1
|
Park SG, Rhee C, Jadhav DA, Eisa T, Al-Mayyahi RB, Shin SG, Abdelkareem MA, Chae KJ. Tailoring a highly conductive and super-hydrophilic electrode for biocatalytic performance of microbial electrolysis cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159105. [PMID: 36181811 DOI: 10.1016/j.scitotenv.2022.159105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/14/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Bioelectrochemical hydrogen production via microbial electrolysis cells (MECs) has attracted attention as the next generation of technology for the hydrogen economy. MECs work by electrochemically active bacteria reducing organic compounds at the anode. However, the hydrophobic nature of carbon-based anodes suppresses the release of the produced gas and water penetration, which significantly reduces the possibility of microbial attachment. Consequently, a limited surface area of the anode is used, which decreases hydrogen production efficiency. In this study, the bifunctional material poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) was applied to the surface of a three-dimensional carbon felt anode to enhance the hydrogen production efficiency of an MEC owing to the high conductivity of PEDOT and super-hydrophilicity of PSS. In experiments, the PEDOT:PSS-modified anode almost doubled the hydrogen production efficiency of the MEC compared with the control anode owing to the increased capacitance current (239.3 %) and biofilm formation (220.7 %). The modified anode reduced the time required for the MEC to reach a steady state of hydrogen production by 14 days compared to the control anode. Microbial community profiles demonstrated that the modified anode had a greater abundance of electrochemically active bacteria than the control anode. This simple method could be widely applied to various bioelectrochemical systems (e.g., microbial fuel cells and solar cells) and to scaling up MECs.
Collapse
Affiliation(s)
- Sung-Gwan Park
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Chaeyoung Rhee
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Republic of Korea
| | - Dipak A Jadhav
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Tasnim Eisa
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Riyam B Al-Mayyahi
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Republic of Korea
| | - Mohammad Ali Abdelkareem
- Chemical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt; Center of Advanced Materials Research, Research Institute of Science and Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Department of Sustainable and Renewable Energy Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates.
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
2
|
Yadav A, Rene ER, Sharma M, Jatain I, Mandal MK, Dubey KK. Valorization of wastewater to recover value-added products: A comprehensive insight and perspective on different technologies. ENVIRONMENTAL RESEARCH 2022; 214:113957. [PMID: 35932829 DOI: 10.1016/j.envres.2022.113957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
In recent years, due to rapid globalization and urbanization, the demand for fuels, energy, water and nutrients has been continuously increasing. To meet the future need of the society, wastewater is a prominent and emerging source for resource recovery. It provides an opportunity to recover valuable resources in the form of energy, fertilizers, electricity, nutrients and other products. The aim of this review is to elaborate the scientific literature on the valorization of wastewater using wide range of treatment technologies and reduce the existing knowledge gap in the field of resource recovery and water reuse. Several versatile, resilient environmental techniques/technologies such as ion exchange, bioelectrochemical, adsorption, electrodialysis, solvent extraction, etc. are employed for the extraction of value-added products from waste matrices. Since the last two decades, valuable resources such as polyhydroxyalkanoate (PHA), matrix or polymers, cellulosic fibers, syngas, biodiesel, electricity, nitrogen, phosphorus, sulfur, enzymes and a wide range of platform chemicals have been recovered from wastewater. In this review, the aspects related to the persisting global water issues, the technologies used for the recovery of different products and/or by-products, economic sustainability of the technologies and the challenges encountered during the valorization of wastewater are discussed comprehensively.
