1
|
Raajaraam L, Raman K. COmmunity and Single Microbe Optimisation System (COSMOS). NPJ Syst Biol Appl 2025; 11:51. [PMID: 40399328 PMCID: PMC12095823 DOI: 10.1038/s41540-025-00534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025] Open
Abstract
Bioprocessing utilises microbial monocultures and communities to convert renewable resources into valuable products. While monocultures offer simplicity, communities provide metabolic diversity and cooperative biosynthesis. To systematically evaluate these systems, we developed COmmunity and Single Microbe Optimisation System (COSMOS), a dynamic computational framework that simulates and compares monocultures and co-cultures to determine optimal microbial systems tailored to a specific environment. COSMOS revealed key factors shaping biosynthetic performance, such as environmental conditions, microbial interactions, and carbon sources. Notably, it predicted the Shewanella oneidensis-Klebsiella pneumoniae co-culture as the most efficient producer of 1,3-propanediol under anaerobic conditions, aligning closely with experimental data, including optimal carbon source concentrations and inoculum ratios. Additional findings highlight the resilience of microbial communities in nutrient-limited processes and emphasise the role of computational tools in balancing productivity with operational simplicity. Overall, this study advances the rational design of microbial systems, paving the way for sustainable bioprocesses and circular bio-economies.
Collapse
Affiliation(s)
- Lavanya Raajaraam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Wadhwani School of Data Science and AI, IIT Madras, Chennai, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India.
- Centre for Integrative Biology and Systems mEdicine (IBSE), Wadhwani School of Data Science and AI, IIT Madras, Chennai, India.
- Department of Data Science and AI, Wadhwani School of Data Science and AI, IIT Madras, Chennai, India.
| |
Collapse
|
2
|
Arsov A, Petrova P, Gerginova M, Tsigoriyna L, Armenova N, Ignatova I, Petrov K. Bacterial Tolerance to 1-Butanol and 2-Butanol: Quantitative Assessment and Transcriptomic Response. Int J Mol Sci 2024; 25:13336. [PMID: 39769098 PMCID: PMC11728337 DOI: 10.3390/ijms252413336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
The unique fuel characteristics of butanol and the possibility of its microbial production make it one of the most desirable environmentally friendly substitutes for petroleum fuels. However, the highly toxic nature of 1-butanol to the bacterial strains makes it unprofitable for commercial production. By comparison, 2-butanol has similar fuel qualities, and despite the difficulties in its microbial synthesis, it holds promise because it may be less toxic. This paper is the first comprehensive study to compare bacterial tolerance to different butanol isomers by examining the growth of 31 bacterial strains under 1-butanol and 2-butanol stress conditions. The presented results reveal that all tested strains showed a higher tolerance to 2-butanol than to 1-butanol at each solvent concentration (1%, 2%, and 3% v/v). Moreover, with an increased solvent concentration, bacterial cells lost their resistance to 1-butanol more rapidly than to 2-butanol. A comparison of the transcriptome profiles of the reference strains Bacillus subtilis ATCC 168 and E. coli ATCC 25922 disclosed a specific response to butanol stress. Most notably, in the presence of 2-butanol E. coli ATCC 25922 showed a reduced expression of genes for chaperones, efflux pumps, and the flagellar apparatus, as well as an enhancement of membrane and electron transport. B. subtilis, with 2-butanol, did not perform emergency sporulation or escape, as some global transcriptional stress response regulators were downregulated. The overexpression of ribosomal RNAs, pyrimidine biosynthesis genes, and DNA- and RNA-binding proteins such as pcrA and tnpB was crucial in the response.
Collapse
Affiliation(s)
- Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.); (P.P.); (M.G.)
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.); (P.P.); (M.G.)
| | - Maria Gerginova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.); (P.P.); (M.G.)
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (N.A.); (I.I.)
| | - Nadya Armenova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (N.A.); (I.I.)
| | - Ina Ignatova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (N.A.); (I.I.)
