Engineering, Lebanese American University, 301 Bassil Building, Byblos, Lebanon
| | - M Wazne
- Civil Engineering, Lebanese American University, 301 Bassil Building, Byblos, Lebanon.
| |
Collapse
|
5
|
Parsai T, Kumar A. Setting guidelines for co-occurring nanoparticles in water medium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145175. [PMID: 33647666 DOI: 10.1016/j.scitotenv.2021.145175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/14/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
This study developed a framework termed as "mixNanohealthrisk" hereafter, for the first time as per literature review, to provide exposure limit or reference dose for co-occurring nanoparticles (NPs) in water for different regions of the world. The effect of interaction of NPs on (i) NP occurrence in environment and (ii) toxic effects were incorporated for estimating NP exposure dose and associated risks (in terms of risk quotient (RQ) and hazard index (HI). Reference dose (RfD) values for SiO2, CeO2, TiO2, Al2O3, Fe2O3, CNT, C60, ZnO and CuO NPs were calculated for the first time in this study based on toxicity studies. RfD values for top three risk-posing nanoparticles when co-occurring together were found to be 0.1 mg/kg/d (CuO), 0.12 mg/kg/d (ZnO) and 0.19 mg/kg/d (TiO2). Calculated maximum allowable concentration values for these nanoparticles were found to be 70.8, 84.4 and 136 mg/L for CuO, ZnO and TiO2 NPs. Exposures to nanoparticles aggregate (ZnO NP + CuO NP) in mixture suspension was found to have allowable ZnO and CuO concentration values of 24.7 mg/L and 175.2 mg/L respectively when present as aggregate. Top three regions identified with highest risk quotient were found to be USA followed by Switzerland and whole of Europe. During use of NP-interaction data for estimating risks, Ag, TiO2 and CuO NPs were found to have lowest maximum allowable concentration values. The identified top three risk-posing NPs can be used for conducting toxicity studies for mixture of NPs and long-term monitoring so that it can be used for setting up guideline concentration values for NPs in mixture for water environment.
Collapse
Affiliation(s)
- Tanushree Parsai
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, India
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, India.
| |
Collapse
|
6
|
Pulami D, Schauss T, Eisenberg T, Wilharm G, Blom J, Goesmann A, Kämpfer P, Glaeser SP. Acinetobacter baumannii in manure and anaerobic digestates of German biogas plants. FEMS Microbiol Ecol 2021; 96:5896450. [PMID: 32832994 DOI: 10.1093/femsec/fiaa176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
Studies considering environmental multidrug-resistant Acinetobacter spp. are scarce. The application of manure on agricultural fields is one source of multidrug-resistant bacteria from livestock into the environment. Here, Acinetobacter spp. were quantified by quantitative polymerase chain reaction in manure applied to biogas plants and in the output of the anaerobic digestion, and Acinetobacter spp. isolated from those samples were comprehensively characterized. The concentration of Acinetobacter 16S ribosomal ribonucleic acid (rRNA) gene copies per g fresh weight was in range of 106-108 in manure and decreased (partially significantly) to a still high concentration (105-106) in digestates. 16S rRNA, gyrB-rpoB and blaOXA51-like gene sequencing identified 17 different Acinetobacter spp., including six A. baumannii strains. Multilocus sequence typing showed no close relation of the six strains with globally relevant clonal complexes; however, they represented five novel sequence types. Comparative genomics and physiological tests gave an explanation how Acinetobacter could survive the anaerobic biogas process and indicated copper resistance and the presence of intrinsic beta-lactamases, efflux-pump and virulence genes. However, the A. baumannii strains lacked acquired resistance against carbapenems, colistin and quinolones. This study provided a detailed characterization of Acinetobacter spp. including A. baumannii released via manure through mesophilic or thermophilic biogas plants into the environment.