Collapse
Affiliation(s)
- Ankush Yadav
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Manisha Sharma
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Indu Jatain
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Mrinal Kanti Mandal
- Department of Chemical Engineering, National Institute of Technology, Durgapur, 713209, West Bengal, India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
3
|
Hydrogen Production in Microbial Electrolysis Cells Based on Bacterial Anodes Encapsulated in a Small Bioreactor Platform. Microorganisms 2022; 10:microorganisms10051007. [PMID: 35630450 PMCID: PMC9142973 DOI: 10.3390/microorganisms10051007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 01/25/2023] Open
Abstract
Microbial electrolysis cells (MECs) are an emerging technology capable of harvesting part of the potential chemical energy in organic compounds while producing hydrogen. One of the main obstacles in MECs is the bacterial anode, which usually contains mixed cultures. Non-exoelectrogens can act as a physical barrier by settling on the anode surface and displacing the exoelectrogenic microorganisms. Those non-exoelectrogens can also compete with the exoelectrogenic microorganisms for nutrients and reduce hydrogen production. In addition, the bacterial anode needs to withstand the shear and friction forces existing in domestic wastewater plants. In this study, a bacterial anode was encapsulated by a microfiltration membrane. The novel encapsulation technology is based on a small bioreactor platform (SBP) recently developed for achieving successful bioaugmentation in wastewater treatment plants. The 3D capsule (2.5 cm in length, 0.8 cm in diameter) physically separates the exoelectrogenic biofilm on the carbon cloth anode material from the natural microorganisms in the wastewater, while enabling the diffusion of nutrients through the capsule membrane. MECs based on the SBP anode (MEC-SBPs) and the MECs based on a nonencapsulated anode (MEC control) were fed with Geobacter medium supplied with acetate for 32 days, and then with artificial wastewater for another 46 days. The electrochemical activity, chemical oxygen demand (COD), bacterial anode viability and relative distribution on the MEC-SBP anode were compared with the MEC control. When the MECs were fed with artificial wastewater, the MEC-SBP produced (at −0.6 V) 1.70 ± 0.22 A m−2, twice that of the MEC control. The hydrogen evolution rates were 0.017 and 0.005 m3 m−3 day−1, respectively. The COD consumption rate for both was about the same at 650 ± 70 mg L−1. We assume that developing the encapsulated bacterial anode using the SBP technology will help overcome the problem of contamination by non-exoelectrogenic bacteria, as well as the shear and friction forces in wastewater plants.
Collapse
|
4
|
|
5
|
Singh A, Kaushik A. Sustained energy production from wastewater in microbial fuel cell: effect of inoculum sources, electrode spacing and working volume. 3 Biotech 2021; 11:344. [PMID: 34221815 DOI: 10.1007/s13205-021-02886-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/06/2021] [Indexed: 12/18/2022] Open
Abstract
The present study was aimed at producing enhanced and sustained bioelectricity from distillery wastewater in a double chamber microbial fuel cell (MFC) by changing inter-electrode distance, inoculum and reactor volume. Using double chamber MFC with 1 L working volume, when the distance between the electrodes was kept shorter (1 cm), it generated power density of 1.74 W/m3, which was 42.5% higher than that of MFC with electrode spacing of 10 cm (1 W/m3). Using inoculum from different sources viz. garden soil (MFC-GS), wetland sediment (MFC-WS) and sludge from wastewater treatment plant (MFC-S), the highest open circuit voltage (OCV) of 0.84 V and power density of 2.74 W/m3 were produced by MFC-WS, which also showed sustained electricity production (1.68 W/m3) from the wastewater during a 10-day experiment. Relatively lower power density was generated from MFC-S (1.42 W/m3), while that from MFC-GS was the lowest (0.94 W/m3). Bioelectricity generation and overall performance were then assessed using a smaller reactor size. Smaller working volume of MFC (250 ml) favoured greater production of power density (3.2 W/m3) than that with 1 L working volume (2.96 W/m3) with electrode distance of 1 cm. The present study was novel in selecting a suitable mixed-microbial inoculum out of the diverse sources screened and reducing resistance by sharply narrowing down inter-electrode distance and reactor volume, which led to significantly enhanced and sustained electricity generation from double chamber MFC.