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (N.A.); (I.I.)
| |
Collapse
|
3
|
Nawab S, Zhang Y, Ullah MW, Lodhi AF, Shah SB, Rahman MU, Yong YC. Microbial host engineering for sustainable isobutanol production from renewable resources. Appl Microbiol Biotechnol 2024; 108:33. [PMID: 38175234 DOI: 10.1007/s00253-023-12821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Due to the limited resources and environmental problems associated with fossil fuels, there is a growing interest in utilizing renewable resources for the production of biofuels through microbial fermentation. Isobutanol is a promising biofuel that could potentially replace gasoline. However, its production efficiency is currently limited by the use of naturally isolated microorganisms. These naturally isolated microorganisms often encounter problems such as a limited range of substrates, low tolerance to solvents or inhibitors, feedback inhibition, and an imbalanced redox state. This makes it difficult to improve their production efficiency through traditional process optimization methods. Fortunately, recent advancements in genetic engineering technologies have made it possible to enhance microbial hosts for the increased production of isobutanol from renewable resources. This review provides a summary of the strategies and synthetic biology approaches that have been employed in the past few years to improve naturally isolated or non-natural microbial hosts for the enhanced production of isobutanol by utilizing different renewable resources. Furthermore, it also discusses the challenges that are faced by engineered microbial hosts and presents future perspectives to enhancing isobutanol production. KEY POINTS: • Promising potential of isobutanol to replace gasoline • Engineering of native and non-native microbial host for isobutanol production • Challenges and opportunities for enhanced isobutanol production.
Collapse
Affiliation(s)
- Said Nawab
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - YaFei Zhang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Adil Farooq Lodhi
- Department of Microbiology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Syed Bilal Shah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Peña-Castro JM, Muñoz-Páez KM, Robledo-Narvaez PN, Vázquez-Núñez E. Engineering the Metabolic Landscape of Microorganisms for Lignocellulosic Conversion. Microorganisms 2023; 11:2197. [PMID: 37764041 PMCID: PMC10535843 DOI: 10.3390/microorganisms11092197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Bacteria and yeast are being intensively used to produce biofuels and high-added-value products by using plant biomass derivatives as substrates. The number of microorganisms available for industrial processes is increasing thanks to biotechnological improvements to enhance their productivity and yield through microbial metabolic engineering and laboratory evolution. This is allowing the traditional industrial processes for biofuel production, which included multiple steps, to be improved through the consolidation of single-step processes, reducing the time of the global process, and increasing the yield and operational conditions in terms of the desired products. Engineered microorganisms are now capable of using feedstocks that they were unable to process before their modification, opening broader possibilities for establishing new markets in places where biomass is available. This review discusses metabolic engineering approaches that have been used to improve the microbial processing of biomass to convert the plant feedstock into fuels. Metabolically engineered microorganisms (MEMs) such as bacteria, yeasts, and microalgae are described, highlighting their performance and the biotechnological tools that were used to modify them. Finally, some examples of patents related to the MEMs are mentioned in order to contextualize their current industrial use.
Collapse
Affiliation(s)
- Julián Mario Peña-Castro
- Centro de Investigaciones Científicas, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec 68301, Oaxaca, Mexico;
| | - Karla M. Muñoz-Páez
- CONAHCYT—Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Queretaro 76230, Queretaro, Mexico;
| | | | - Edgar Vázquez-Núñez
- Grupo de Investigación Sobre Aplicaciones Nano y Bio Tecnológicas para la Sostenibilidad (NanoBioTS), Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, Lomas del Campestre, León 37150, Guanajuato, Mexico
| |
Collapse
|
5
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
6
|
Madhavan A, Arun KB, Sindhu R, Nair BG, Pandey A, Awasthi MK, Szakacs G, Binod P. Design and genome engineering of microbial cell factories for efficient conversion of lignocellulose to fuel. BIORESOURCE TECHNOLOGY 2023; 370:128555. [PMID: 36586428 DOI: 10.1016/j.biortech.2022.128555] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The gradually increasing need for fossil fuels demands renewable biofuel substitutes. This has fascinated an increasing investigation to design innovative energy fuels that have comparable Physico-chemical and combustion characteristics with fossil-derived fuels. The efficient microbes for bioenergy synthesis desire the proficiency to consume a large quantity of carbon substrate, transfer various carbohydrates through efficient metabolic pathways, capability to withstand inhibitory components and other degradation compounds, and improve metabolic fluxes to synthesize target compounds. Metabolically engineered microbes could be an efficient methodology for synthesizing biofuel from cellulosic biomass by cautiously manipulating enzymes and metabolic pathways. This review offers a comprehensive perspective on the trends and advances in metabolic and genetic engineering technologies for advanced biofuel synthesis by applying various heterologous hosts. Probable technologies include enzyme engineering, heterologous expression of multiple genes, CRISPR-Cas technologies for genome editing, and cell surface display.