Collapse
Affiliation(s)
- Dipen Pulami
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Thorsten Schauss
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Tobias Eisenberg
- Department of Veterinary Medicine, Hessian State Laboratory (LHL), D-35392 Giessen, Germany; Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, D-35392, Giessen, Germany
| | - Gottfried Wilharm
- Project Group P2, Robert Koch Institute, Wernigerode Branch, D-38855 Wernigerode, Germany
| | - Jochen Blom
- Institute for Bioinformatics and Systems Biology, D-35392 Giessen, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics and Systems Biology, D-35392 Giessen, Germany
| | - Peter Kämpfer
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| |
Collapse
|
7
|
Pulami D, Schauss T, Eisenberg T, Blom J, Schwengers O, Bender JK, Wilharm G, Kämpfer P, Glaeser SP. Acinetobacter stercoris sp. nov. isolated from output source of a mesophilic german biogas plant with anaerobic operating conditions. Antonie van Leeuwenhoek 2021; 114:235-251. [PMID: 33591460 PMCID: PMC7902594 DOI: 10.1007/s10482-021-01517-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/13/2021] [Indexed: 01/21/2023]
Abstract
The Gram-stain-negative, oxidase negative, catalase positive strain KPC-SM-21T, isolated from a digestate of a storage tank of a mesophilic German biogas plant, was investigated by a polyphasic taxonomic approach. Phylogenetic identification based on the nearly full-length 16S rRNA gene revealed highest gene sequence similarity to Acinetobacter baumannii ATCC 19606T (97.0%). Phylogenetic trees calculated based on partial rpoB and gyrB gene sequences showed a distinct clustering of strain KPC-SM-21T with Acinetobacter gerneri DSM 14967T = CIP 107464T and not with A. baumannii, which was also supported in the five housekeeping genes multilocus sequence analysis based phylogeny. Average nucleotide identity values between whole genome sequences of strain KPC-SM-21T and next related type strains supported the novel species status. The DNA G + C content of strain KPC-SM-21T was 37.7 mol%. Whole-cell MALDI-TOF MS analysis supported the distinctness of the strain to type strains of next related Acinetobacter species. Predominant fatty acids were C18:1 ω9c (44.2%), C16:0 (21.7%) and a summed feature comprising C16:1 ω7c and/or iso-C15:0 2-OH (15.3%). Based on the obtained genotypic, phenotypic and chemotaxonomic data we concluded that strain KPC-SM-21T represents a novel species of the genus Acinetobacter, for which the name Acinetobacter stercoris sp. nov. is proposed. The type strain is KPC-SM-21T (= DSM 102168T = LMG 29413T).
Collapse
Affiliation(s)
- Dipen Pulami
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, 35392, Giessen, Germany
| | - Thorsten Schauss
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, 35392, Giessen, Germany
| | - Tobias Eisenberg
- Department of Veterinary Medicine, Hessian State Laboratory, Giessen, Germany
| | - Jochen Blom
- Institute for Bioinformatics and Systems Biology, Giessen, 35392, Giessen, Germany
| | - Oliver Schwengers
- Institute for Bioinformatics and Systems Biology, Giessen, 35392, Giessen, Germany
| | - Jennifer K Bender
- Division of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode Branch, Robert Koch Institute, 38855, Wernigerode, Germany
| | - Gottfried Wilharm
- Project group P2, Wernigerode Branch, Robert Koch Institute, 38855, Wernigerode, Germany
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, 35392, Giessen, Germany
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, 35392, Giessen, Germany.
| |
Collapse
|
8
|
Zhang X, Chen J, Jiang J, Li J, Tyagi RD, Surampalli RY. The potential utilization of slag generated from iron- and steelmaking industries: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1321-1334. [PMID: 31664635 DOI: 10.1007/s10653-019-00419-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Along with iron and steel production, large amount of slag is generated. Proper management on the iron- and steelmaking slag is highly demanded due to the high cost of direct disposal of the slag to landfill, which is the most adopted management approach. In this article, the potential application of iron- and steelmaking slag has been reviewed, which included the slag utilization in construction as cement and sand, in water, soil, and gas treatment, as well as in value material recovery. In addition, the challenge and required effort to be made in iron- and steelmaking slag management have been discussed.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, Guangdong, People's Republic of China
| | - Jiaxin Chen
- Department of Civil and Environmental Engineering, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | - JingJing Jiang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, Guangdong, People's Republic of China
| | - Ji Li
- Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, Guangdong, People's Republic of China.