Collapse
Affiliation(s)
- Aradhana Singh
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, 110078 India
| | - Anubha Kaushik
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, 110078 India
| |
Collapse
|
6
|
Poli F, Seri J, Santoro C, Soavi F. Boosting Microbial Fuel Cell Performance by Combining with an External Supercapacitor: An Electrochemical Study. ChemElectroChem 2020. [DOI: 10.1002/celc.201901876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Federico Poli
- Department of Chemistry “Giacomo Ciamician” Alma Mater StudiorumUniversita di Bologna Via Selmi, 2 40126 Bologna Italy
| | - Jacopo Seri
- Department of Chemistry “Giacomo Ciamician” Alma Mater StudiorumUniversita di Bologna Via Selmi, 2 40126 Bologna Italy
| | - Carlo Santoro
- Bristol BioEnergy Centre Bristol Robotics Laboratory T-BlockUniversity West of England Coldharbour Lane Bristol BS16 1QY UK
| | - Francesca Soavi
- Department of Chemistry “Giacomo Ciamician” Alma Mater StudiorumUniversita di Bologna Via Selmi, 2 40126 Bologna Italy
| |
Collapse
|
7
|
Rathinam NK, Bibra M, Salem DR, Sani RK. Bioelectrochemical approach for enhancing lignocellulose degradation and biofilm formation in Geobacillus strain WSUCF1. BIORESOURCE TECHNOLOGY 2020; 295:122271. [PMID: 31677806 DOI: 10.1016/j.biortech.2019.122271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Investigations on microbial electrocatalysis as a strategy for enhancing the rates of substrate utilization leading to enhanced yield of biomass and enhanced biofilm formation are reported. A thermophilic Geobacillus sp. strain WSUCF1 (60 °C), a potential lignocellulose degrading microorganism was used as the electrocatalyst. Glucose, cellulose, and corn stover were used as the feedstocks. The results of this investigation showed that applying the oxidation potential of -0.383 mV (vs PRE) increased the glucose utilization and COD removal by 25.5% and 29.7% respectively. The bioelectrocatalysis strategy also increased the biomass yield by 81.2, 42.1, and 49.5% in the case of systems fed with glucose, cellulose, and corn stover, respectively, when compared with the systems without applied oxidation potential. This is the first work reporting the effects of applied oxidation potential on increasing the rates of degradation of lignocellulosic biomass and enhanced biofilm formation.
Collapse
Affiliation(s)
- Navanietha K Rathinam
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA; BuG ReMeDEE Consortia, South Dakota School of Mines and Technology, Rapid City, SD, USA; Composite and Nanocomposite Advanced Manufacturing - Biomaterials Center (CNAM-Bio Center), Rapid City, SD 57701, USA.
| | - Mohit Bibra
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - David R Salem
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA; Composite and Nanocomposite Advanced Manufacturing - Biomaterials Center (CNAM-Bio Center), Rapid City, SD 57701, USA
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA; BuG ReMeDEE Consortia, South Dakota School of Mines and Technology, Rapid City, SD, USA; Composite and Nanocomposite Advanced Manufacturing - Biomaterials Center (CNAM-Bio Center), Rapid City, SD 57701, USA; Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD, USA
| |
Collapse
|
8
|
Irfan M, Bai Y, Zhou L, Kazmi M, Yuan S, Maurice Mbadinga S, Yang SZ, Liu JF, Sand W, Gu JD, Mu BZ. Direct microbial transformation of carbon dioxide to value-added chemicals: A comprehensive analysis and application potentials. BIORESOURCE TECHNOLOGY 2019; 288:121401. [PMID: 31151767 DOI: 10.1016/j.biortech.2019.121401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Carbon dioxide storage in petroleum and other geological reservoirs is an economical option for long-term separation of this gas from the atmosphere. Other options include applications through conversion to valuable chemicals. Microalgae and plants perform direct fixation of carbon dioxide to biomass, which is then used as raw material for further microbial transformation (MT). The approach by microbial transformation can achieve reduction of carbon dioxide and production of biofuels. This review addresses the research and technological processes related to direct MT of carbon dioxide, factors affecting their efficiency in operation and the review of economic feasibility. Additionally, some commercial plants making utilization of CO2 around the globe are also summarized along with different value-added chemicals (methane, acetate, fatty acids and alcohols) as reported in literature. Further information is also provided for a better understanding of direct CO2 MT and its future prospects leading to a sustainable and clean environment.
Collapse
Affiliation(s)
- Muhammad Irfan
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, KSK Campus, Lahore 54890, Pakistan
| | - Yang Bai
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mohsin Kazmi
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, KSK Campus, Lahore 54890, Pakistan
| | - Shan Yuan
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Serge Maurice Mbadinga
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Feng Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Ji-Dong Gu
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center of MEOR, East China University of Science and Technology, Ministry of Education, Shanghai 200237, China.