Collapse
Affiliation(s)
- Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525 Kerala, India.
| | - K B Arun
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, Karnataka, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 689 122, India
| | - Bipin G Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525 Kerala, India
| | - Ashok Pandey
- Center for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarkhand, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - George Szakacs
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, 1111 Budapest, Szent Gellert ter 4, Hungary
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, India
| |
Collapse
|
7
|
Liu B, Nakagawa Y, Li C, Yabushita M, Tomishige K. Selective C–O Hydrogenolysis of Terminal C–OH Bond in 1,2-Diols over Rutile-Titania-Supported Iridium-Iron Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Ben Liu
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Congcong Li
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
8
|
Macchiagodena M, Bassu G, Vettori I, Fratini E, Procacci P, Pagliai M. 2-Butanol Aqueous Solutions: A Combined Molecular Dynamics and Small/Wide-Angle X-ray Scattering Study. J Phys Chem A 2022; 126:8826-8833. [DOI: 10.1021/acs.jpca.2c05708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Marina Macchiagodena
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Gavino Bassu
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Irene Vettori
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Emiliano Fratini
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Piero Procacci
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Marco Pagliai
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
9
|
Joshi A, Verma KK, D Rajput V, Minkina T, Arora J. Recent advances in metabolic engineering of microorganisms for advancing lignocellulose-derived biofuels. Bioengineered 2022; 13:8135-8163. [PMID: 35297313 PMCID: PMC9161965 DOI: 10.1080/21655979.2022.2051856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 01/09/2023] Open
Abstract
Combating climate change and ensuring energy supply to a rapidly growing global population has highlighted the need to replace petroleum fuels with clean, and sustainable renewable fuels. Biofuels offer a solution to safeguard energy security with reduced ecological footprint and process economics. Over the past years, lignocellulosic biomass has become the most preferred raw material for the production of biofuels, such as fuel, alcohol, biodiesel, and biohydrogen. However, the cost-effective conversion of lignocellulose into biofuels remains an unsolved challenge at the industrial scale. Recently, intensive efforts have been made in lignocellulose feedstock and microbial engineering to address this problem. By improving the biological pathways leading to the polysaccharide, lignin, and lipid biosynthesis, limited success has been achieved, and still needs to improve sustainable biofuel production. Impressive success is being achieved by the retouring metabolic pathways of different microbial hosts. Several robust phenotypes, mostly from bacteria and yeast domains, have been successfully constructed with improved substrate spectrum, product yield and sturdiness against hydrolysate toxins. Cyanobacteria is also being explored for metabolic advancement in recent years, however, it also remained underdeveloped to generate commercialized biofuels. The bacterium Escherichia coli and yeast Saccharomyces cerevisiae strains are also being engineered to have cell surfaces displaying hydrolytic enzymes, which holds much promise for near-term scale-up and biorefinery use. Looking forward, future advances to achieve economically feasible production of lignocellulosic-based biofuels with special focus on designing more efficient metabolic pathways coupled with screening, and engineering of novel enzymes.
Collapse
Affiliation(s)
- Abhishek Joshi
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning - 530007, China
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Jaya Arora
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| |
Collapse
|
10
|
Lu H, Yadav V, Zhong M, Bilal M, Taherzadeh MJ, Iqbal HMN. Bioengineered microbial platforms for biomass-derived biofuel production - A review. CHEMOSPHERE 2022; 288:132528. [PMID: 34637864 DOI: 10.1016/j.chemosphere.2021.132528] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
Abstract
Global warming issues, rapid fossil fuel diminution, and increasing worldwide energy demands have diverted accelerated attention in finding alternate sources of biofuels and energy to combat the energy crisis. Bioconversion of lignocellulosic biomass has emerged as a prodigious way to produce various renewable biofuels such as biodiesel, bioethanol, biogas, and biohydrogen. Ideal microbial hosts for biofuel synthesis should be capable of using high substrate quantity, tolerance to inhibiting substances and end-products, fast sugar transportation, and amplified metabolic fluxes to yielding enhanced fermentative bioproduct. Genetic manipulation and microbes' metabolic engineering are fascinating strategies for the economical production of next-generation biofuel from lignocellulosic feedstocks. Metabolic engineering is a rapidly developing approach to construct robust biofuel-producing microbial hosts and an important component for future bioeconomy. This approach has been widely adopted in the last decade for redirecting and revamping the biosynthetic pathways to obtain a high titer of target products. Biotechnologists and metabolic scientists have produced a wide variety of new products with industrial relevance through metabolic pathway engineering or optimizing native metabolic pathways. This review focuses on exploiting metabolically engineered microbes as promising cell factories for the enhanced production of advanced biofuels.
Collapse
Affiliation(s)
- Hedong Lu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Mengyuan Zhong
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China.