| | - R D Tyagi
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec, G1K 9A9, Canada
| | - Rao Y Surampalli
- Department of Civil Engineering, University of Nebraska-Lincoln, N104 SEC, PO Box 886105, Lincoln, NE, 68588-6105, USA
| |
Collapse
|
9
|
He Q, Feng C, Chen N, Zhang D, Hou T, Dai J, Hao C, Mao B. Characterizations of dissolved organic matter and bacterial community structures in rice washing drainage (RWD)-based synthetic groundwater denitrification. CHEMOSPHERE 2019; 215:142-152. [PMID: 30316156 DOI: 10.1016/j.chemosphere.2018.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 05/21/2023]
Abstract
In this study, characteristics of dissolved organic matter (DOM) and bacterial community structure in rice washing drainage (RWD)-based groundwater denitrification systems inoculated with and without seeding sludge were investigated. Complete nitrate removal was achieved with a maximum denitrification rate of 64.1 mg NO3--N·(gVSS·h)-1. Analysis of three-dimension fluorescence excitation-emission matrix (FEEM) identified three main compositions of DOM associated with tryptophan protein-like, aromatic protein-like, and polycarboxylate humic acid-like substances in the inoculated system, while one composition associated with tryptophan protein-like substance in the un-inoculated system. Illumina sequencing analysis revealed a distinguished bacterial community structure in two systems over time. Notably, the microbial diversity was significant lower in the un-inoculated system than that in the system inoculated with seeding sludge. The predominant phyla shifted from Proteobacteria (49.2%), Bacteroidetes (20.5%) and Chloroflexi (14.8%) in the seeding sludge to Bacteroidetes (56.3%) and Proteobacteria (37.7%) after the RWD addition in the inoculated system. With RWD as sole microbe source, temporal changes in the bacterial structure from Proteobacteria (99.4%) and Bacteroidetes (5.3%) to Proteobacteria (88.8%) and Bacteroidetes (10.3%) were observed in the un-inoculated system. Specific comparison down to the genus level showed the dominant denitrifying bacteria of Thiobacillus, Anaerolineaceae and Methylophilaceae in the seeding sludge. Ideonella, Cloacibacterium and Enterobacter were dominant after the RWD addition in the inoculated system, while Stenotrophomonas and Enterobacter were dominant genera when RWD as sole bacteria source in the un-inoculated system. This finding indicates that both RWD addition and inoculation had strong impacts on bacterial community structure.
Collapse
Affiliation(s)
- Qiaochong He
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China; Department of Civil and Environmental Engineering, University of South Florida, 74202 E. Fowler Ave, ENB 118, Tampa, FL 33620, USA
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Nan Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Dongqing Zhang
- Department of Civil and Environmental Engineering, University of South Florida, 74202 E. Fowler Ave, ENB 118, Tampa, FL 33620, USA
| | - Tingting Hou
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jingwen Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Chunbo Hao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Bingchun Mao
- China Machinery TDI International Engineering Co., Ltd., Beijing, 100083, China
| |
Collapse
|
10
|
Biomethanation of Harmful Macroalgal Biomass in Leach-Bed Reactor Coupled to Anaerobic Filter: Effect of Water Regime and Filter Media. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15050866. [PMID: 29701670 PMCID: PMC5981905 DOI: 10.3390/ijerph15050866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 11/24/2022]
Abstract
Ulva is a marine macroalgal genus which causes serious green tides in coastal areas worldwide. This study investigated anaerobic digestion as a way to manage Ulva waste in a leach-bed reactor coupled to an anaerobic filter (LBR-AF). Two LBR-AF systems with different filter media, blast furnace slag grains for R1, and polyvinyl chloride rings for R2, were run at increasing water replacement rates (WRRs). Both achieved efficient volatile solids reduction (68.4–87.1%) and methane yield (148–309 mL/g VS fed) at all WRRs, with the optimal WRR for maximum methane production being 100 mL/d. R1 maintained more stable methanation performance than R2, possibly due to the different surface properties (i.e., biomass retention capacity) of the filter media. Such an effect was also noted in the different behaviors of the LBR and AF between R1 and R2. The molecular analysis results revealed that the development of the microbial community structure in the reactors was primarily determined by the fermentation type, i.e., dry (LBR) or wet (AF).
