1
|
Palacios PA, Philips J, Bentien A, Kofoed MVW. Relevance of extracellular electron uptake mechanisms for electromethanogenesis applications. Biotechnol Adv 2024; 73:108369. [PMID: 38685440 DOI: 10.1016/j.biotechadv.2024.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/21/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Electromethanogenesis has emerged as a biological branch of Power-to-X technologies that implements methanogenic microorganisms, as an alternative to chemical Power-to-X, to convert electrical power from renewable sources, and CO2 into methane. Unlike biomethanation processes where CO2 is converted via exogenously added hydrogen, electromethanogenesis occurs in a bioelectrochemical set-up that combines electrodes and microorganisms. Thereby, mixed, or pure methanogenic cultures catalyze the reduction of CO2 to methane via reducing equivalents supplied by a cathode. Recent advances in electromethanogenesis have been driven by interdisciplinary research at the intersection of microbiology, electrochemistry, and engineering. Integrating the knowledge acquired from these areas is essential to address the specific challenges presented by this relatively young biotechnology, which include electron transfer limitations, low energy and product efficiencies, and reactor design to enable upscaling. This review approaches electromethanogenesis from a multidisciplinary perspective, putting emphasis on the extracellular electron uptake mechanisms that methanogens use to obtain energy from cathodes, since understanding these mechanisms is key to optimize the electrochemical conditions for the development of these systems. This work summarizes the direct and indirect extracellular electron uptake mechanisms that have been elucidated to date in methanogens, along with the ones that remain unsolved. As the study of microbial corrosion, a similar bioelectrochemical process with Fe0 as electron source, has contributed to elucidate different mechanisms on how methanogens use solid electron donors, insights from both fields, biocorrosion and electromethanogenesis, are combined. Based on the repertoire of mechanisms and their potential to convert CO2 to methane, we conclude that for future applications, electromethanogenesis should focus on the indirect mechanism with H2 as intermediary. By summarizing and linking the general aspects and challenges of this process, we hope that this review serves as a guide for researchers working on electromethanogenesis in different areas of expertise to overcome the current limitations and continue with the optimization of this promising interdisciplinary technology.
Collapse
Affiliation(s)
- Paola Andrea Palacios
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8200 Aarhus, Denmark.
| | - Jo Philips
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8200 Aarhus, Denmark
| | - Anders Bentien
- Department of Biological and Chemical Engineering, Aarhus University, Aabogade 40, Aarhus N, 8200 Aarhus, Denmark
| | - Michael Vedel Wegener Kofoed
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8200 Aarhus, Denmark
| |
Collapse
|
2
|
Yao S, Swanson CS, Cheng Z, He Q, Yuan H. Alternating polarity as a novel strategy for building synthetic microbial communities capable of robust Electro-Methanogenesis. BIORESOURCE TECHNOLOGY 2024; 395:130374. [PMID: 38280409 DOI: 10.1016/j.biortech.2024.130374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Electro-methanogenic microbial communities can produce biogas with high efficiency and have attracted extensive research interest. In this study an alternating polarity strategy was developed to build electro-methanogenic communities. In two-chamber bioelectrochemical systems amended with activated carbon, the electrode potential was alternated between +0.8 V and -0.4 V vs. standard hydrogen electrode every three days. Cumulative biogas production under alternating polarity increased from 45 L/L/kg-activated carbon after start-up to 125 L/L/kg after the 4th enrichment, significantly higher than that under intermittent cathode (-0.4 V/open circuit), continuous cathode (-0.4 V), and open circuit. The communities assembled under alternating polarity were electroactive and structurally different from those assembled under other conditions. One Methanobacterium population and two Geobacter populations were consistently abundant and active in the communities. Their 16S rRNA was up-regulated by electrode potentials. Bayesian networks inferred close associations between these populations. Overall, electro-methanogenic communities have been successfully assembled with alternating polarity.