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
11
|
Srivastava N, Srivastava M, Alhazmi A, Kausar T, Haque S, Singh R, Ramteke PW, Mishra PK, Tuohy M, Leitgeb M, Gupta VK. Technological advances for improving fungal cellulase production from fruit wastes for bioenergy application: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117370. [PMID: 34020262 DOI: 10.1016/j.envpol.2021.117370] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/12/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Fruit wastes can be imperative to elevate economical biomass to biofuels production process at pilot scale. Because of the renewable features, huge availability, having low lignin content organic nature and low cost; these wastes can be of much interest for cellulase enzyme production. This review provides recent advances on the fungal cellulase production using fruit wastes as a potential substrate. Also, the availability of fruit wastes, generation and processing data and their potential applications for cellulase enzyme production have been discussed. Several aspects, including cellulase and its function, solid-state fermentation, process parameters, microbial source, and the application of enzyme in biofuels industries have also been discussed. Further, emphasis has been made on various bottlenecks and feasible approaches such as use of nanomaterials, co-culture, molecular techniques, genetic engineering, and cost economy analysis to develop a low-cost based comprehensive technology for viable production of cellulase and its application in biofuels production technology.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia; SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Tahreem Kausar
- Department of Food Technology, School of Interdisciplinary Science and Technology, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | - Pramod W Ramteke
- Department of Biological Sciences, Sam Higginbottom University of Agriculture Technology & Sciences (Formerly Allahabad Agricultural Institute) Allahabad, 221007, Uttar Pradesh, India; Department of Life Sciences, Mandsaur University, Mandsaur, 458001, India
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Maria Tuohy
- Molecular Glycobiotechnology Group, Department of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanovaulica 17, 2000, Maribor, Slovenija
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
12
|
C4 Bacterial Volatiles Improve Plant Health. Pathogens 2021; 10:pathogens10060682. [PMID: 34072921 PMCID: PMC8227687 DOI: 10.3390/pathogens10060682] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) associated with plant roots can trigger plant growth promotion and induced systemic resistance. Several bacterial determinants including cell-wall components and secreted compounds have been identified to date. Here, we review a group of low-molecular-weight volatile compounds released by PGPR, which improve plant health, mostly by protecting plants against pathogen attack under greenhouse and field conditions. We particularly focus on C4 bacterial volatile compounds (BVCs), such as 2,3-butanediol and acetoin, which have been shown to activate the plant immune response and to promote plant growth at the molecular level as well as in large-scale field applications. We also disc/ uss the potential applications, metabolic engineering, and large-scale fermentation of C4 BVCs. The C4 bacterial volatiles act as airborne signals and therefore represent a new type of biocontrol agent. Further advances in the encapsulation procedure, together with the development of standards and guidelines, will promote the application of C4 volatiles in the field.
Collapse
|
13
|
Yoo JI, Sohn YJ, Son J, Jo SY, Pyo J, Park SK, Choi JI, Joo JC, Kim HT, Park SJ. Recent advances in the microbial production of C4 alcohols by metabolically engineered microorganisms. Biotechnol J 2021; 17:e2000451. [PMID: 33984183 DOI: 10.1002/biot.202000451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The heavy global dependence on petroleum-based industries has led to serious environmental problems, including climate change and global warming. As a result, there have been calls for a paradigm shift towards the use of biorefineries, which employ natural and engineered microorganisms that can utilize various carbon sources from renewable resources as host strains for the carbon-neutral production of target products. PURPOSE AND SCOPE C4 alcohols are versatile chemicals that can be used directly as biofuels and bulk chemicals and in the production of value-added materials such as plastics, cosmetics, and pharmaceuticals. C4 alcohols can be effectively produced by microorganisms using DCEO biotechnology (tools to design, construct, evaluate, and optimize) and metabolic engineering strategies. SUMMARY OF NEW SYNTHESIS AND CONCLUSIONS In this review, we summarize the production strategies and various synthetic tools available for the production of C4 alcohols and discuss the potential development of microbial cell factories, including the optimization of fermentation processes, that offer cost competitiveness and potential industrial commercialization.