| |
Collapse
|
9
|
Xu S, Zhang Y, Luo L, Liu H. Startup performance of microbial electrolysis cell assisted anaerobic digester (MEC-AD) with pre-acclimated activated carbon. ACTA ACUST UNITED AC 2019; 5:91-98. [PMID: 31193294 PMCID: PMC6524652 DOI: 10.1016/j.biteb.2018.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/02/2022]
Abstract
The feasibility of using pre-acclimated activated carbon to start up microbial electrolysis cell assisted anaerobic digester (MEC-AD) has been testified in this study. Two identical lab-scale digesters were separately packed with granular activated carbon (GAC) and powered activated carbon (PAC), which were initially acclimated as anaerobic digester and then transferred to MEC-AD. When a voltage of 0.5 V was applied, increased methane generation and substrate removal rates were observed. Hydrogenotrophic methanogens predominated in both digesters before and after transition, indicating that the pre-cultured microbial community on carbon materials could provide necessary microbiome favorable for starting up MECs. Although a low abundance of Geobacter was detected in inoculum, a rapid propagation could be realized when reactors were subjected to the electro-stimulation. The abundance of Methanosarcina closely attached to PAC was four times than that of GAC, which might be partially contributed to the improved resilience of anaerobic digester subjected to electro-stimulation. Pre-acclimated PAC/GAC are favorable for starting up MEC-AD. Methane yield was increased by ~30% when transferring AD to MEC-AD. Abundance of electroactive bacteria on pre-enriched PAC was higher than GAC. The rapid propagation of Geobacter was found in MEC-AD.
Collapse
Affiliation(s)
- Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuchen Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liwen Luo
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
10
|
Removal of a cannabis metabolite from human urine in microbial fuel cells generating electricity. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
A clean technology to convert sucrose and lignocellulose in microbial electrochemical cells into electricity and hydrogen. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Rathinam NK, Tripathi AK, Smirnova A, Beyenal H, Sani RK. Engineering rheology of electrolytes using agar for improving the performance of bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2018; 263:242-249. [PMID: 29751231 DOI: 10.1016/j.biortech.2018.04.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
The present study is focused on enhancing the rheological properties of the electrolyte and eliminating sedimentation of microorganisms/flocs without affecting the electron transfer kinetics for improved bioelectricity generation. Agar derived from polysaccharide agarose (0.05-0.2%, w/v) was chosen as a rheology modifying agent. Electroanalytical investigations showed that electrolytes modified with 0.15% agar display a nine-fold increase in current density (1.2 mA/cm2) by a thermophilic strain (Geobacillus sp. 44C, 60 °C) when compared with the control. Sodium phosphate buffer (0.1 M, pH 7) electrolyte with riboflavin (0.1 mM) was used as the control. Electrolytes modified with 0.15% agar significantly improved chemical oxygen demand removal rates. This developed electrolyte will aid in improving bioelectricity generation in Bioelectrochemical Systems (BES). The developed strategy avoids the use of peristaltic pumps and magnetic stirrers, thereby improving the energy efficiency of the process.
Collapse
Affiliation(s)
- Navanietha Krishnaraj Rathinam
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, USA.
| | - Abhilash K Tripathi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Alevtina Smirnova
- Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Haluk Beyenal
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, USA
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, USA; Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD, USA
| |
Collapse
|
13
|
Novel Applications of Microbial Fuel Cells in Sensors and Biosensors. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071184] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A microbial fuel cell (MFC) is a type of bio-electrochemical system with novel features, such as electricity generation, wastewater treatment, and biosensor applications. In recent years, progressive trends in MFC research on its chemical, electrochemical, and microbiological aspects has resulted in its noticeable applications in the field of sensing. This review was consequently aimed to provide an overview of the most interesting new applications of MFCs in sensors, such as providing the required electrical current and power for remote sensors (energy supply device for sensors) and detection of pollutants, biochemical oxygen demand (BOD), and specific DNA strands by MFCs without an external analytical device (self-powered biosensors). Moreover, in this review, procedures of MFC operation as a power supply for pH, temperature, and organic loading rate (OLR) sensors, and also self-powered biosensors of toxicity, pollutants, and BOD have been discussed.
Collapse
|
14
|
Kaur M, Kumar M, Sachdeva S, Puri SK. Aquatic weeds as the next generation feedstock for sustainable bioenergy production. BIORESOURCE TECHNOLOGY 2018; 251:390-402. [PMID: 29254877 DOI: 10.1016/j.biortech.2017.11.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 05/12/2023]
Abstract
Increasing oil prices and depletion of existing fossil fuel reserves, combined with the continuous rise in greenhouse gas emissions, have fostered the need to explore and develop new renewable bioenergy feedstocks that do not require arable land and freshwater resources. In this regard, prolific biomass growth of invasive aquatic weeds in wastewater has gained much attention in recent years in utilizing them as a potential feedstock for bioenergy production. Aquatic weeds have an exceptionally higher reproduction rates and are rich in cellulose and hemicellulose with a very low lignin content that makes them an efficient next generation biofuel crop. Considering their potential as an effective phytoremediators, this review presents a model of integrated aquatic biomass production, phytoremediation and bioenergy generation to reduce the land, fresh water and fertilizer usage for sustainable and economical bioenergy.