Collapse
Affiliation(s)
- Shiyun Yao
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States
| | - Clifford S Swanson
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
| | - Zhang Cheng
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States
| | - Qiang He
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN 37996, United States.
| | - Heyang Yuan
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
3
|
Yee MO, Ottosen LDM, Rotaru A. Electrical current disrupts the electron transfer in defined consortia. Microb Biotechnol 2024; 17:e14373. [PMID: 38070192 PMCID: PMC10832552 DOI: 10.1111/1751-7915.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 02/03/2024] Open
Abstract
Improving methane production through electrical current application to anaerobic digesters has garnered interest in optimizing such microbial electrochemical technologies, with claims suggesting direct interspecies electron transfer (DIET) at the cathode enhances methane yield. However, previous studies with mixed microbial communities only reported interspecies interactions based on species co-occurrence at the cathode, lacking insight into how a poised cathode influences well-defined DIET-based partnerships. To address this, we investigated the impact of continuous and discontinuous exposure to a poised cathode (-0.7 V vs. standard hydrogen electrode) on a defined consortium of Geobacter metallireducens and Methanosarcina barkeri, known for their DIET capabilities. The physiology of DIET consortia exposed to electrical current was compared to that of unexposed consortia. In current-exposed incubations, overall metabolic activity and cell numbers for both partners declined. The consortium, receiving electrons from the poised cathode, accumulated acetate and hydrogen, with only 32% of the recovered electrons allocated to methane production. Discontinuous exposure intensified these detrimental effects. Conversely, unexposed control reactors efficiently converted ethanol to methane, transiently accumulating acetate and recovering 88% of electrons in methane. Our results demonstrate the overall detrimental effect of electrochemical stimulation on a DIET consortium. Besides, the data indicate that the presence of an alternative electron donor (cathode) hinders efficient electron retrieval by the methanogen from Geobacter, and induces catabolic repression of oxidative metabolism in Geobacter. This study emphasizes understanding specific DIET-based interactions to enhance methane production during electrical stimulation, providing insights for optimizing tailored interspecies partnerships in microbial electrochemical technologies.
Collapse
Affiliation(s)
- Mon Oo Yee
- Nordcee, Department of BiologyUniversity of Southern DenmarkOdenseDenmark
- Nature EnergyOdenseDenmark
| | | | | |
Collapse
|
4
|
Tan X, Nielsen J. The integration of bio-catalysis and electrocatalysis to produce fuels and chemicals from carbon dioxide. Chem Soc Rev 2022; 51:4763-4785. [PMID: 35584360 DOI: 10.1039/d2cs00309k] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dependence on fossil fuels has caused excessive emissions of greenhouse gases (GHGs), leading to climate changes and global warming. Even though the expansion of electricity generation will enable a wider use of electric vehicles, biotechnology represents an attractive route for producing high-density liquid transportation fuels that can reduce GHG emissions from jets, long-haul trucks and ships. Furthermore, to achieve immediate alleviation of the current environmental situation, besides reducing carbon footprint it is urgent to develop technologies that transform atmospheric CO2 into fossil fuel replacements. The integration of bio-catalysis and electrocatalysis (bio-electrocatalysis) provides such a promising avenue to convert CO2 into fuels and chemicals with high-chain lengths. Following an overview of different mechanisms that can be used for CO2 fixation, we will discuss crucial factors for electrocatalysis with a special highlight on the improvement of electron-transfer kinetics, multi-dimensional electrocatalysts and their hybrids, electrolyser configurations, and the integration of electrocatalysis and bio-catalysis. Finally, we prospect key advantages and challenges of bio-electrocatalysis, and end with a discussion of future research directions.
Collapse
Affiliation(s)
- Xinyi Tan
- Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden. .,BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen N, Denmark
| |
Collapse
|
5
|
Mao Z, Cheng S, Sun Y, Lin Z, Li L, Yu Z. Enhancing stability and resilience of electromethanogenesis system by acclimating biocathode with intermittent step-up voltage. BIORESOURCE TECHNOLOGY 2021; 337:125376. [PMID: 34116281 DOI: 10.1016/j.biortech.2021.125376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Electromethanogenesis (EMG) system could efficiently convert CO2 to CH4 by using excess renewable electricity. However, the fluctuation and interruption of renewable electricity will adversely affect the biocathode and therefore the CH4 production of the EMG system. In this work, a novel biocathode acclimation strategy with intermittent step-up voltage (ISUV) was proposed to improve the stability and resilience of the EMG system against the unstable input of renewable power. Compared with the intermittent application of constant voltage (IACV), the ISUV increased the rate of CH4 production by 11.7 times with the improvement of the stability and resilience by 56% and 500%, respectively. Morphology and microflora structure analysis revealed that the biofilm enriched with ISUV exhibited a compact microflora structure with high-density cells and nanowires interconnected. This study provided a novel effective strategy to regulate the biofilm structure and enhance the performance of the EMG system.