Collapse
Affiliation(s)
- Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jiwon Pyo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Su Kyeong Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Engineering, Interdisciplinary Program of Bioenergy and Biomaterials, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyenggi-do, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Adegboye MF, Ojuederie OB, Talia PM, Babalola OO. Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:5. [PMID: 33407786 PMCID: PMC7788794 DOI: 10.1186/s13068-020-01853-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/09/2020] [Indexed: 05/17/2023]
Abstract
The issues of global warming, coupled with fossil fuel depletion, have undoubtedly led to renewed interest in other sources of commercial fuels. The search for renewable fuels has motivated research into the biological degradation of lignocellulosic biomass feedstock to produce biofuels such as bioethanol, biodiesel, and biohydrogen. The model strain for biofuel production needs the capability to utilize a high amount of substrate, transportation of sugar through fast and deregulated pathways, ability to tolerate inhibitory compounds and end products, and increased metabolic fluxes to produce an improved fermentation product. Engineering microbes might be a great approach to produce biofuel from lignocellulosic biomass by exploiting metabolic pathways economically. Metabolic engineering is an advanced technology for the construction of highly effective microbial cell factories and a key component for the next-generation bioeconomy. It has been extensively used to redirect the biosynthetic pathway to produce desired products in several native or engineered hosts. A wide range of novel compounds has been manufactured through engineering metabolic pathways or endogenous metabolism optimizations by metabolic engineers. This review is focused on the potential utilization of engineered strains to produce biofuel and gives prospects for improvement in metabolic engineering for new strain development using advanced technologies.
Collapse
Affiliation(s)
- Mobolaji Felicia Adegboye
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
| | - Omena Bernard Ojuederie
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
- Department of Biological Sciences, Faculty of Science, Kings University, Ode-Omu, PMB 555, Osun State, Nigeria
| | - Paola M Talia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA CICVyA, CNIA, INTA Castelar, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, 1686) Hurlingham, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Tecnológicas (CONICET), Buenos Aires, Provincia de Buenos Aires, Argentina
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa.
| |
Collapse
|
15
|
Nasir A, Ashok S, Shim JY, Park S, Yoo TH. Recent Progress in the Understanding and Engineering of Coenzyme B 12-Dependent Glycerol Dehydratase. Front Bioeng Biotechnol 2020; 8:500867. [PMID: 33224925 PMCID: PMC7674605 DOI: 10.3389/fbioe.2020.500867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Coenzyme B12-dependent glycerol dehydratase (GDHt) catalyzes the dehydration reaction of glycerol in the presence of adenosylcobalamin to yield 3-hydroxypropanal (3-HPA), which can be converted biologically to versatile platform chemicals such as 1,3-propanediol and 3-hydroxypropionic acid. Owing to the increased demand for biofuels, developing biological processes based on glycerol, which is a byproduct of biodiesel production, has attracted considerable attention recently. In this review, we will provide updates on the current understanding of the catalytic mechanism and structure of coenzyme B12-dependent GDHt, and then summarize the results of engineering attempts, with perspectives on future directions in its engineering.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | | | - Jeung Yeop Shim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
16
|
Wu X, Tovilla‐Coutiño DB, Eiteman MA. Engineered citrate synthase improves citramalic acid generation in
Escherichia coli. Biotechnol Bioeng 2020; 117:2781-2790. [DOI: 10.1002/bit.27450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/24/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Xianghao Wu
- School of Chemical, Materials and Biomedical Engineering University of Georgia Athens Georgia
| | | | - Mark A. Eiteman
- School of Chemical, Materials and Biomedical Engineering University of Georgia Athens Georgia
| |
Collapse
|
17
|
Mar MJ, Andersen JM, Kandasamy V, Liu J, Solem C, Jensen PR. Synergy at work: linking the metabolism of two lactic acid bacteria to achieve superior production of 2-butanol. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:45. [PMID: 32180827 PMCID: PMC7065357 DOI: 10.1186/s13068-020-01689-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The secondary alcohol 2-butanol has many important applications, e.g., as a solvent. Industrially, it is usually made by sulfuric acid-catalyzed hydration of butenes. Microbial production of 2-butanol has also been attempted, however, with little success as witnessed by the low titers and yields reported. Two important reasons for this, are the growth-hampering effect of 2-butanol on microorganisms, and challenges associated with one of the key enzymes involved in its production, namely diol dehydratase. RESULTS We attempt to link the metabolism of an engineered Lactococcus lactis strain, which possesses all enzyme activities required for fermentative production of 2-butanol from glucose, except for diol dehydratase, which acts on meso-2,3-butanediol (mBDO), with that of a Lactobacillus brevis strain which expresses a functional dehydratase natively. We demonstrate growth-coupled production of 2-butanol by the engineered L. lactis strain, when co-cultured with L. brevis. After fine-tuning the co-culture setup, a titer of 80 mM (5.9 g/L) 2-butanol, with a high yield of 0.58 mol/mol is achieved. CONCLUSIONS Here, we demonstrate that it is possible to link the metabolism of two bacteria to achieve redox-balanced production of 2-butanol. Using a simple co-cultivation setup, we achieved the highest titer and yield from glucose in a single fermentation step ever reported. The data highlight the potential that lies in harnessing microbial synergies for producing valuable compounds.