Collapse
Affiliation(s)
- Manpreet Kaur
- Manav Rachna International Institute of Research and Studies, Sector 43, Faridabad, Haryana 121004, India
| | - Manoj Kumar
- Indian Oil Corporation Limited (IOCL), R&D Centre, Sector 13, Faridabad 121007 Haryana, India.
| | - Sarita Sachdeva
- Manav Rachna International Institute of Research and Studies, Sector 43, Faridabad, Haryana 121004, India
| | - S K Puri
- Indian Oil Corporation Limited (IOCL), R&D Centre, Sector 13, Faridabad 121007 Haryana, India
| |
Collapse
|
15
|
Kodali M, Santoro C, Herrera S, Serov A, Atanassov P. Bimetallic platinum group metal-free catalysts for high power generating microbial fuel cells. JOURNAL OF POWER SOURCES 2017; 366:18-26. [PMID: 29097833 PMCID: PMC5637930 DOI: 10.1016/j.jpowsour.2017.08.110] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/26/2017] [Accepted: 08/30/2017] [Indexed: 04/14/2023]
Abstract
M1-M2-N-C bimetallic catalysts with M1 as Fe and Co and M2 as Fe, Co, Ni and Mn were synthesized and investigated as cathode catalysts for oxygen reduction reaction (ORR). The catalysts were prepared by Sacrificial Support Method in which silica was the template and aminoantipyrine (AAPyr) was the organic precursor. The electro-catalytic properties of these catalysts were investigated by using rotating ring disk (RRDE) electrode setup in neutral electrolyte. Fe-Mn-AAPyr outperformed Fe-AAPyr that showed higher performances compared to Fe-Co-AAPyr and Fe-Ni-AAPyr in terms of half-wave potential. In parallel, Fe-Co-AAPyr, Co-Mn-AAPyr and Co-Ni-AAPyr outperformed Co-AAPyr. The presence of Co within the catalyst contributed to high peroxide production not desired for efficient ORR. The catalytic capability of the catalysts integrated in air-breathing cathode was also verified. It was found that Co-based catalysts showed an improvement in performance by the addition of second metal compared to simple Co- AAPyr. Fe-based bimetallic materials didn't show improvement compared to Fe-AAPyr with the exception of Fe-Mn-AAPyr catalyst that had the highest performance recorded in this study with maximum power density of 221.8 ± 6.6 μWcm-2. Activated carbon (AC) was used as control and had the lowest performances in RRDE and achieved only 95.6 ± 5.8 μWcm-2 when tested in MFC.
Collapse
Affiliation(s)
| | | | | | | | - Plamen Atanassov
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico Albuquerque, New Mexico 87131, USA
| |
Collapse
|
16
|
Nizami AS, Rehan M, Waqas M, Naqvi M, Ouda OKM, Shahzad K, Miandad R, Khan MZ, Syamsiro M, Ismail IMI, Pant D. Waste biorefineries: Enabling circular economies in developing countries. BIORESOURCE TECHNOLOGY 2017; 241:1101-1117. [PMID: 28579178 DOI: 10.1016/j.biortech.2017.05.097] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 05/25/2023]
Abstract
This paper aims to examine the potential of waste biorefineries in developing countries as a solution to current waste disposal problems and as facilities to produce fuels, power, heat, and value-added products. The waste in developing countries represents a significant source of biomass, recycled materials, chemicals, energy, and revenue if wisely managed and used as a potential feedstock in various biorefinery technologies such as fermentation, anaerobic digestion (AD), pyrolysis, incineration, and gasification. However, the selection or integration of biorefinery technologies in any developing country should be based on its waste characterization. Waste biorefineries if developed in developing countries could provide energy generation, land savings, new businesses and consequent job creation, savings of landfills costs, GHG emissions reduction, and savings of natural resources of land, soil, and groundwater. The challenges in route to successful implementation of biorefinery concept in the developing countries are also presented using life cycle assessment (LCA) studies.