Collapse
Affiliation(s)
- Zhengzhong Mao
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Yi Sun
- Powerchina Huadong Engineering Corporation Limited, Hangzhou 311122, PR China
| | - Zhufan Lin
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Longxin Li
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Zhen Yu
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
6
|
Biogas Upgrading and Ammonia Recovery from Livestock Manure Digestates in a Combined Electromethanogenic Biocathode—Hydrophobic Membrane System. ENERGIES 2021. [DOI: 10.3390/en14020503] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Anaerobic digestion process can be improved in combination with bioelectrochemical systems in order to recover energy and resources from digestates. An electromethanogenic microbial electrolysis cell (MEC) coupled to an ammonia recovery system based on hydrophobic membranes (ARS-HM) has been developed in order to recover ammonia, reduce organic matter content and upgrade biogas from digested pig slurry. A lab-scale dual-chamber MEC was equipped with a cation exchange membrane (CEM) and ARS with a hydrophobic membrane in the catholyte recirculation loop, to promote ammonia migration and absorption in an acidic solution. On the other hand, an electromethanogenic biofilm was developed in the biocathode to promote the transformation of CO2 into methane. The average nitrogen transference through the CEM was of 0.36 gN m−2 h−1 with a removal efficiency of 31%, with the ARS-HM in the catholyte recirculation loop. The removal of ammonia from the cathode compartment helped to maintain a lower pH value for the electromethanogenic biomass (7.69 with the ARS-HM, against 8.88 without ARS-HM) and boosted methane production from 50 L m−3 d−1 to 73 L m−3 d−1. Results have shown that the integration of an electromethanogenic MEC with an ARS-HM allows for the concomitant recovery of energy and ammonia from high strength wastewater digestates.
Collapse
|
7
|
Lee SY, Oh YK, Lee S, Fitriana HN, Moon M, Kim MS, Lee J, Min K, Park GW, Lee JP, Lee JS. Recent developments and key barriers to microbial CO 2 electrobiorefinery. BIORESOURCE TECHNOLOGY 2021; 320:124350. [PMID: 33186841 DOI: 10.1016/j.biortech.2020.124350] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
The electrochemical conversion of CO2 can include renewable surplus electricity storage and CO2 utilisation. This review focuses on the microbial CO2 electrobiorefinery based on microbial electrosynthesis (MES) which merges electrochemical and microbial conversion to produce biofuels and higher-value chemicals. In this review, recent developments are discussed about bioelectrochemical conversion of CO2 into biofuels and chemicals in MES via microbial CO2-fixation and electricity utilisation reactions. In addition, this review examines technical approaches to overcome the current limitations of MES including the following: engineering of the biocathode, application of electron mediators, and reactor optimisation, among others. An in-depth discussion of strategies for the CO2 electrobiorefinery is presented, including the integration of the biocathode with inorganic catalysts, screening of novel electroactive microorganisms, and metabolic engineering to improve target productivity from CO2.
Collapse
Affiliation(s)
- Soo Youn Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - You-Kwan Oh
- School of Chemical & Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sangmin Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Hana Nur Fitriana
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea; Renewable Energy Engineering Department, Korea Institute of Energy Research Campus, University of Science and Technology, Daejeon 34113, South Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Min-Sik Kim
- Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Jiye Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Kyoungseon Min
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Gwon Woo Park
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Joon-Pyo Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea.
| |
Collapse
|
8
|
Ragab A, Shaw DR, Katuri KP, Saikaly PE. Effects of set cathode potentials on microbial electrosynthesis system performance and biocathode methanogen function at a metatranscriptional level. Sci Rep 2020; 10:19824. [PMID: 33188217 PMCID: PMC7666199 DOI: 10.1038/s41598-020-76229-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
Microbial electrosynthesis exploits the catalytic activity of microorganisms to utilize a cathode as an electron donor for reducing waste CO2 to valuable fuels and chemicals. Electromethanogenesis is the process of CO2 reduction to CH4 catalyzed by methanogens using the cathode directly as a source of electrons or indirectly via H2. Understanding the effects of different set cathode potentials on the functional dynamics of electromethanogenic communities is crucial for the rational design of cathode materials. Replicate enriched electromethanogenic communities were subjected to different potentials (- 1.0 V and - 0.7 V vs. Ag/AgCl) and the potential-induced changes were analyzed using a metagenomic and metatranscriptomic approach. The most abundant and transcriptionally active organism on the biocathodes was a novel species of Methanobacterium sp. strain 34x. The cathode potential-induced changes limited electron donor availability and negatively affected the overall performance of the reactors in terms of CH4 production. Although high expression of key genes within the methane and carbon metabolism pathways was evident, there was no significant difference in transcriptional response to the different set potentials. The acetyl-CoA decarbonylase/synthase (ACDS) complex were the most highly expressed genes, highlighting the significance of carbon assimilation under limited electron donor conditions and its link to the methanogenesis pathway.