Collapse
Affiliation(s)
- Mette J. Mar
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Joakim M. Andersen
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Vijayalakshmi Kandasamy
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Jianming Liu
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Peter R. Jensen
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
18
|
Russmayer H, Egermeier M, Kalemasi D, Sauer M. Spotlight on biodiversity of microbial cell factories for glycerol conversion. Biotechnol Adv 2019; 37:107395. [DOI: 10.1016/j.biotechadv.2019.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 12/28/2022]
|
19
|
Recent Advances in the Metabolic Engineering of Klebsiella pneumoniae: A Potential Platform Microorganism for Biorefineries. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0346-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Pereira JPC, Overbeek W, Gudiño-Reyes N, Andrés-García E, Kapteijn F, van der Wielen LAM, Straathof AJJ. Integrated Vacuum Stripping and Adsorption for the Efficient Recovery of (Biobased) 2-Butanol. Ind Eng Chem Res 2019; 58:296-305. [PMID: 30774191 PMCID: PMC6369677 DOI: 10.1021/acs.iecr.8b03043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/29/2018] [Accepted: 12/12/2018] [Indexed: 11/29/2022]
Abstract
![]()
Biobased
2-butanol offers high potential as biofuel, but its toxicity
toward microbial hosts calls for efficient techniques to alleviate
product inhibition in fermentation processes. Aiming at the selective
recovery of 2-butanol, the feasibility of a process combining in situ vacuum stripping followed by vapor adsorption has
been assessed using mimicked fermentation media. The experimental
vacuum stripping of model solutions and corn stover hydrolysate closely
aligned with mass transfer model predictions. However, the presence
of lignocellulosic impurities affected 2-butanol recovery yields resulting
from vapor condensation, which decreased from 96 wt % in model solutions
to 40 wt % using hydrolysate. For the selective recovery of 2-butanol
from a vapor mixture enriched in water and carbon dioxide, silicalite
materials were the most efficient, particularly at low alcohol partial
pressures. Integrating in situ vacuum stripping with
vapor adsorption using HiSiv3000 proved useful to effectively concentrate
2-butanol above its azeotropic composition (>68 wt %), facilitating
further product purification.
Collapse
|
21
|
Wu W, Zhang Y, Huang J, Wu Y, Liu D, Chen Z. Discovery of a Potentially New Subfamily of ELFV Dehydrogenases Effective for l
-Arginine Deamination by Enzyme Mining. Biotechnol J 2017; 13. [DOI: 10.1002/biot.201700305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/11/2017] [Accepted: 10/09/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Wenjun Wu
- Institute of Applied Chemistry, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Ye Zhang
- Institute of Applied Chemistry, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Jinhai Huang
- Institute of Applied Chemistry, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Yao Wu
- Institute of Applied Chemistry, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Dehua Liu
- Institute of Applied Chemistry, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
- Tsinghua Innovation Center in Dongguan; Dongguan 523808 China
| | - Zhen Chen
- Institute of Applied Chemistry, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
- Tsinghua Innovation Center in Dongguan; Dongguan 523808 China
| |
Collapse
|
22
|
Xin F, Dong W, Jiang Y, Ma J, Zhang W, Wu H, Zhang M, Jiang M. Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts. Crit Rev Biotechnol 2017; 38:529-540. [PMID: 28911245 DOI: 10.1080/07388551.2017.1376309] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Butanol is an important bulk chemical and has been regarded as an advanced biofuel. Large-scale production of butanol has been applied for more than 100 years, but its production through acetone-butanol-ethanol (ABE) fermentation process by solventogenic Clostridium species is still not economically viable due to the low butanol titer and yield caused by the toxicity of butanol and a by-product, such as acetone. Renewed interest in biobutanol as a biofuel has spurred technological advances to strain modification and fermentation process design. Especially, with the development of interdisciplinary processes, the sole product or even the mixture of ABE produced through ABE fermentation process can be further used as platform chemicals for high value added product production through enzymatic or chemical catalysis. This review aims to comprehensively summarize the most recent advances on the conversion of acetone, butanol and ABE mixture into various products, such as isopropanol, butyl-butyrate and higher-molecular mass alkanes. Additionally, co-production of other value added products with ABE was also discussed.