Collapse
|
11
|
Chowdhary P, Raj A, Bharagava RN. Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: A review. CHEMOSPHERE 2018; 194:229-246. [PMID: 29207355 DOI: 10.1016/j.chemosphere.2017.11.163] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/27/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Distillery industries are the key contributor to the world's economy, but these are also one of the major sources of environmental pollution due to the discharge of a huge volume of dark colored wastewater. This dark colored wastewater contains very high biological oxygen demand, chemical oxygen demand, total solids, sulfate, phosphate, phenolics and various toxic metals. Distillery wastewater also contains a mixture of organic and inorganic pollutants such as melanoidins, di-n-octyl phthalate, di-butyl phthalate, benzenepropanoic acid and 2-hydroxysocaproic acid and toxic metals, which are well reported as genotoxic, carcinogenic, mutagenic and endocrine disrupting in nature. In aquatic resources, it causes serious environmental problems by reducing the penetration power of sunlight, photosynthetic activities and dissolved oxygen content. On other hand, in agricultural land, it causes inhibition of seed germination and depletion of vegetation by reducing the soil alkalinity and manganese availability, if discharged without adequate treatment. Thus, this review article provides a comprehensive knowledge on the distillery wastewater pollutants, various techniques used for their analysis as well as its toxicological effects on environments, human and animal health. In addition, various physico-chemicals, biological as well as emerging treatment methods have been also discussed for the protection of environment, human and animal health.
Collapse
Affiliation(s)
- Pankaj Chowdhary
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - Abhay Raj
- Environmental Microbiology Section, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Post Box 80, M.G. Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India.
| |
Collapse
|
12
|
Jiang H, Nie H, Ding J, Stinner W, Sun K, Zhou H. The startup performance and microbial distribution of an anaerobic baffled reactor (ABR) treating medium-strength synthetic industrial wastewater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:46-54. [PMID: 29035674 DOI: 10.1080/10934529.2017.1368297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, an anaerobic baffled reactor (ABR) with seven chambers was applied to treat medium-strength synthetic industrial wastewater (MSIW). The performance of startup and shock test on treating MSIW was investigated. During the acclimation process, the chemical oxygen demand (COD) of MSIW gradually increased from 0 to 2,000 mg L-1, and the COD removal finally reached 90%. At shock test, the feeding COD concentration increased by one-fifth and the reactor adapted very well with a COD removal of 82%. In a stable state, Comamonas, Smithella, Syntrophomonas and Pseudomonas were the main populations of bacteria, while the predominant methanogen was Methanobacterium. The results of chemical and microbiological analysis indicated the significant advantages of ABR, including buffering shocks, separating stages with matching microorganisms and promoting syntrophism. Meanwhile, the strategies for acclimation and operation were of great importance. Further work can test reactor performance in the treatment of actual industrial wastewater.
Collapse
Affiliation(s)
- Hao Jiang
- a Institute of New Energy, State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading , China University of Petroleum , Beijing , China
| | - Hong Nie
- a Institute of New Energy, State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading , China University of Petroleum , Beijing , China
| | - Jiangtao Ding
- a Institute of New Energy, State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading , China University of Petroleum , Beijing , China
| | - Walter Stinner
- b Biochemical Conversion Department , Deutsches Biomasseforschungszentrum gGmbH (DBFZ) , Leipzig , Germany
| | - Kaixuan Sun
- a Institute of New Energy, State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading , China University of Petroleum , Beijing , China
| | - Hongjun Zhou
- a Institute of New Energy, State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading , China University of Petroleum , Beijing , China
| |
Collapse
|
13
|
Wang D, Han Y, Han H, Li K, Xu C. Enhanced treatment of Fischer-Tropsch wastewater using up-flow anaerobic sludge blanket system coupled with micro-electrolysis cell: A pilot scale study. BIORESOURCE TECHNOLOGY 2017; 238:333-342. [PMID: 28456041 DOI: 10.1016/j.biortech.2017.04.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 06/07/2023]
Abstract
The coupling of micro-electrolysis cell (MEC) with an up-flow anaerobic sludge blanket (UASB) system in pilot scale was established for enhanced treatment of Fischer-Tropsch (F-T) wastewater. The lowest influent pH (4.99±0.10) and reduced alkali addition were accomplished under the assistance of anaerobic effluent recycling of 200% (stage 5). Simultaneously, the optimum COD removal efficiency (93.5±1.6%) and methane production (2.01±0.13m3/m3·d) at the lower hydraulic retention time (HRT) were achieved in this stage. In addition, the dissolved iron from MEC could significantly increase the protein content of tightly bound extracellular polymeric substances (TB-EPS), which was beneficial to formation of stable granules. Furthermore, the high-throughput 16S rRNA gene pyrosequencing in this study further confirmed that Geobacter species could utilize iron oxides particles as electron conduit to perform the direct interspecies electron transfer (DIET) with Methanothrix, finally facilitating the syntrophic degradation of propionic acid and butyric acid and contributing completely methane production.