Collapse
Affiliation(s)
- A S Nizami
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia.
| | - M Rehan
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - M Waqas
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - M Naqvi
- Future Energy Center, Department of Energy, Building and Environment, Mälardalen University, Sweden
| | - O K M Ouda
- Department of Civil Engineering, Prince Mohamed Bin Fahd University, Al Khobar, Saudi Arabia
| | - K Shahzad
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - R Miandad
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - M Z Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - M Syamsiro
- Department of Mechanical Engineering, Janabadra University, Yogyakarta, Indonesia
| | - I M I Ismail
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
17
|
Almatouq A, Babatunde AO. Concurrent hydrogen production and phosphorus recovery in dual chamber microbial electrolysis cell. BIORESOURCE TECHNOLOGY 2017; 237:193-203. [PMID: 28254344 DOI: 10.1016/j.biortech.2017.02.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/08/2017] [Accepted: 02/12/2017] [Indexed: 05/24/2023]
Abstract
Concurrent hydrogen (H2) production and phosphorus (P) recovery were investigated in dual chamber microbial electrolysis cells (MECs). The aim of the study was to explore and understand the influence of applied voltage and influent COD concentration on concurrent H2 production and P recovery in MEC. P was efficiently precipitated at the cathode chamber and the precipitated crystals were verified as struvite, using X-ray diffraction and scanning electron microscopy analysis. The maximum P precipitation efficiency achieved by the MEC was 95%, and the maximum H2 production rate was 0.28m3-H2/m3-d. Response surface methodology showed that applied voltage had a great influence on H2 production and P recovery, while influent COD concentration had a significant effect on P recovery only. The overall energy recovery in the MEC was low and ranged from 25±1 to 37±1.7%. These results confirmed MECs capability for concurrent H2 production and P recovery.
Collapse
Affiliation(s)
- Abdullah Almatouq
- Hydro-Environment Research Centre, Energy and Environment Theme, Cardiff University School of Engineering, Queen's Buildings, The Parade, Cardiff CF24 3AA, UK; Kuwait Institute of Scientific Research, P.O. Box 24885, Safat, 13109, Kuwait.
| | - A O Babatunde
- Institute of Public Health and Environmental Engineering, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
18
|
Santoro C, Arbizzani C, Erable B, Ieropoulos I. Microbial fuel cells: From fundamentals to applications. A review. JOURNAL OF POWER SOURCES 2017; 356:225-244. [PMID: 28717261 PMCID: PMC5465942 DOI: 10.1016/j.jpowsour.2017.03.109] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/23/2017] [Indexed: 05/03/2023]
Abstract
In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), University of New Mexico, 87106, Albuquerque, NM, USA
| | - Catia Arbizzani
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Benjamin Erable
- University of Toulouse, CNRS, Laboratoire de Génie Chimique, CAMPUS INP – ENSIACET, 4 Allée Emile Monso, CS 84234, 31432, Toulouse Cedex 4, France
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T Block, University of the West of England, Frenchay Campus, Coldharbour Ln, Bristol, BS16 1QY, United Kingdom
| |
Collapse
|
19
|
Saratale RG, Saratale GD, Pugazhendhi A, Zhen G, Kumar G, Kadier A, Sivagurunathan P. Microbiome involved in microbial electrochemical systems (MESs): A review. CHEMOSPHERE 2017; 177:176-188. [PMID: 28288426 DOI: 10.1016/j.chemosphere.2017.02.143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
Microbial electrochemical systems (MESs) are an attracting technology for the disposal of wastewater treatment and simultaneous energy production. In MESs, at the anode microorganisms through the catalytic activity generates electrons that can be converted into electricity or other valuable chemical compounds. Microorganisms those having ability to donate and accept electrons to and from anode and cathode electrodes, respectively are recognized as 'exoelectrogens'. In the MESs, it renders an important function for its performance. In the present mini-review, we have discussed the role of microbiome including pure culture, enriched culture and mixed culture in different BESs application. The effects of operational and biological factors on microbiome development have been discussed. Further discussion about the molecular techniques for the evaluation of microbial community analysis is addressed. In addition different electrochemical techniques for extracellular electron transfer (EET) mechanism of electroactive biofilms have been discussed. This review highlights the importance of microbiome in the development of MESs, effective operational factors for exo-electrogens activities as well their key challenges and future technological aspects are also briefly discussed.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University- Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Arivalagan Pugazhendhi