Collapse
Affiliation(s)
- Fengxue Xin
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Weiliang Dong
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Yujia Jiang
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China
| | - Jiangfeng Ma
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Wenming Zhang
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Hao Wu
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Min Zhang
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Min Jiang
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| |
Collapse
|
23
|
Pereira JPC, Lopez-Gomez G, Reyes NG, van der Wielen LAM, Straathof AJJ. Prospects and challenges for the recovery of 2-butanol produced by vacuum fermentation - a techno-economic analysis. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/26/2017] [Accepted: 03/02/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Joana P. C. Pereira
- Department of Biotechnology; Delft University of Technology; Delft The Netherlands
| | - Gustavo Lopez-Gomez
- Department of Biotechnology; Delft University of Technology; Delft The Netherlands
| | - Noelia G. Reyes
- Department of Biotechnology; Delft University of Technology; Delft The Netherlands
| | | | | |
Collapse
|
24
|
Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose. Metab Eng 2017; 39:151-158. [DOI: 10.1016/j.ymben.2016.11.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/21/2016] [Accepted: 11/26/2016] [Indexed: 12/29/2022]
|
25
|
Zhang Y, Liu D, Chen Z. Production of C2-C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:299. [PMID: 29255482 PMCID: PMC5727944 DOI: 10.1186/s13068-017-0992-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/05/2017] [Indexed: 05/17/2023]
Abstract
C2-C4 diols classically derived from fossil resource are very important bulk chemicals which have been used in a wide range of areas, including solvents, fuels, polymers, cosmetics, and pharmaceuticals. Production of C2-C4 diols from renewable resources has received significant interest in consideration of the reducing fossil resource and the increasing environmental issues. While bioproduction of certain diols like 1,3-propanediol has been commercialized in recent years, biosynthesis of many other important C2-C4 diol isomers is highly challenging due to the lack of natural synthesis pathways. Recent advances in synthetic biology have enabled the de novo design of completely new pathways to non-natural molecules from renewable feedstocks. In this study, we review recent advances in bioproduction of C2-C4 diols, focusing on new metabolic pathways and metabolic engineering strategies being developed. We also discuss the challenges and future trends toward the development of economically competitive processes for bio-based diol production.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
| | - Dehua Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
- Center of Synthetic and Systems Biology, Tsinghua University, Beijing, 100084 China
| | - Zhen Chen
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
- Center of Synthetic and Systems Biology, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
26
|
Chen Z, Zeng AP. Protein engineering approaches to chemical biotechnology. Curr Opin Biotechnol 2016; 42:198-205. [DOI: 10.1016/j.copbio.2016.07.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/10/2016] [Accepted: 07/30/2016] [Indexed: 01/09/2023]
|
27
|
Yang J, Zeng T, Cai D, Li L, Tang W, Hong R, Qiu T. Supported ionic liquids as green catalyst for 2-butanol synthesis from transesterification ofsec-butyl acetate. ASIA-PAC J CHEM ENG 2016. [DOI: 10.1002/apj.2024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jinbei Yang
- School of Chemical Engineering; Fuzhou University; Fuzhou 350108 Fujian China
- School of Ocean Science and Biochemistry Engineering; Fuqing Branch of Fujian Normal University; Fuzhou 350300 Fujian China
| | - Ting Zeng
- School of Chemical Engineering; Fuzhou University; Fuzhou 350108 Fujian China
| | - Dongren Cai
- School of Chemical Engineering; Fuzhou University; Fuzhou 350108 Fujian China
| | - Ling Li
- School of Chemical Engineering; Fuzhou University; Fuzhou 350108 Fujian China
| | - Wenli Tang
- School of Chemical Engineering; Fuzhou University; Fuzhou 350108 Fujian China
| | - Ruoyu Hong
- School of Chemical Engineering; Fuzhou University; Fuzhou 350108 Fujian China
| | - Ting Qiu
- School of Chemical Engineering; Fuzhou University; Fuzhou 350108 Fujian China
| |
Collapse
|
28
|
Arai T, Tamura M, Nakagawa Y, Tomishige K. Synthesis of 2-Butanol by Selective Hydrogenolysis of 1,4-Anhydroerythritol over Molybdenum Oxide-Modified Rhodium-Supported Silica. CHEMSUSCHEM 2016; 9:1680-8. [PMID: 27226396 DOI: 10.1002/cssc.201600295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/27/2016] [Indexed: 05/23/2023]
Abstract
Rh-MoOx /SiO2 (Mo/Rh=0.13) is an effective catalyst for the hydrogenolysis of 1,4-anhydroerythritol (1,4-AHERY) and provides 2-BuOH in high yield of 51 %. This is the first report of the production of 2-BuOH from 1,4-AHERY by hydrogenolysis. 1,4-AHERY was more suitable as a starting material than erythritol because the 2-BuOH yield from erythritol was low (34 %). Based on the kinetics and comparison of reactivities of the related compounds using Rh-MoOx /SiO2 and Rh/SiO2 catalysts, the modification of Rh/SiO2 with MoOx leads to the high activity and high selectivity to 2-BuOH because of the generation of reactive hydride species and the strong adsorption of 1,4-AHERY on MoOx species. The reaction proceeds by main two routes, (I) the combination of single C-O hydrogenolysis with the desorption of intermediates, a usual route in hydrogenolysis, and (II) multiple C-O hydrogenolysis without the desorption of intermediates from the active site, and the reaction mechanism for Route (II) is proposed.