Collapse
Affiliation(s)
- Ala'a Ragab
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dario Rangel Shaw
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Krishna P Katuri
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Pascal E Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
9
|
Wang J, Wu B, Sierra JM, He C, Hu Z, Wang W. Influence of particle size distribution on anaerobic degradation of phenol and analysis of methanogenic microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10391-10403. [PMID: 31939015 DOI: 10.1007/s11356-020-07665-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Sludge morphology considerably affects the mechanism underlying microbial anaerobic degradation of phenol. Here, we assessed the phenol degradation rate, specific methanogenic activity, electron transport activity, coenzyme F420 concentration, and microbial community structure of five phenol-degrading sludge of varying particle sizes (i.e., < 20, 20-50, 50-100, 100-200, and > 200 μm). The results indicated an increase in phenol degradation rate and microbial community structure that distinctly correlated with an increase in sludge particle size. Although the sludge with the smallest particle size (< 20 μm) showed the lowest phenol degradation rate (9.3 mg COD·gVSS-1 day-1), its methanogenic activity with propionic acid, butyric acid, and H2/CO2 as substrates was the best, and the concentration of coenzyme F420 was the highest. The small particle size sludge did not contain abundant syntrophic bacteria or hydrogenotrophic methanogens, but contained abundant acetoclastic methanogens. Moreover, the floc sizes of the different sludge varied in important phenol-degrading bacteria and archaea, which may dominate the synergistic mechanism. This study provides a new perspective on the role of sludge floc size on the anaerobic digestion of phenol.
Collapse
Affiliation(s)
- Jing Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Benteng Wu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Julian Muñoz Sierra
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
- KWR Watercycle Research Institute, Groningenhaven 7, 3430 BB, Nieuwegein, The Netherlands
| | - Chunhua He
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
10
|
Lesnik KL, Cai W, Liu H. Microbial Community Predicts Functional Stability of Microbial Fuel Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:427-436. [PMID: 31790212 DOI: 10.1021/acs.est.9b03667] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stability as evaluated by functional resistance and resilience is critical to the effective operation of environmental biotechnologies. To date, limited tools have been developed that allow operators of these technologies to predict functional responses to environmental and operational disturbances. In the present study, 17 Microbial Fuel Cells (MFCs) were exposed to a low pH perturbation. MFC power dropped 52.7 ± 35.8% during the low pH disturbance. Following the disturbance, 3 MFCs did not recover while 14 took 60.7 ± 58.3 h to recover to previous current output levels. Machine learning models based on genomic data inputs were developed and evaluated on their ability to predict resistance and resilience. Resistance and resilience levels corresponding to risk of deactivation could be classified with 70.47 ± 15.88% and 65.33 ± 19.71% accuracy, respectively. Models predicting resistance and resilience coefficient values projected postperturbation current drops within 6.7-15.8% and recovery times within 5.8-8.7% of observed values. Results suggest that abundances of specific genera are better predictors of resistance while overall microbial community structure more accurately predicts resilience. This approach can be used to assess operational risk and is a first step toward the further understanding and improvement of overall stability of environmental biotechnologies.
Collapse
Affiliation(s)
- Keaton Larson Lesnik
- Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon 97333, United States
- Maia Analytica, Corvallis, Oregon 97330, United States
| | - Wenfang Cai
- Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon 97333, United States
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hong Liu
- Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon 97333, United States
| |
Collapse
|
11
|
Rani R, Sharma D, Kumar S. Optimization of operating conditions of miniaturize single chambered microbial fuel cell using NiWO 4/graphene oxide modified anode for performance improvement and microbial communities dynamics. BIORESOURCE TECHNOLOGY 2019; 285:121337. [PMID: 30999189 DOI: 10.1016/j.biortech.2019.121337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
NiWO4 and graphene oxide (NWG) modified anodic carbon cloth (CC) is used to improve the performance of single chambered microbial fuel cell (SMFC) by statistical optimization of operational parameters. The properties of synthesized NWG nanocomposite on the surface of modified anode are characterized by FTIR, XRD, EDX, TEM and SEM analysis. The optimum level of operational parameters maximize the power density (PD) 1458 mW/m2 of SMFC having NWG modified anode and observed 8.5 fold improvements with respect to control. The electrochemical activities of the modified/un-modified anode in SMFC are determined by CV, PD, polarization curves and EIS. Significant improvement occurs in electron transfer between the microbes and modified anode due to internal resistance reduction and better biocompatible surface observed by EIS and microbial analysis results. The 10 miniaturize SMFCs in series, parallel and series-parallel connections produced 7, 31 and 18% higher PD in comparison with a medium size SMFC, respectively.