Collapse
Affiliation(s)
- Dexin Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuxing Han
- School of Engineering, South China Agriculture University, Guangzhou 510642, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Kun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chunyan Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
14
|
Abendroth C, Simeonov C, Peretó J, Antúnez O, Gavidia R, Luschnig O, Porcar M. From grass to gas: microbiome dynamics of grass biomass acidification under mesophilic and thermophilic temperatures. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:171. [PMID: 28690680 PMCID: PMC5496412 DOI: 10.1186/s13068-017-0859-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/27/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Separating acidification and methanogenic steps in anaerobic digestion processes can help to optimize the process and contribute to producing valuable sub-products such as methane, hydrogen and organic acids. However, the full potential of this technology has not been fully explored yet. To assess the underlying fermentation process in more detail, a combination of high-throughput sequencing and proteomics on the acidification step of plant material (grass) at both mesophilic and thermophilic temperatures (37 and 55 °C, respectively) was applied for the first time. RESULTS High-strength liquor from acidified grass biomass exhibited a low biodiversity, which differed greatly depending on temperature. It was dominated by Bacteroidetes and Firmicutes at 37 °C, and by Firmicutes and Proteobacteria at 55 °C. At the methane stage, Methanosaeta, Methanomicrobium and Methanosarcina proved to be highly sensitive to environmental changes as their abundance in the seed sludges dropped dramatically after transferring the seed sludges from the respective reactors into the experimental setup. Further, an increase in Actinobacteria coincided with reduced biogas production at the end of the experiment. Over 1700 proteins were quantified from the first cycle of acidification samples using label-free quantitative proteome analysis and searching protein databases. The most abundant proteins included an almost complete set of glycolytic enzymes indicating that the microbial population is basically engaged in the degradation and catabolism of sugars. Differences in protein abundances clearly separated samples into two clusters corresponding to culture temperature. More differentially expressed proteins were found under mesophilic (120) than thermophilic (5) conditions. CONCLUSION Our results are the first multi-omics characterisation of a two-stage biogas production system with separated acidification and suggest that screening approaches targeting specific taxa such as Methanosaeta, Methanomicrobium and Methanosarcina could be useful diagnostic tools as indicators of environmental changes such as temperature or oxidative stress or, as in the case of Actinobacteria, they could be used as a proxy of the gas production potential of anaerobic digesters. Metaproteome analyses only detected significant expression differences in mesophilic samples, whereas thermophilic samples showed more stable protein composition with an abundance of chaperones suggesting a role in protein stability under thermal stress.