Collapse
Affiliation(s)
- Takahiro Arai
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Masazumi Tamura
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, 980-0845, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, 980-0845, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai, 980-0845, Japan.
| |
Collapse
|
29
|
Peabody GL, Kao KC. Recent progress in biobutanol tolerance in microbial systems with an emphasis on Clostridium. FEMS Microbiol Lett 2016; 363:fnw017. [PMID: 26818252 DOI: 10.1093/femsle/fnw017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2016] [Indexed: 01/20/2023] Open
Abstract
Biobased production of butanol promises a more sustainable route for industrial production. However, butanol toxicity remains a barrier for achieving high product titers. Investigation into butanol stress has shed some light on its modes of toxicity. Unfortunately, there still remain significant shortfalls in our understanding of the complex interactions of butanol with cells. To address this knowledge gap, a diverse range of tools have been employed to gain a better understanding of the adverse effects of butanol on the cell. These findings have lead to the identification of possible molecular mechanisms associated with butanol tolerance, which can be harnessed for future strain development efforts. This review focuses on recent efforts to address the toxicity of butanol in microbial producers and offers some perspectives on the future direction of this research sector.
Collapse
Affiliation(s)
- George L Peabody
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Katy C Kao
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
30
|
Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose. Metab Eng 2016; 33:12-18. [DOI: 10.1016/j.ymben.2015.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/14/2015] [Accepted: 10/30/2015] [Indexed: 11/23/2022]
|
31
|
Chen Z, Liu D. Toward glycerol biorefinery: metabolic engineering for the production of biofuels and chemicals from glycerol. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:205. [PMID: 27729943 PMCID: PMC5048440 DOI: 10.1186/s13068-016-0625-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/24/2016] [Indexed: 05/03/2023]
Abstract
As an inevitable by-product of the biofuel industry, glycerol is becoming an attractive feedstock for biorefinery due to its abundance, low price and high degree of reduction. Converting crude glycerol into value-added products is important to increase the economic viability of the biofuel industry. Metabolic engineering of industrial strains to improve its performance and to enlarge the product spectrum of glycerol biotransformation process is highly important toward glycerol biorefinery. This review focuses on recent metabolic engineering efforts as well as challenges involved in the utilization of glycerol as feedstock for the production of fuels and chemicals, especially for the production of diols, organic acids and biofuels.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
| | - Dehua Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
| |
Collapse
|
32
|
Chen Z, Sun H, Huang J, Wu Y, Liu D. Metabolic Engineering of Klebsiella pneumoniae for the Production of 2-Butanone from Glucose. PLoS One 2015; 10:e0140508. [PMID: 26465746 PMCID: PMC4605612 DOI: 10.1371/journal.pone.0140508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/25/2015] [Indexed: 11/27/2022] Open
Abstract
2-Butanone is an important commodity chemical of wide application in different areas. In this study, Klebsiella pneumoniae was engineered to directly produce 2-butanone from glucose by extending its native 2, 3-butanediol synthesis pathway. To identify the potential enzyme for the efficient conversion of 2, 3-butanediol to 2-butanone, we screened different glycerol dehydratases and diol dehydratases. By introducing the diol dehydratase from Lactobacillus brevis and deleting the ldhA gene encoding lactate dehydrogenase, the engineered K. pneumoniae was able to accumulate 246 mg/L of 2-butanone in shake flask. With further optimization of culture condition, the titer of 2-butanone was increased to 450 mg/L. This study lays the basis for developing an efficient biological process for 2-butanone production.
Collapse
Affiliation(s)
- Zhen Chen
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
- * E-mail:
| | - He Sun
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jinhai Huang
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yao Wu
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
| |
Collapse
|