Collapse
Affiliation(s)
- Radha Rani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, U.P., 211004, India
| | - Deepamala Sharma
- Department of Mathematics, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India
| | - Sanjay Kumar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, U.P. 221005, India.
| |
Collapse
|
12
|
Ragab A, Katuri KP, Ali M, Saikaly PE. Evidence of Spatial Homogeneity in an Electromethanogenic Cathodic Microbial Community. Front Microbiol 2019; 10:1747. [PMID: 31417533 PMCID: PMC6685142 DOI: 10.3389/fmicb.2019.01747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022] Open
Abstract
Microbial electrosynthesis (MES) has been gaining considerable interest as the next step in the evolution of microbial electrochemical technologies. Understanding the niche biocathode environment and microbial community is critical for further developing this technology as the biocathode is key to product formation and efficiency. MES is generally operated to enrich a specific functional group (e.g., methanogens or homoacetogens) from a mixed-culture inoculum. However, due to differences in H2 and CO2 availability across the cathode surface, competition and syntrophy may lead to overall variability and significant beta-diversity within and between replicate reactors, which can affect performance reproducibility. Therefore, this study aimed to investigate the distribution and potential spatial variability of the microbial communities in MES methanogenic biocathodes. Triplicate methanogenic biocathodes were enriched in microbial electrolysis cells for 5 months at an applied voltage of 0.7 V. They were then transferred to triplicate dual-chambered MES reactors and operated at -1.0 V vs. Ag/AgCl for six batches. At the end of the experiment, triplicate samples were taken at different positions (top, center, bottom) from each biocathode for a total of nine samples for total biomass protein analysis and 16S rRNA gene amplicon sequencing. Microbial community analyses showed that the biocathodes were highly enriched with methanogens, especially the hydrogenotrophic methanogen family Methanobacteriaceae, Methanobacterium sp., and the mixotrophic Methanosarcina sp., with an overall core community representing > 97% of sequence reads in all samples. There was no statistically significant spatial variability (p > 0.05) observed in the distribution of these communities within and between the reactors. These results suggest deterministic community assembly and indicate the reproducibility of electromethanogenic biocathode communities, with implications for larger-scale reactors.
Collapse
Affiliation(s)
- Ala'a Ragab
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Krishna P Katuri
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Muhammad Ali
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pascal E Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
13
|
Zhang Z, Song Y, Zheng S, Zhen G, Lu X, Kobayashi T, Xu K, Bakonyi P. Electro-conversion of carbon dioxide (CO 2) to low-carbon methane by bioelectromethanogenesis process in microbial electrolysis cells: The current status and future perspective. BIORESOURCE TECHNOLOGY 2019; 279:339-349. [PMID: 30737066 DOI: 10.1016/j.biortech.2019.01.145] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Given the aggravated greenhouse effect caused by CO2 and the current energy shortage, CO2 capture and reuse has been gaining ever-increasing concerns. Microbial Electrolysis Cells (MECs) has been considered to be a promising alternative to recycle CO2 bioelectrochemically to low-carbon electrofuels such as CH4 by combining electroactive microorganisms with electrochemical stimulation, enabling both CO2 fixation and energy recovery. In spite of the numerous efforts dedicated in this field in recent years, there are still many problems that hinder CO2 bioelectroconversion technique from the scaling-up and potential industrialization. This review comprehensively summarized the working principles, extracellular electron transfers behaviors, and the critical factors limiting the wide-spread utilization of CO2 electromethanogenesis. Various characterization and electrochemical testing methods for helping to uncover the underlying mechanisms in CO2 electromethanogenesis have been introduced. In addition, future research needs for pushing forward the development of MECs technology in real-world CO2 fixation and recycling were elaborated.
Collapse
Affiliation(s)
- Zhongyi Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ying Song
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Shaojuan Zheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China.