- Department of Environmental Engineering, Daegu University, Jillyang, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Dongchuan Rd. 500, Shanghai 200241, China
| | - Gopalakrishnan Kumar
- Department of Environmental Engineering, Daegu University, Jillyang, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Abudukeremu Kadier
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
| | - Periyasamy Sivagurunathan
- Green Energy Technology Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
20
|
Yuan H, He Z. Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells. CHEM REC 2017; 17:641-652. [DOI: 10.1002/tcr.201700007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Heyang Yuan
- Department of Civil and Environmental Engineering; Virginia Polytechnic Institute and State University; Blacksburg VA 24061 USA
| | - Zhen He
- Department of Civil and Environmental Engineering; Virginia Polytechnic Institute and State University; Blacksburg VA 24061 USA
| |
Collapse
|
21
|
Microbial bioelectrosynthesis of hydrogen: Current challenges and scale-up. Enzyme Microb Technol 2017; 96:1-13. [DOI: 10.1016/j.enzmictec.2016.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022]
|
22
|
Ma J, Wang Z, Zhang J, Waite TD, Wu Z. Cost-effective Chlorella biomass production from dilute wastewater using a novel photosynthetic microbial fuel cell (PMFC). WATER RESEARCH 2017; 108:356-364. [PMID: 27836177 DOI: 10.1016/j.watres.2016.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/26/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
While microalgae have been suggested as a promising substitute to conventional fossil fuels, their cost effective cultivation and harvesting constitutes a major challenge. In the work described here, a novel photosynthetic microbial fuel cell (PMFC) in which a stainless steel mesh with biofilm formed on it serves as both the cathode and filtration material has been developed. Results of this study reveal that, in addition to inducing oxygen reduction reactions under illumination, the biocathode is effective in preventing the washout of algae during continuous operation, resulting in retained biomass concentrations reaching 3.5-6.5 g L-1. The maximum output current density reached ∼200 mA m-2 under irradiation, which is comparable with recent PMFC studies. Microbial diversity analyses targeting 16S and 18S rRNA genes indicated that the eukaryotic species belonging to the genus Chlorella was able to sustain its community dominance (>96%) over other competing species over the course of the studies. In the absence of catalysts such as Pt, a consortium of photosynthetic organisms including plant growth-promoting bacteria such as Azospirillum and Rhizobium were overrepresented in the biofilm, with these organisms most likely contributing to cathodic electron transfer. Energy flow analysis suggested that the PMFC system held the potential to achieve theoretical energy balance in simultaneous algae production and wastewater treatment.
Collapse
Affiliation(s)
- Jinxing Ma
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Junyao Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - T David Waite
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
23
|
Santoro C, Soavi F, Arbizzani C, Serov A, Kabir S, Carpenter K, Bretschger O, Atanassov P. Co-generation of hydrogen and power/current pulses from supercapacitive MFCs using novel HER iron-based catalysts. Electrochim Acta 2016; 220:672-682. [PMID: 27932850 PMCID: PMC5127565 DOI: 10.1016/j.electacta.2016.10.154] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
In this work, four different supercapacitive microbial fuel cells (SC-MFCs) with carbon brush as the anode and an air-breathing cathode with Fe-Aminoantipyrine (Fe-AAPyr) as the catalyst have been investigated using galvanostatic discharges. The maximum power (Pmax) obtained was in the range from 1.7 mW to 1.9 mW for each SC-MFC. This in-series connection of four SC-MFCs almost quadrupled Pmax to an operating voltage of 3025 mV and a Pmax of 8.1 mW, one of the highest power outputs reported in the literature. An additional electrode (AdHER) connected to the anode of the first SC-MFC and placed in the fourth SC-MFC evolved hydrogen. The hydrogen evolution reaction (HER) taking place at the electrode was studied on Pt and two novel platinum group metal-free (PGM-free) catalysts: Fe-Aminoantipyrine (Fe-AAPyr) and Fe-Mebendazole (Fe-MBZ). The amount of H2 produced was estimated using the Faraday law as 0.86 mMd-1cm-2 (0.132 L day-1) for Pt, 0.83 mMd-1cm-2 (0.127 L day-1) for Fe-AAPyr and 0.8 mMd-1cm-2 (0.123 L day-1) for Fe-MBZ. Hydrogen evolution was also detected using gas chromatography. While HER was taking place, galvanostatic discharges were also performed showing simultaneous H2 production and pulsed power generation with no need of external power sources.