Collapse
Affiliation(s)
- Christian Abendroth
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, C/ José Beltran 2, 46980 Paterna, Spain
- Institute for Integrative Systems Biology (I2SysBio, Universitat de València-CSIC), C/ José Beltran 2, 46980 Paterna, Spain
- Robert Boyle Institut e.V., Im Steinfeld 10, 07751 Jena, Germany
| | - Claudia Simeonov
- Robert Boyle Institut e.V., Im Steinfeld 10, 07751 Jena, Germany
| | - Juli Peretó
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, C/ José Beltran 2, 46980 Paterna, Spain
- Institute for Integrative Systems Biology (I2SysBio, Universitat de València-CSIC), C/ José Beltran 2, 46980 Paterna, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Paterna, Spain
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia Spain
| | - Oreto Antúnez
- Servei Central de Suport a la Investigació Experimental (SCSIE), Universitat de València-CSIC, Paterna, Spain
| | - Raquel Gavidia
- Servei Central de Suport a la Investigació Experimental (SCSIE), Universitat de València-CSIC, Paterna, Spain
| | - Olaf Luschnig
- Bio H2 Energy GmbH, Im Steinfeld 10, 07751 Jena, Germany
| | - Manuel Porcar
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, C/ José Beltran 2, 46980 Paterna, Spain
- Institute for Integrative Systems Biology (I2SysBio, Universitat de València-CSIC), C/ José Beltran 2, 46980 Paterna, Spain
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia Spain
- Institute for Integrative Systems Biology (I2SysBio, Universitat de València-CSIC), Postal Code 22085, 46071 Paterna, València Spain
| |
Collapse
|
15
|
Effect of Seasonal Temperature on the Performance and on the Microbial Community of a Novel AWFR for Decentralized Domestic Wastewater Pretreatment. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7060605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Due to environmental burden and human health risks in developing countries, the treatment of decentralized domestic wastewater has been a matter of great concern in recent years. A novel pilot-scale three-stage anaerobic wool-felt filter reactor (AWFR) was designed to treat real decentralized domestic wastewater at seasonal temperature variations of 8 to 35 °C for 364 days. The results showed that the average chemical oxygen demand (COD) removal efficiencies of AWFR in summer and winter were 76 ± 7.2% and 52 ± 5.9% at one day and three days Hydraulic Retention Time (HRT), respectively. COD mass balance analysis demonstrated that even though COD removal was lower in winter, approximately 43.5% of influent COD was still converted to methane. High-throughput MiSeq sequencing analyses indicated that Methanosaeta, Methanobacterium, and Methanolinea were the predominant methanogens, whereas the genus Bacillus probably played important roles in fermentation processes throughout the whole operation period. The performance and microbial community composition study suggested the application potential of the AWFR system for the pretreatment of decentralized domestic wastewater.
Collapse
|
16
|
Wang D, Han H, Han Y, Li K, Zhu H. Enhanced treatment of Fischer-Tropsch (F-T) wastewater using the up-flow anaerobic sludge blanket coupled with bioelectrochemical system: Effect of electric field. BIORESOURCE TECHNOLOGY 2017; 232:18-26. [PMID: 28214441 DOI: 10.1016/j.biortech.2017.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
The coupling of bioelectrochemical system (BES) with an up-flow anaerobic sludge blanket (UASB) was established for enhanced Fischer-Tropsch (F-T) wastewater treatment while the UASB (control group) was operated in parallel. The presence of electric field could offer system a more reductive micro-environment that lower the ORP values and maintain the appropriate pH range, resulting in the higher chemical oxygen demand (COD) removal efficiency and methane production for BES-UASB (86.8% and 2.31±0.1L/(L·d)) while those values in control group were 72.1% and 1.77±0.08L/(L·d). In addition, the coupled system could promote sludge granulation to perform a positive effect on maintaining stability of pollutants removal. The high-throughput 16S rRNA gene pyrosequencing in this study further confirmed that the promoting direct interspecies electron transfer (DIET) between Geobacter and Methanosarcina might be established in BES-UASB to improve the syntrophic degradation of propionate and butyrate, finally facilitated completely methane production.
Collapse
Affiliation(s)
- Dexin Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuxing Han
- School of Engineering, South China Agriculture University, Guangzhou 510642, China.
| | - Kun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Zhu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
17
|
Wang D, Ma W, Han H, Li K, Hao X. Enhanced treatment of Fischer–Tropsch (F-T) wastewater by novel anaerobic biofilm system with scrap zero valent iron (SZVI) assisted. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.09.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Cao J, Yu Y, Xie K, Luo J, Feng Q, Fang F, Li C, Xue Z. Characterizing the free ammonia exposure to the nutrients removal in activated sludge systems. RSC Adv 2017. [DOI: 10.1039/c7ra10751j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As a by-product during liquid production, the liquor wastewater exhibits tremendous environmental risks and may cause undesirable effects to the biological systems due to the high concentration of ammonia.