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, PR China
| | - Takuro Kobayashi
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kaiqin Xu
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Péter Bakonyi
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| |
Collapse
|
14
|
Zhen G, Zheng S, Lu X, Zhu X, Mei J, Kobayashi T, Xu K, Li YY, Zhao Y. A comprehensive comparison of five different carbon-based cathode materials in CO 2 electromethanogenesis: Long-term performance, cell-electrode contact behaviors and extracellular electron transfer pathways. BIORESOURCE TECHNOLOGY 2018; 266:382-388. [PMID: 29982061 DOI: 10.1016/j.biortech.2018.06.101] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Each carbon-based material, due to the discrepancy in critical properties, has distinct capability to enrich electroactive microbes able to electrosynthesize methane from CO2. To optimize electromethanogenesis process, this study physically prepared and examined several carbon-based cathode materials: carbon stick (CS), CS twined by Ti wire (CS-Ti) or covered with carbon fiber (CS-CF), graphite felt (CS-GF) and carbon cloth (CS-CC). CS-GF electrode had constantly stable methane production (75.8 mL/L/d at -0.9 V vs. Ag/AgCl) while CS-CC showed a suppressed performance over time caused by the desposition of inorganic shell. Electrode material properties affected biofilms growth, cell-electrode contact behaviors and electron exchange. Methane formation with CS-CC biocathode was H2-concnetration dependent; CS-GF cathode possessed high antifouling properties and extensive space, enriching the microorganisms capable of catalyzing electromethanogenesis through more efficient non-H2 route. This study re-interpreted the application potentials of carbon-based materials in CO2 electroreduction and electrofuel recovery, providing valuable guidance for materials' selection.
Collapse
Affiliation(s)
- Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China
| | - Shaojuan Zheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan.
| | - Xuefeng Zhu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Juan Mei
- Jiangsu Key Laboratory of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, Jiangsu, PR China
| | - Takuro Kobayashi
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kaiqin Xu
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 200092 Shanghai, PR China
| |
Collapse
|
15
|
Lam BR, Rowe AR, Nealson KH. Variation in electrode redox potential selects for different microorganisms under cathodic current flow from electrodes in marine sediments. Environ Microbiol 2018; 20:2270-2287. [PMID: 29786168 DOI: 10.1111/1462-2920.14275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022]
Abstract
Extracellular electron transport (EET) is a microbial process that allows microorganisms to transport electrons to and from insoluble substrates outside of the cell. Although progress has been made in understanding how microbes transfer electrons to insoluble substrates, the process of receiving electrons has largely remained unexplored. We investigated redox potentials favourable for donating electrons to dissolved and insoluble components in Catalina Harbor marine sediment by combining electrochemical techniques with geochemistry and molecular methods. Working electrodes buried in sediment microcosms were poised at seven redox potentials between -300 and -750 mV versus Ag/AgCl using a three-electrode system. In electrode biofilms recovered after 2-month incubations, overall community diversity increased with more negative redox potentials. Abundances of known EET-capable groups (e.g., Alteromonadales and Desulfuromonadales) varied with redox potential. Motility and chemotaxis genes were found in greater abundance in electrode communities, suggesting a possible selective advantage of these pathways for colonization and utilization of the electrode. Our enrichments demonstrated the validity of this approach in capturing groups known, as well as novel groups (e.g., Campylobacterales) that perform EET. The diverse nature of the enriched cathode communities suggest that insoluble substrate oxidation may be a critical, although poorly described microbial metabolic process in marine sediment.
Collapse
Affiliation(s)
- Bonita R Lam
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Annette R Rowe
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Kenneth H Nealson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.,Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Liu D, Roca-Puigros M, Geppert F, Caizán-Juanarena L, Na Ayudthaya SP, Buisman C, Ter Heijne A. Granular Carbon-Based Electrodes as Cathodes in Methane-Producing Bioelectrochemical Systems. Front Bioeng Biotechnol 2018; 6:78. [PMID: 29946543 PMCID: PMC6005836 DOI: 10.3389/fbioe.2018.00078] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/29/2018] [Indexed: 01/05/2023] Open
Abstract
Methane-producing bioelectrochemical systems generate methane by using microorganisms to reduce carbon dioxide at the cathode with external electricity supply. This technology provides an innovative approach for renewable electricity conversion and storage. Two key factors that need further attention are production of methane at high rate, and stable performance under intermittent electricity supply. To study these key factors, we have used two electrode materials: granular activated carbon (GAC) and graphite granules (GG). Under galvanostatic control, the biocathodes achieved methane production rates of around 65 L CH4/m2catproj/d at 35 A/m2catproj, which is 3.8 times higher than reported so far. We also operated all biocathodes with intermittent current supply (time-ON/time-OFF: 4–2′, 3–3′, 2–4′). Current-to-methane efficiencies of all biocathodes were stable around 60% at 10 A/m2catproj and slightly decreased with increasing OFF time at 35 A/m2catproj, but original performance of all biocathodes was recovered soon after intermittent operation. Interestingly, the GAC biocathodes had a lower overpotential than the GG biocathodes, with methane generation occurring at −0.52 V vs. Ag/AgCl for GAC and at −0.92 V for GG at a current density of 10 A/m2catproj. 16S rRNA gene analysis showed that Methanobacterium was the dominant methanogen and that the GAC biocathodes experienced a higher abundance of proteobacteria than the GG biocathodes. Both cathode materials show promise for the practical application of methane-producing BESs.