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, NM 87131, USA
| | - Francesca Soavi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Catia Arbizzani
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Alexey Serov
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, NM 87131, USA
| | - Sadia Kabir
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, NM 87131, USA
| | - Kayla Carpenter
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA
| | | | - Plamen Atanassov
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
24
|
Influence of Micropore and Mesoporous in Activated Carbon Air-cathode Catalysts on Oxygen Reduction Reaction in Microbial Fuel Cells. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.08.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
ElMekawy A, Hegab HM, Mohanakrishna G, Elbaz AF, Bulut M, Pant D. Technological advances in CO2 conversion electro-biorefinery: A step toward commercialization. BIORESOURCE TECHNOLOGY 2016; 215:357-370. [PMID: 27020396 DOI: 10.1016/j.biortech.2016.03.023] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
The global atmospheric warming due to increased emissions of carbon dioxide (CO2) has attracted great attention in the last two decades. Although different CO2 capture and storage platforms have been proposed, the utilization of captured CO2 from industrial plants is progressively prevalent strategy due to concerns about the safety of terrestrial and aquatic CO2 storage. Two utilization forms were proposed, direct utilization of CO2 and conversion of CO2 to chemicals and energy products. The latter strategy includes the bioelectrochemical techniques in which electricity can be used as an energy source for the microbial catalytic production of fuels and other organic products from CO2. This approach is a potential technique in which CO2 emissions are not only reduced, but it also produce more value-added products. This review article highlights the different methodologies for the bioelectrochemical utilization of CO2, with distinctive focus on the potential opportunities for the commercialization of these techniques.
Collapse
Affiliation(s)
- Ahmed ElMekawy
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City (USC), Sadat City, Egypt; School of Chemical Engineering, University of Adelaide, Adelaide, Australia
| | - Hanaa M Hegab
- Centre for Water Management and Reuse, University of South Australia, Adelaide, SA 5095, Australia; Institute of Advanced Technology and New Materials, City of Scientific Research and Technological Applications, Borg Elarab, Alexandria, Egypt
| | - Gunda Mohanakrishna
- Separation & Conversion Technologies, VITO - Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
| | - Ashraf F Elbaz
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City (USC), Sadat City, Egypt
| | - Metin Bulut
- Separation & Conversion Technologies, VITO - Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
| | - Deepak Pant
- Separation & Conversion Technologies, VITO - Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium.
| |
Collapse
|
26
|
Gas Diffusion Electrodes Manufactured by Casting Evaluation as Air Cathodes for Microbial Fuel Cells (MFC). MATERIALS 2016; 9:ma9070601. [PMID: 28773723 PMCID: PMC5456910 DOI: 10.3390/ma9070601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 02/05/2023]
Abstract
One of the most intriguing renewable energy production methods being explored currently is electrical power generation by microbial fuel cells (MFCs). However, to make MFC technology economically feasible, cost efficient electrode manufacturing processes need to be proposed and demonstrated. In this context, VITO has developed an innovative electrode manufacturing process based on film casting and phase inversion. The screening and selection process of electrode compositions was done based on physicochemical properties of the active layer, which in turn maintained a close relation with their composition A dual hydrophilic-hydrophobic character in the active layer was achieved with values of εhydrophilic up to 10% while εTOTAL remained in the range 65 wt % to 75 wt %. Eventually, selected electrodes were tested as air cathodes for MFC in half cell and full cell modes. Reduction currents, up to -0.14 mA·cm2- at -100 mV (vs. Ag/AgCl) were reached in long term experiments in the cathode half-cell. In full MFC, a maximum power density of 380 mW·m-2 was observed at 100 Ω external load.
Collapse
|
27
|
Improvement of power generation of microbial fuel cell by integrating tungsten oxide electrocatalyst with pure or mixed culture biocatalysts. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.152] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Modi A, Singh S, Verma N. In situ nitrogen-doping of nickel nanoparticle-dispersed carbon nanofiber-based electrodes: Its positive effects on the performance of a microbial fuel cell. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.191] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Hydrogen Production in the Anaerobic Treatment of Domestic-Grade Synthetic Wastewater. SUSTAINABILITY 2015. [DOI: 10.3390/su71215814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|