Collapse
Affiliation(s)
- Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- Ministry of Education
- Hohai University
- Nanjing 210098
- China
| | - Yunxiao Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- Ministry of Education
- Hohai University
- Nanjing 210098
- China
| | - Kun Xie
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- Ministry of Education
- Hohai University
- Nanjing 210098
- China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- Ministry of Education
- Hohai University
- Nanjing 210098
- China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- Ministry of Education
- Hohai University
- Nanjing 210098
- China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- Ministry of Education
- Hohai University
- Nanjing 210098
- China
| | - Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- Ministry of Education
- Hohai University
- Nanjing 210098
- China
| | - Zhaoxia Xue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- Ministry of Education
- Hohai University
- Nanjing 210098
- China
| |
Collapse
|
19
|
Continuous treatment of dairy effluent in a downflow anaerobic filter packed with slag grains: Reactor performance and kinetics. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Effect of low pH start-up on continuous mixed-culture lactic acid fermentation of dairy effluent. Appl Microbiol Biotechnol 2016; 100:10179-10191. [DOI: 10.1007/s00253-016-7871-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/05/2016] [Accepted: 09/16/2016] [Indexed: 10/20/2022]
|
21
|
Kim J, Lee C. Response of a continuous anaerobic digester to temperature transitions: A critical range for restructuring the microbial community structure and function. WATER RESEARCH 2016; 89:241-51. [PMID: 26689661 DOI: 10.1016/j.watres.2015.11.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 05/03/2023]
Abstract
Temperature is a crucial factor that significantly influences the microbial activity and so the methanation performance of an anaerobic digestion (AD) process. Therefore, how to control the operating temperature for optimal activity of the microbes involved is a key to stable AD. This study examined the response of a continuous anaerobic reactor to a series of temperature shifts over a wide range of 35-65 °C using a dairy-processing byproduct as model wastewater. During the long-term experiment for approximately 16 months, the reactor was subjected to stepwise temperature increases by 5 °C at a fixed HRT of 15 days. The reactor showed stable performance within the temperature range of 35-45 °C, with the methane production rate and yield being maximum at 45 °C (18% and 26% greater, respectively, than at 35 °C). However, the subsequent increase to 50 °C induced a sudden performance deterioration with a complete cessation of methane recovery, indicating that the temperature range between 45 °C and 50 °C had a critical impact on the transition of the reactor's methanogenic activity from mesophilic to thermophilic. This serious process perturbation was associated with a severe restructuring of the reactor microbial community structure, particularly of methanogens, quantitatively as well as qualitatively. Once restored by interrupted feeding for about two months, the reactor maintained fairly stable performance under thermophilic conditions until it was upset again at 65 °C. Interestingly, in contrast to most previous reports, hydrogenotrophs largely dominated the methanogen community at mesophilic temperatures while acetotrophs emerged as a major group at thermophilic temperature. This implies that the primary methanogenesis route of the reactor shifted from hydrogen- to acetate-utilizing pathways with the temperature shifts from mesophilic to thermophilic temperatures. Our observations suggest that a mesophilic digester may not need to be cooled at up to 45 °C in case of undesired temperature rise, for example, by excessive self-heating, which offers a possibility to reduce operating costs.
Collapse
Affiliation(s)
- Jaai Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea
| | - Changsoo Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea.
| |
Collapse
|
22
|
Dong H, Dong H, Zhang Z, Sun S, Wang W, Ke M, Song Z, Zhang Z, Wang J, Wu WM. Microbial community dynamics in an anaerobic biofilm reactor treating heavy oil refinery wastewater. RSC Adv 2016. [DOI: 10.1039/c6ra22469e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have established an anaerobic biofilm reactor (AnBR) for treating heavy oil refinery wastewater at the field scale for the first time.
Collapse
Affiliation(s)
- Honghong Dong
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing
- P. R. China
| | - Hao Dong
- College of Chemistry and Environmental Engineering
- Yangtze University
- Jingzhou 434023
- P. R. China
| | - Zhongzhi Zhang
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing
- P. R. China
| | - Shanshan Sun
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing
- P. R. China
| | - Wei Wang
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing
- P. R. China
| | - Ming Ke
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing
- P. R. China
| | - Zhaozheng Song
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing
- P. R. China
| | - Zhenjia Zhang
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jianfeng Wang
- Core Genomic Facility
- Beijing Institute of Genomics
- Chinese Academy of Science
- Beijing
- P. R. China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering
- William & Cloy Codiga Resource Recovery Research Center
- Center for Sustainable Development & Global Competitiveness
- Stanford University
- Stanford
| |
Collapse
|