Collapse
Affiliation(s)
- Dandan Liu
- Sub-Department of Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - Marta Roca-Puigros
- Sub-Department of Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - Florian Geppert
- Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Oberhausen, Germany
| | - Leire Caizán-Juanarena
- Sub-Department of Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Cees Buisman
- Sub-Department of Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - Annemiek Ter Heijne
- Sub-Department of Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
17
|
Baek G, Kim J, Lee S, Lee C. Development of biocathode during repeated cycles of bioelectrochemical conversion of carbon dioxide to methane. BIORESOURCE TECHNOLOGY 2017; 241:1201-1207. [PMID: 28688737 DOI: 10.1016/j.biortech.2017.06.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/18/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
Functioning biocathodes are essential for electromethanogenesis. This study investigated the development of a biocathode from non-acclimated anaerobic sludge in an electromethanogenesis cell at a cathode potential of -0.7V (vs. standard hydrogen electrode) over four cycles of repeated batch operations. The CO2-to-CH4 conversion rate increased (to 97.7%) while the length of the lag phase decreased as the number of cycles increased, suggesting that a functioning biocathode developed during the repeated subculturing cycles. CO2-resupply test results suggested that the biocathode catalyzed the formation of CH4 via both direct and indirect (H2-mediated) electron transfer mechanisms. The biocathode archaeal community was dominated by the genus Methanobacterium, and most archaeal sequences (>89%) were affiliated with Methanobacterium palustre. The bacterial community was dominated by putative electroactive bacteria, with Arcobacter, which is rarely observed in biocathodes, forming the largest population. These electroactive bacteria were likely involved in electron transfer between the cathode and the methanogens.
Collapse
Affiliation(s)
- Gahyun Baek
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Jinsu Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Seungyong Lee
- R&D Center, POSCO E&C Co., Ltd., 241 Incheon Tower-daero, Yeonsu-gu, Incheon 22009, Republic of Korea
| | - Changsoo Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
18
|
Wojcieszak M, Pyzik A, Poszytek K, Krawczyk PS, Sobczak A, Lipinski L, Roubinek O, Palige J, Sklodowska A, Drewniak L. Adaptation of Methanogenic Inocula to Anaerobic Digestion of Maize Silage. Front Microbiol 2017; 8:1881. [PMID: 29033919 PMCID: PMC5625012 DOI: 10.3389/fmicb.2017.01881] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/14/2017] [Indexed: 11/24/2022] Open
Abstract
A well-balanced microbial consortium is crucial for efficient biogas production. In turn, one of a major factor that influence on the structure of anaerobic digestion (AD) consortium is a source of microorganisms which are used as an inoculum. This study evaluated the influence of inoculum sources (with various origin) on adaptation of a biogas community and the efficiency of the biomethanization of maize silage. As initial inocula for AD of maize silage the samples from: (i) an agricultural biogas plant (ABP) which utilizes maize silage as a main substrate, (ii) cattle slurry (CS), which contain elevated levels of lignocelluloses materials, and (iii) raw sewage sludge (RSS) with low content of plant origin materials were used. The adaptation of methanogenic consortia was monitored during a series of passages, and the functionality of the adapted consortia was verified through start-up operation of AD in two-stage reactors. During the first stages of the adaptation phase, methanogenic consortia occurred very slowly, and only after several passages did the microbial community adapts to allow production of biogas with high methane content. The ABP consortium revealed highest biogas production in the adaptation and in the start-up process. The biodiversity dynamics monitored during adaptation and start-up process showed that community profile changed in a similar direction in three studied consortia. Native communities were very distinct to each other, while at the end of the Phase II of the start-up process microbial diversity profile was similar in all consortia. All adopted bacterial communities were dominated by representatives of Porphyromonadaceae, Rikenellaceae, Ruminococcaceae, and Synergistaceae. A shift from low acetate-preferring acetoclastic Methanosaetaceae (ABP and RSS) and/or hydrogenotrophic Archaea, e.g., Methanomicrobiaceae (CS) prevailing in the inoculum samples to larger populations of high acetate-preferring acetoclastic Methanosarcinaceae was observed by the end of the experiment. As a result, three independent, functional communities that syntrophically produced methane from acetate (primarily) and H2/CO2, methanol and methylamines were adapted. This study provides new insights into the specific process by which different inocula sampled from typical methanogenic environments that are commonly used to initiate industrial installations gradually adapted to allow biogas production from maize silage.
Collapse
Affiliation(s)
- Martyna Wojcieszak
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adam Pyzik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Poszytek
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Pawel S Krawczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Sobczak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Leszek Lipinski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Otton Roubinek
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Jacek Palige
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Aleksandra Sklodowska
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Drewniak
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
19
|
Blasco-Gómez R, Batlle-Vilanova P, Villano M, Balaguer MD, Colprim J, Puig S. On the Edge of Research and Technological Application: A Critical Review of Electromethanogenesis. Int J Mol Sci 2017; 18:E874. [PMID: 28425974 PMCID: PMC5412455 DOI: 10.3390/ijms18040874] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 11/24/2022] Open
Abstract
The conversion of electrical current into methane (electromethanogenesis) by microbes represents one of the most promising applications of bioelectrochemical systems (BES). Electromethanogenesis provides a novel approach to waste treatment, carbon dioxide fixation and renewable energy storage into a chemically stable compound, such as methane. This has become an important area of research since it was first described, attracting different research groups worldwide. Basics of the process such as microorganisms involved and main reactions are now much better understood, and recent advances in BES configuration and electrode materials in lab-scale enhance the interest in this technology. However, there are still some gaps that need to be filled to move towards its application. Side reactions or scaling-up issues are clearly among the main challenges that need to be overcome to its further development. This review summarizes the recent advances made in the field of electromethanogenesis to address the main future challenges and opportunities of this novel process. In addition, the present fundamental knowledge is critically reviewed and some insights are provided to identify potential niche applications and help researchers to overcome current technological boundaries.
Collapse
Affiliation(s)
- Ramiro Blasco-Gómez
- Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain.
| | - Pau Batlle-Vilanova
- Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain.
- Department of Innovation and Technology, FCC Aqualia, Balmes Street, 36, 6th Floor, 08007 Barcelona, Spain.
| | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Maria Dolors Balaguer
- Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain.
| | - Jesús Colprim
- Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain.
| | - Sebastià Puig
- Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain.
| |
Collapse
|
20
|
Karouia F, Peyvan K, Pohorille A. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnol Adv 2017; 35:905-932. [PMID: 28433608 DOI: 10.1016/j.biotechadv.2017.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022]
Abstract
Space biotechnology is a nascent field aimed at applying tools of modern biology to advance our goals in space exploration. These advances rely on our ability to exploit in situ high throughput techniques for amplification and sequencing DNA, and measuring levels of RNA transcripts, proteins and metabolites in a cell. These techniques, collectively known as "omics" techniques have already revolutionized terrestrial biology. A number of on-going efforts are aimed at developing instruments to carry out "omics" research in space, in particular on board the International Space Station and small satellites. For space applications these instruments require substantial and creative reengineering that includes automation, miniaturization and ensuring that the device is resistant to conditions in space and works independently of the direction of the gravity vector. Different paths taken to meet these requirements for different "omics" instruments are the subjects of this review. The advantages and disadvantages of these instruments and technological solutions and their level of readiness for deployment in space are discussed. Considering that effects of space environments on terrestrial organisms appear to be global, it is argued that high throughput instruments are essential to advance (1) biomedical and physiological studies to control and reduce space-related stressors on living systems, (2) application of biology to life support and in situ resource utilization, (3) planetary protection, and (4) basic research about the limits on life in space. It is also argued that carrying out measurements in situ provides considerable advantages over the traditional space biology paradigm that relies on post-flight data analysis.
Collapse
Affiliation(s)
- Fathi Karouia
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA; NASA Ames Research Center, Flight Systems Implementation Branch, Moffett Field, CA 94035, USA.
| | | | - Andrew Pohorille
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA.
| |
Collapse
|